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Introduction

Hamiltonian H(p, r)

Ṗ =
∂H

∂r
, P(0) = p,

Ṙ = −∂H
∂p

, R(0) = r

The map (p, r)→ (P(t; p, r),R(t; p, r)) preserves symplectic structure:

dP ∧ dR = dp ∧ dr

The sum of the oriented areas of projections of a two-dimensional surface
onto the coordinate planes (p1, r1), . . ., (pn, rn) is an integral invariant.
A method for (2) based on the one-step approximation

P̄ = P̄(t + h; t, p, r), R̄ = R̄(t + h; t, p, r)

preserves symplectic structure if dP̄ ∧ dR̄ = dp ∧ dr .
[Hairer, Lubich, Wanner; Springer, 2002]
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Introduction: example of symplectic integrator

Let H(p, r) be a separable Hamiltonian:

H(r,p) =
pTp

2m
+ U(r)

dR

dt
=

P

m
, R(0) = r, (1)

dP

dt
= f(R), P(0) = p,

where f(r) = −∇rU(r).

Example of splitting:

1/2 step
dP

dt
= f(R) +full step of

dR

dt
=
P

m
+1/2 step

dP

dt
= f(R)
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Introduction: example of symplectic integrator

(the Störmer-Verlet scheme; partitioned Runge-Kutta methods)

P1,k = Pk +
h

2
f(Rk),

Rk+1 = Rk +
h

m
P1,k ,

Pk+1 = P1,k +
h

2
f(Rk+1)

symplectic, 2nd order, one evaluation of force per step
[Hairer, Lubich, Wanner; Springer, 2002]



Stochastic Hamiltonian systems

Stochastic Hamiltonian system:

dP = f (t,P,Q)dt +
m∑
r=1

σr (t,P,Q) ◦ dwr (t), P(t0) = p, (2)

dQ = g(t,P,Q)dt +
m∑
r=1

γr (t,P,Q) ◦ dwr (t), Q(t0) = q,

f i = −∂H/∂qi , g i = ∂H/∂pi , (3)

σi
r = −∂Hr/∂q

i , γ ir = ∂Hr/∂p
i , i = 1, . . . , n, r = 1, . . . ,m.

The phase flow (p, q) 7→ (P,Q) of (2) preserves symplectic structure:

dP ∧ dQ = dp ∧ dq, (4)

where
ω2 = dp ∧ dq = dp1 ∧ dq1 + · · ·+ dpn ∧ dqn (5)

is the differential 2-form.
Bismut 1981; Milstein, Repin&T. SINUM 2002



Symplectic integrators

A method for (2) based on the one-step approximation

P̄ = P̄(t + h; t, p, q), Q̄ = Q̄(t + h; t, p, q)

preserves symplectic structure if

dP̄ ∧ dQ̄ = dp ∧ dq . (6)

Milstein, Repin&T. SINUM 2002; Milstein&T IMA JNA 2003;
Milstein&T, Springer 2004



Symplectic integrators

Kubo oscillator [Kubo, Toda, Hashitsume, Springer 1985]:

dX 1 = −aX 2dt − σX 2 ◦ dw(t) , X 1(0) = x1, (7)

dX 2 = aX 1dt + σX 1 ◦ dw(t) , X 2(0) = x2.

H(X 1(t),X 2(t)) = H(x1, x2) =
(
x1
)2

+
(
x2
)2

for t ≥ 0.
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Molecular Dynamics

Hamiltonian H(x)
microcanonical ensemble (NVE )
canonical ensemble (NVT )

ρ(x) ∝ exp(−βH(x)),

where β = 1/(kBT ) > 0 is an inverse temperature.

Two computational tasks

nondynamic quantities

dynamic quantities

Milstein&T. Physica D 2007
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Rigid Body Dynamics

Consider a system of n rigid three-dimensional molecules described by the

center-of-mass coordinates r = (r1
T

, . . . , rn
T

)T ∈ R3n,

r j = (r j1, r
j
2, r

j
3)T ∈ R3, and the rotational coordinates in the quaternion

representation q = (q1
T

, . . . , qn
T

)T ∈ R4n, qj = (qj0, q
j
1, q

j
2, q

j
3)T ∈ R4,

such that |qj | = 1.

Following [Miller III et al J. Chem. Phys., 2002]

H(r,p,q,π) =
pTp

2m
+

n∑
j=1

3∑
k=1

Vk(qj , πj) + U(r,q), (8)

where p =(p1
T

, . . . , pn
T

)T ∈ R3n, pj = (pj1, p
j
2, p

j
3)T ∈ R3, are the

center-of-mass momenta conjugate to r; π = (π1
T

, . . . , πn
T

)T ∈ R4n,

πj = (πj
0, π

j
1, π

j
2, π

j
3)T ∈ R4, are the angular momenta conjugate to q;

Vl(q, π) =
1

8Il

[
πTSlq

]2
, q, π ∈ R4, l = 1, 2, 3, (9)

Il – the principal moments of inertia and the constant 4-by-4 matrices Sl :

S1q = (−q1, q0, q3,−q2)T, S2q = (−q2,−q3, q0, q1)T,

S3q = (−q3, q2,−q1, q0)T.
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Rigid Body Dynamics

S1 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , S2 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,

S3 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 ,

Also introduce S0 = diag(1, 1, 1, 1), D = diag(0, 1/I1, 1/I2, 1/I3), and

S(q) = [S0q,S1q,S2q,S3q] =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 .
The rotational kinetic energy of a molecule:

3∑
l=1

Vl(q, π) =
1

8
πTS(q)DST(q)π .
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Rigid Body Dynamics

We assume that U(r,q) is a sufficiently smooth function. Let
f j(r,q) = −∇r jU(r,q) ∈ R3, the net force acting on molecule j , and
F j(r,q) = −∇̃qjU(r,q) ∈ TqjS3, which is the rotational force. Note that,

while ∇r j is the gradient in the Cartesian coordinates in R3, ∇̃qj is the
directional derivative tangent to the three dimensional sphere S3 implying
that

qT∇̃qjU(r,q) = 0. (10)

We note

3∑
l=1

∇πVl(q, π) =
1

4

3∑
l=1

1

Il
Slq [Slq]T

π (11)

=
1

4
S(q)DST(q)π,

3∑
l=1

∇qVl(q, π) = −1

4

3∑
l=1

1

Il

[
πTSlq

]
Slπ.
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Rigid Body Dynamics

The Hamilton equations of motion are

dR j

dt
=

P j

m
, R j(0) = r j , (12)

dP j

dt
= f j(R,Q), P j(0) = pj ,

dQ j

dt
=

1

4
S(Q j)DST(Q j)Πj , Q j(0) = qj , |qj | = 1,

dΠj

dt
=

1

4

3∑
l=1

1

Il

(
Πj TSlQ

j
)
SlΠ

j + F j(R,Q), Πj(0) = πj , qj Tπj = 0,

j = 1, . . . , n

We have
|Q j(t)| = 1 , j = 1, . . . , n , for t ≥ 0. (13)

Q j T(t)Πj(t) = 0 , j = 1, . . . , n , for t ≥ 0 (14)

i.e. Πj(t) ∈ TqjS3

Symplectic integrator for (12) in [Miller III et al J. Chem. Phys., 2002]
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Symplectic integrator for rigid bodies

1/2 step
dP

dt
= f(R,Q) +1/2 step of Π̇j = F j(R,Q)

+full step of
dR

dt
=
P

m

full step of rotation, i.e. of

dQ j

dt
=

1

4
S(Q j)DST(Q j)Πj ,

dΠj

dt
=

1

4

3∑
l=1

1

Il

(
Πj TSlQ

j
)
SlΠ

j ,

with 2nd order accuracy and so that |Q j(t)| = 1 and
Q j T(t)Πj(t) = 0;

1/2 step of Π̇j = F j(R,Q) +1/2 step
dP

dt
= f(R,Q)
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Symplectic integrator for rigid bodies

For the ‘rotation’ step, we use a composite map

Ψt = Ψt/2,3 ◦Ψt/2,2 ◦Ψt,1 ◦Ψt/2,2 ◦Ψt/2,3 , (15)

where “◦” denotes function composition, i.e., (g ◦ f )(x) = g(f (x)) and
the mapping Ψt,l(q, π) : (q, π) 7→ (Q,Π) is defined by

Q = cos(χl t)q + sin(χl t)Slq ,

Π = cos(χl t)π + sin(χl t)Slπ ,
(16)

with

χl =
1

4Il
πTSlq .

[Miller III et al J. Chem. Phys., 2002]



Symplectic integrator for rigid bodies

P0 = p, R0 = r, Q0 = q, |qj | = 1, j = 1, . . . , n, Π0 = π, qTπ = 0,

P1,k = Pk +
h

2
f(Rk ,Qk),

Πj
1,k = Πj

1,k +
h

2
F j(Rk ,Qk), j = 1, . . . , n,

Rk+1 = Rk +
h

m
P1,k ,

(Q j
k+1,Π

j
2,k) = Ψh(Q j

k ,Π
j
1,k),

Πj
k+1 = Πj

2,k +
h

2
F j(Rk+1,Qk+1), j = 1, . . . , n,

Pk+1 = P1,k +
h

2
f(Rk+1,Qk+1),

k = 0, . . . ,N − 1

[Miller III et al J. Chem. Phys., 2002]



Thermostats

Deterministic

Stochastic

Now we derive stochastic thermostats for the molecular system (12),
which preserve |Q j(t)| = 1 and Q j T(t)Πj(t) = 0. They take the form of
ergodic stochastic differential equations (SDEs) with the Gibbsian
(canonical ensemble) invariant measure possessing the density

ρ(r,p,q,π) ∝ exp(−βH(r,p,q,π)), (17)

where β = 1/(kBT ) > 0 is an inverse temperature.

Davidchack, Ouldridge&T. J Chem Phys 2015
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Langevin thermostat for Rigid Body Dynamics

dR j =
P j

m
dt, R j(0) = r j , (18)

dP j = f j(R,Q)dt − γP jdt +

√
2mγ

β
dw j(t), P j(0) = pj ,

dQ j =
1

4
S(Q j)DST(Q j)Πjdt, Q j(0) = qj , |qj | = 1, (19)

dΠj =
1

4

3∑
l=1

1

Il

(
Πj TSlQ

j
)
SlΠ

jdt + F j(R,Q)dt − ΓJ(Q j)Πjdt

+

√
2MΓ

β

3∑
l=1

SlQ
jdW j

l (t), Πj(0) = πj , qj Tπj = 0, j = 1, . . . , n,

where (wT,WT)T = (w1 T, . . . ,wn T,W 1 T, . . . , W n T)T is a

(3n + 3n)-dimensional standard Wiener process with w j = (w j
1,w

j
2,w

j
3)T

and W j = (W j
1 ,W

j
2 ,W

j
3)T; γ ≥ 0 and Γ ≥ 0 are the friction coefficients

for the translational and rotational motions, β = 1/(kBT ) > 0 and

J(q) =
M

4
S(q)DST(q), M =

4∑3
l=1

1
Il

. (20)



Langevin thermostat for Rigid Body Dynamics

The Ito interpretation of the SDEs (18)–(19) coincides with its
Stratonovich interpretation.

The solution of (18)–(19) preserves the quaternion length

|Q j(t)| = 1, j = 1, . . . , n , for all t ≥ 0. (21)

The solution of (18)–(19) automatically preserves the constraint:

Q j T(t)Πj(t) = 0 , j = 1, . . . , n , for t ≥ 0 (22)

Assume that the solution X (t) = (RT(t), PT(t),QT(t),ΠT(t))T of
(18)–(19) is an ergodic process on

D = {x = (rT,pT,qT,πT)T ∈ R14n :

|qj | = 1, qj Tπj = 0, j = 1, . . . , n}.

Then it can be shown that the invariant measure of X (t) is Gibbsian
with the density ρ(r,p,q,π) on D:

ρ(r,p,q,π) ∝ exp(−βH(r,p,q,π)) (23)



Langevin equations and quasi-symplectic integrators

dR j =
P j

m
dt, R j(0) = r j , (9)

dP j = f j(R,Q)dt − γP jdt +

√
2mγ

β
dw j(t), P j(0) = pj ,

dQ j =
1

4
S(Q j)DST(Q j)Πjdt, Q j(0) = qj , |qj | = 1, (10)

dΠj =
1

4

3∑
l=1

1

Il

(
Πj TSlQ

j
)
SlΠ

jdt + F j(R,Q)dt − ΓJ(Q j)Πjdt

+

√
2MΓ

β

3∑
l=1

SlQ
jdW j

l (t), Πj(0) = πj , qj Tπj = 0, j = 1, . . . , n,

Let D0 ∈ Rd , d = 14n, be a domain with finite volume. The
transformation
x = (r,p,q,π) 7→ X (t) = X (t; x) = (R(t; x),P(t; x),Q(t; x),Π(t; x))
maps D0 into the domain Dt .



Langevin equations and quasi-symplectic integrators

dR j =
P j

m
dt, R j(0) = r j , (9)

dP j = f j(R,Q)dt − γP jdt +

√
2mγ

β
dw j(t), P j(0) = pj ,

dQ j =
1

4
S(Q j)DST(Q j)Πjdt, Q j(0) = qj , |qj | = 1, (10)

dΠj =
1

4

3∑
l=1

1

Il

(
Πj TSlQ

j
)
SlΠ

jdt + F j(R,Q)dt − ΓJ(Q j)Πjdt

+

√
2MΓ

β

3∑
l=1

SlQ
jdW j

l (t), Πj(0) = πj , qj Tπj = 0, j = 1, . . . , n,

Let D0 ∈ Rd , d = 14n, be a domain with finite volume. The
transformation
x = (r,p,q,π) 7→ X (t) = X (t; x) = (R(t; x),P(t; x),Q(t; x),Π(t; x))
maps D0 into the domain Dt .



Langevin equations and quasi-symplectic integrators

Vt =

∫
Dt

dX 1 . . . dX d (24)

=

∫
D0

∣∣∣∣D(X 1, . . . ,X d)

D(x1, . . . , xd)

∣∣∣∣ dx1 . . . dxd .

The Jacobian J is equal to

J =
D(X 1, . . . ,X d)

D(x1, . . . , xd)
= exp (−n(3γ + Γ) · t) . (25)



Quasi-symplectic integrators

It is natural to expect that making use of numerical methods, which are
close, in a sense, to symplectic ones, has advantages when applying to
stochastic systems close to Hamiltonian ones. In [Milstein&T. IMA J.
Numer. Anal. 2003 (also Springer 2004)] numerical methods (they are
called quasi-symplectic) for Langevin equations were proposed, which
satisfy the two structural conditions:

RL1. The method applied to Langevin equations degenerates to a
symplectic method when the Langevin system degenerates to a
Hamiltonian one.

RL2. The Jacobian
−
J = DX̄/Dx does not depend on x .

The requirement RL2 is natural since the Jacobian J of the original
system (18)–(19) does not depend on x . RL2 reflects the structural
properties of the system which are connected with the law of phase
volume contractivity. It is often possible to reach a stronger property

consisting in the equality
−
J = J.
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Langevin integrators

Davidchack, Ouldridge&T. J Chem Phys 2015

For simplicity we use a uniform time discretization of a time interval
[0,T ] with the step h = T/N.

Goal: to construct integrators

quasi-symplectic

preserve |Q̄ j(tk)| = 1, j = 1, . . . , n , for all t ≥ 0 automatically

preserve Q̄ j T(tk)Π̄j(tk) = 0 , j = 1, . . . , n , for t ≥ 0 automatically

of weak order 2 with one evaluation of force per step

To this end:

stochastic numerics+splitting techniques [see e.g. Milstein&T,
Springer 2004]

the deterministic symplectic integrator from [Miller III et al J. Chem.
Phys., 2002]
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‘Langevin A’ integrator

Splitting the Langevin system:

dR j =
P j

m
dt, R j(0) = r j , (26)

dP j = f j(R,Q)dt +

√
2mγ

β
dw j(t),

dQ j =
1

4
S(Q j)DST(Q j)Πjdt, (27)

dΠj =
1

4

3∑
l=1

1

Il

(
Πj TSlQ

j
)
SlΠ

jdt + F j(R,Q)dt

+

√
2MΓ

β

3∑
l=1

SlQ
jdW j

l (t), j = 1, . . . , n,

and the deterministic system of linear differential equations

ṗ = −γp, π̇j = −ΓJ(qj)πj , j = 1, . . . , n . (28)

1/2 of (28) + step of a method for (26)-(27) + 1/2 of (28)
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‘Langevin A’ integrator

P0 = p, R0 = r, Q0 = q with |qj | = 1, j = 1, . . . , n, (29)

Π0 = π with qT
π = 0,

P1,k = e
−γ h

2 Pk , Πj
1,k = e

−ΓJ(Q
j
k

) h
2 Πj

k , j = 1, . . . , n,

P2,k = P1,k +
h

2
f(Rk ,Qk ) +

√
h

2

√
2mγ

β
ξk

Πj
2,k = Πj

1,k +
h

2
F j (Rk ,Qk ) +

√
h

2

√
2MΓ

β

3∑
l=1

SlQkη
j,l
k , j = 1, . . . , n,

Rk+1 = Rk +
h

m
P2,k ,

(Q j
k+1,Πj

3,k ) = Ψh(Q j
k ,Πj

2,k ), j = 1, . . . , n,

Πj
4,k = Πj

3,k +
h

2
F j (Rk+1,Qk+1) +

√
h

2

√
2MΓ

β

3∑
l=1

SlQk+1η
j,l
k , j = 1, . . . , n,

P3,k = P2,k +
h

2
f(Rk+1,Qk+1) +

√
h

2

√
2mγ

β
ξk ,

Pk+1 = e
−γ h

2 P3,k , Πj
k+1 = e

−ΓJ(Q
j
k+1

) h
2 Πj

4,k , j = 1, . . . , n,

k = 0, . . . ,N − 1,



‘Langevin A’ integrator

ξk = (ξ1,k , . . . , ξ3n,k)T and ηjk = (ηj1,k , . . . , η
j
3,k)T, j = 1, . . . , n, with

their components being i.i.d. with the same law

P(θ = 0) = 2/3, P(θ = ±
√

3) = 1/6. (30)

Proposition 1. The numerical scheme (29)–(30) for (18)–(19) is
quasi-symplectic, it preserves the structural properties (21) and (22) and
it is of weak order two.
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‘Langevin B’ integrator

dPI = −γPI dt +

√
2mγ

β
dw(t),

dΠj
I = −ΓJ(q)Πj

Idt +

√
2MΓ

β

3∑
l=1

SlqdW
j
l (t);

(31)

dRII =
PII

m
dt, dPII = f(RII ,QII )dt, dQ

j
II =

1

4
S(Q j

II )DS
T(Q j

II )Πj
IIdt , (32)

dΠj
II = F j(RII ,QII )dt +

1

4

3∑
l=1

1

Il

[
(Πj

II )
TSlQ

j
II

]
SlΠ

j
IIdt , j = 1, . . . , n.

The SDEs (31) have the exact solution:

PI (t) = PI (0) exp(−γt) +

√
2mγ

β

∫ t

0

exp(−γ(t − s))dw(s), (33)

Πj
I (t) = exp(−ΓJ(q)t)Πj

I (0) +

√
2MΓ

β

3∑
l=1

∫ t

0

exp(−ΓJ(q)(t − s))dW j
l (s).

1/2 step (33) + step of the symplectic method for (32) + 1/2 step (33).
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‘Langevin B’ integrator

The vectors
∫ t

0
e−ΓJ(q)(t−s)SlqdW

j
l (s) in (33) are Gaussian with zero

mean and covariance Cl(t; q) =
∫ t

0
e−ΓJ(q)(t−s)Slq(Slq)Te−ΓJ(q)(t−s)ds.

C (t; q) =
3∑

l=1

Cl(t; q) =
2

MΓ
S(q)ΛC (t; Γ)ST(q),

where

ΛC (t; Γ) =diag(0, I1(1− exp(−MΓt/(2I1))), I2(1− exp(−MΓt/(2I2))),

I3(1− exp(−MΓt/(2I3)))).

Let σ(t; q)σT(t; q) = C (t; q), e.g., σ(t; q) with the columns

σl(t; q) =

√
2

MΓ
Il

(
1− exp(−MΓt

2Il
)

)
Slq, l = 1, 2, 3,

then Πj
I (t) in (33) can be written as

Πj
I (t) = e−ΓJ(q)tΠj

I (0) +

√
2MΓ

β

3∑
l=1

σl(t; q)χj
l , χj

l are i.i.d. N (0, 1).



‘Langevin B’ integrator

P0 = p, R0 = r, Q0 = q, |qj | = 1, j = 1, . . . , n, Π0 = π, qT
π = 0, (34)

P1,k = Pke
−γh/2 +

√
m

β
(1− e−γh)ξk ,

Πj
1,k = e

−ΓJ(Q
j
k

) h
2 Πj

k+

√
4

β

3∑
l=1

√
Il

(
1− e

−MΓh
4Il

)
SlQ

j
kη

j,l
k , j = 1, . . . , n,

P2,k = P1,k +
h

2
f(Rk ,Qk ),

Πj
2,k = Πj

1,k +
h

2
F j (Rk ,Qk ), j = 1, . . . , n,

Rk+1 = Rk +
h

m
P2,k ,

(Q j
k+1,Πj

3,k ) = Ψh(Q j
k ,Πj

2,k ), Πj
4,k = Πj

3,k +
h

2
F j (Rk+1,Qk+1), j = 1, . . . , n,

P3,k = P2,k +
h

2
f(Rk+1,Qk+1),

Pk+1 = P3,ke
−γh/2 +

√
m

β
(1− e−γh)ζk ,

Πj
k+1 = e

−ΓJ(Q
j
k+1

) h
2 Πj

4,k+

√
4

β

3∑
l=1

√
Il

(
1− e

−MΓh
4Il

)
SlQ

j
k+1ς

j,l
k ,

j = 1, . . . , n, k = 0, . . . ,N − 1,



‘Langevin B’ integrator

ξk = (ξ1,k , . . . , ξ3n,k)T , ζk = (ζ1,k , . . . , ζ3n,k)T , ηjk = (ηj1,k , . . . , η
j
3,k)T ,

j = 1, . . . , n, with their components being i.i.d. with the same law (30):

P(θ = 0) = 2/3, P(θ = ±
√

3) = 1/6.

Proposition 2. The numerical scheme (34), (30) for (18)–(19) is
quasi-symplectic, it preserves (21) and (22) and it is of weak order two.



‘Langevin C’ integrator

Based on the same spliting (31) and (32) as Langevin B, i.e., the
determinisitic Hamiltonian system + OU.

To construct the method:

1/2 step of the symplectic method for (32)

step of OU (33)

1/2 step of the symplectic method for (32)

Various splittings are compared for a translational Langevin thermostat in
[Leimkuhler&Matthews 2013]
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‘Langevin C’ integrator
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R1,k = Rk +
h

2m
P1,k ,

(Qj
1,k ,Πj

2,k ) = Ψh/2(Q j
k ,Πj

1,k ), j = 1, . . . , n,

P2,k = P1,ke
−γh +

√
m

β
(1− e−2γh)ξk

Πj
3,k = e

−ΓJ(Qj
1,k

)h
Πj

2,k +

√
4

β

3∑
l=1

√
Il

(
1− e

−MΓh
2Il

)
SlQj

1,kη
j,l
k , j = 1, . . . , n,

Rk+1 = R1,k +
h

2m
P2,k ,

(Q j
k+1,Πj

4,k ) = Ψh/2(Qj
1,k ,Πj

3,k ), j = 1, . . . , n,

Pk+1 = P2,k +
h

2
f(Rk+1,Qk+1),

Πj
k+1 = Πj

4,k +
h

2
F j (Rk+1,Qk+1), j = 1, . . . , n,



‘Langevin C’ integrator

where ξk = (ξ1,k , . . . , ξ3n,k)T and ηjk = (ηj1,k , . . . , η
j
3,k)T, j = 1, . . . , n,

with their components being i.i.d. random variables with the same law
(30).

Proposition 3. The numerical scheme (35), (30) for (18)–(19) is
quasi-symplectic, it preserves (21) and (22) and it is of weak order two.

Included in LAMMPS



The gradient thermostat for rigid body dynamics

It is easy to verify that∫
Dmom

exp(−βH(r,p,q,π))dpdπ ∝ exp(−βU(r,q)) =: ρ̃(r,q), (36)

where (rT,qT)T ∈ D′ = {(rT,qT)T ∈ R7n : |qj | = 1} and the domain of

conjugate momenta Dmom = {(pT,π
T

)T ∈ R7n : qTπ = 0}.

We introduce the gradient system in the form of Stratonovich SDEs:

dR =
υ

m
f(R,Q)dt +

√
2υ

mβ
dw(t), R(0) = r, (37)

dQ j =
Υ

M
F j(R,Q)dt +

√
2Υ

Mβ

3∑
l=1

SlQ
j ◦ dW j

l (t), (38)

Q j(0) = qj , |qj | = 1, j = 1, . . . , n,

where the parameters υ > 0 and Υ > 0 control the speed of evolution of
the gradient system (37)–(38), f = (f 1 T, . . . , f n T)T and the rest of the
notation is as in (18)–(19).
[Davidchack, Ouldridge&T. J Chem Phys 2015]



The gradient thermostat for rigid body dynamics

It is easy to verify that∫
Dmom

exp(−βH(r,p,q,π))dpdπ ∝ exp(−βU(r,q)) =: ρ̃(r,q), (36)

where (rT,qT)T ∈ D′ = {(rT,qT)T ∈ R7n : |qj | = 1} and the domain of

conjugate momenta Dmom = {(pT,π
T

)T ∈ R7n : qTπ = 0}.
We introduce the gradient system in the form of Stratonovich SDEs:

dR =
υ

m
f(R,Q)dt +

√
2υ

mβ
dw(t), R(0) = r, (37)

dQ j =
Υ

M
F j(R,Q)dt +

√
2Υ

Mβ

3∑
l=1

SlQ
j ◦ dW j

l (t), (38)

Q j(0) = qj , |qj | = 1, j = 1, . . . , n,

where the parameters υ > 0 and Υ > 0 control the speed of evolution of
the gradient system (37)–(38), f = (f 1 T, . . . , f n T)T and the rest of the
notation is as in (18)–(19).
[Davidchack, Ouldridge&T. J Chem Phys 2015]



The gradient thermostat for rigid body dynamics

This new gradient thermostat possesses the following properties.

As in the case of (18)–(19), the solution of (37)–(38) preserves the
quaternion length (21).

Assume that the solution X (t) = (RT(t),QT(t))T ∈ D′ of (37)–(38)
is an ergodic process. Then, by the usual means of the stationary
Fokker-Planck equation, one can show that its invariant measure is
Gibbsian with the density ρ̃(r,q) from (36).



Geometric integrator for the gradient thermostat

The main idea is to rewrite the components Q j of the solution to
(37)–(38) in the form Q j(t) = exp(Y j(t))Q j(0) and then solve
numerically the SDEs for the 4× 4-matrices Y j(t). To this end, we
introduce the 4× 4 skew-symmetric matrices:

Fj(r,q) = F j(r,q)qj T − qj(F j(r,q))T, j = 1, . . . , n.

Note that Fj(r,q)qj = F j(r,q) under |qj | = 1 and the equations (38) can
be written as

dQ j =
Υ

M
Fj(R,Q)Q jdt+

√
2Υ

Mβ

3∑
l=1

SlQ
j◦dW j

l (t), Q j(0) = qj , |qj | = 1.

(39)
One can show that

Y j(t + h) = h
Υ

M
Fj(R(t),Q(t)) +

√
2Υ

Mβ

3∑
l=1

(
W j

l (t + h)−W j
l (t)

)
Sl

+ terms of higher order.
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Geometric integrator for the gradient thermostat

R0 = r, Q0 = q, |qj | = 1, j = 1, . . . , n, (40)

Rk+1 = Rk + h
υ

m
f(Rk ,Qk) +

√
h

√
2υ

mβ
ξk ,

Y j
k = h

Υ

M
Fj(Rk ,Qk) +

√
h

√
2Υ

Mβ

3∑
l=1

ηj,lk Sl ,

Q j
k+1 = exp(Y j

k )Q j
k , j = 1, . . . , n,

where ξk = (ξ1,k , . . . , ξ3n,k)T and ξi,k , i = 1, . . . , 3n, ηj,lk , l = 1, 2, 3,
j = 1, . . . , n, are i.i.d. random variables with the same law

P(θ = ±1) = 1/2. (41)

Proposition 4. The numerical scheme (40)–(41) for (37)–(38) preserves

the length of quaternions, i.e., |Q j
k | = 1, j = 1, . . . , n , for all k, and it is

of weak order one.

Davidchack, Ouldridge&T. J Chem Phys 2015
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Stochastic Landau-Lifshitz equation

Consider a system of n spins. Let B i be the effective field acting on spin i

B i (x) = −∇iH(x),

where ∇i is the gradient with respect to the Cartesian components of the
effective magnetic field acting on spin i and H is the Hamiltonian.

dX i = X i × ai (X)dt + X i × σ(X i ) ◦ dW i (t), (42)

X i (0) = x i0, |x i0| = 1, i = 1, . . . , n,

where X i = (X i
x ,X

i
y ,X

i
z)> are three-dimensional unit spin vectors and

X = (X 1> , . . . ,X n>)> is a 3n-dimensional vector;
W i (t) = (W i

x(t),W i
y (t),W i

z (t))>, W i
x(t), W i

y (t), W i
z (t), i = 1, . . . , n,

are independent standard Wiener processes;

ai (x) = −B i (x)− αx i × B i (x) , (43)

α ≥ 0 is the damping parameter; σ(x), x ∈ R3, is a 3× 3-matrix:

σ(x)y = −
√

2Dy − α
√

2Dx × y , D =
α

(1 + α2)

kbT

X̂ B̂
, (44)

X̂ is the magnetization of each spin and B̂ is a reference magnetic field
strength.
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Stochastic Landau-Lifshitz equation

Properties of SSL:

The length of each individual spin is a constant of motion, i.e.,

|X i (t)| = 1, i = 1, . . . , n, t ≥ 0. (45)

d
1

2
|X i |2 = X idX i = X i

[
X i × ai (X)

]
dt+X i

[
X i × σ(X i ) ◦ dWi (t)

]
= 0.

Ergodic, the Gibbsian invariant measure with the density

ρ(x) ∝ exp(−βH(x)) , (46)

where β = X̂ B̂/(kBT ) > 0 is the inverse temperature.

Stratonovich form of the SDE
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Numerics for SLLE

Mid-point method - preserves spin length, has good long time
simulation properties but very expensive for large spin systems since
it is fully implicit:

X i
k+1 = X i

k + h
X i
k + X i

k+1

2
× ai

(
Xk + Xk+1

2

)
(47)

+h1/2 X
i
k + X i

k+1

2
× σ

(
X i
k + X i

k+1

2

)
ξik+1 , i = 1, . . . , n, k = 1, . . . ,N,

where ξik+1 =
(
ξi,1k+1, ξ

i,2
k+1, ξ

i,3
k+1

)>
; ξi,jk , j = 1, 2, 3, i = 1, . . . , n,

k = 1, . . . ,N, are i.i.d. random variables which can be distributed
according to, e.g. P(ξi,jk = ±1) = 1/2. Alternatively, we can choose

ξi,jk being distributed as

ξh =

 ζ, |ζ| ≤ Ah,
Ah, ζ > Ah,
−Ah, ζ < −Ah,

(48)

where Ah =
√

2| ln h| and ζ ∼ N (0, 1) [Milstein, Repin, T. SINUM
2002]



Numerics for SLLE

Heun method - a projection is required to preserve spin length, has
poor long time simulation properties but low cost per step since it is
explicit

X i
k = X i

k + hX i
k × ai (Xk) + h1/2X i

k × σ(X i
k)ξik+1, (49)

i = 1, . . . , n,

X ∗ik+1 = X i
k +

h

2

[
X i
k × ai (Xk) + X i

k × ai (Xk)
]

+
h1/2

2

[
X i
k × σ(X i

k)ξik+1 + X i
k × σ(X i

k)ξik+1

]
,

X i
k+1 = X ∗ik+1/|X ∗

i
k+1|, i = 1, . . . , n,

k = 1, . . . ,N,

where Xk = (X 1>

k , . . . ,X n>

k )>; ξik+1 =
(
ξi,1k+1, ξ

i,2
k+1, ξ

i,3
k+1

)>
; ξi,jk ,

j = 1, 2, 3, i = 1, . . . , n, k = 1, . . . ,N, are independent identically
distributed (i.i.d.) random variables which can be distributed, e.g.,

as P(ξi,jk = ±1) = 1/2 or ξi,jl ∼ N (0, 1).



Numerics for SLLE

New semi-implicit methods [Mentink, T., Fasolino, Katsnelson, Rasing
2010]
Semi-implicit scheme A (SIA)

X i
k = X i

k + hX i
k × ai (Xk) + h1/2X i

k × σ(X i
k)ξik+1, (50)

i = 1, . . . , n,

X i
k+1 = X i

k + h
X i
k + X i

k+1

2
× ai

(
Xk + Xk

2

)
+ h1/2 X

i
k + X i

k+1

2
× σ

(
X i
k + X i

k

2

)
ξik+1, i = 1, . . . , n,

k = 1, . . . ,N,

where ξik+1 =
(
ξi,1k+1, ξ

i,2
k+1, ξ

i,3
k+1

)>
; ξi,jl are i.i.d. random variables

distributed as, e.g. P(ξi,jk = ±1) = 1/2.



Numerics for SLLE

Semi-implicit scheme B (SIB)

X i
k = X i

k + h
X i
k + X i

k

2
× ai (Xk) + h1/2 X

i
k + X i

k

2
× σ(X i

k)ξik+1, (51)

i = 1, . . . , n,

X i
k+1 = X i

k + h
X i
k + X i

k+1

2
× ai

(
Xk + Xk

2

)
+ h1/2 X

i
k + X i

k+1

2
× σ

(
X i
k + X i

k

2

)
ξik+1 , i = 1, . . . , n,

k = 1, . . . ,N.

Proposition 5. The numerical schemes SIA and SIB for SSLE preserve
the length of each spin and are of weak order one.

SIA and SIB are included in UppASD library
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Numerical experiments: rigid body thermostats

Davidchack, Handel&T. J Chem Phys 2009
and Davidchack, Ouldridge&T. J Chem Phys 2015

Two objectives for the experiments:

the dependence of the thermostat properties on the choice of
parameters γ and Γ for the Langevin thermostat
errors of the numerical schemes.

TIP4P rigid model of water (Jorgensen et. al J. Chem. Phys. 1983)

The quantities we measure include the translational temperature

Ttr =
pTp

3nkBm
,

rotational temperature

Trot =
2

3nkB

n∑
j=1

3∑
l=1

Vl(q
j , πj) ,

and potential energy per molecule

U =
1

n
U(r,q) .



Figure: Langevin thermostat: γ = 4 ps−1, Γ = 0.



Figure: Langevin thermostat: γ = 4 ps−1, Γ = 0.



Figure: Langevin thermostat: γ = 4 ps−1, Γ = 10 ps−1.

τTtr = 0.28 ps, τTrot = 0.26 ps, and τU = 2.0 ps



Parameters of the Langevin thermostat

Figure: Langevin thermostat. Dependence of relaxation time of the
translational temperature on γ and Γ.



Parameters of the Langevin thermostat

Figure: Langevin thermostat. Dependence of relaxation time of the rotational
temperature on γ and Γ.



Parameters of the Langevin thermostat

Figure: Langevin thermostat. Dependence of relaxation time of the potential
energy on γ and Γ.

γ = 2− 8 ps−1 and Γ = 3− 40 ps−1



Parameters of the Langevin thermostat

Figure: Langevin thermostat. Dependence of relaxation time of the potential
energy on γ and Γ.

γ = 2− 8 ps−1 and Γ = 3− 40 ps−1



Accuracy of integrators

Translational kinetic temperature

〈Ttk〉h =
〈pTp〉h
3mkBn

;

Rotational kinetic temperature

〈Trk〉h =
2
〈∑n

j=1

∑3
l=1 Vl(q

j , πj)
〉
h

3kBn
;

Translational configurational temperature

〈Ttc〉h =

〈∑n
j=1 |∇r jU|2

〉
h

kB
〈∑n

j=1∇
2
r jU
〉
h

;

Rotational configurational temperature

〈Trc〉h =

〈∑n
j=1 |∇ωjU|2

〉
h

kB
〈∑n

j=1∇
2
ωjU

〉
h

,

where ∇ωj is the angular gradient operator for molecule j ;



Accuracy of integrators

Potential energy per molecule

〈U〉h =
1

n
〈U〉h;

Excess pressure

〈Pex〉h = −

〈∑n
j=1 r

j Tf j
〉
h

3V
,

where V is the system volume;

Radial distribution functions (RDFs) between oxygen (O) and
hydrogen (H) interaction sites

〈gαβ(r)〉h ,

where αβ = OO, OH, and HH.

Angle brackets with subscript h represent the average over a simulation
run with time step h.



Accuracy of integrators

EA(X̄ ) = EA(X ) + CAh
p + O(hp+1)

p = 2 for Langevin integrators and p = 1 for the gradient thermostat
integrator

Talay&Tubaro Stoch.Anal.Appl. 1990



Accuracy of integrators

Langevin A (left), Langevin B (centre), and Langevin C (right) with
γ = 5 ps−1 and Γ = 10 ps−1. Error bars denote estimated 95%
confidence intervals.



Accuracy of integrators

Results for Langevin A, B, and C thermostats with γ = 5 ps−1 and
Γ = 10 ps−1 and gradient thermostat with υ = 4 fs and Υ = 1 fs.

Langevin A Langevin B Langevin C Gradient
A, unit 〈A〉0 EA 〈A〉0 EA 〈A〉0 EA 〈A〉0 EA

Ttk, K 300.0(2) −0.136(8) 299.9(2) 0.100(13) 300.0(2) −0.135(7) − −
Trk, K 299.9(2) −0.808(8) 299.8(3) −0.092(13) 300.1(2) −0.803(8) − −
Ttc, K 300.1(3) 0.022(13) 299.9(4) 0.45(2) 300.1(3) 0.021(13) 299.6(1.0) 3.6(5)
Trc, K 299.8(3) 0.158(11) 299.6(4) 0.99(2) 299.9(3) 0.152(11) 298.6(1.6) 9.9(4)

U , kcal/mol −9.068(4) −0.0004(2) −9.071(4) 0.0059(2) −9.066(3) −0.0005(2) −9.075(11) 0.033(4)
Pex, MPa −117.4(1.3) −0.02(5) −117.4(1.6) 0.27(9) −117.5(1.4) −0.01(5) −118(11) 1.7(2.8)
gOO(rOO) 3.007(4) 0.0006(2) 3.009(4) −0.0027(2) 3.009(4) 0.0004(2) 3.012(9) −0.011(4)
gOH(rOH) 1.490(3) 0.0003(2) 1.492(2) −0.0024(2) 1.490(2) 0.00028(9) 1.491(7) −0.011(2)
gHH(rHH) 1.283(2) 0.00012(7) 1.284(2) −0.00082(6) 1.282(2) 0.00018(7) 1.284(4) −0.004(2)

Values of 〈A〉0 and EA were obtained by linear regression from 〈A〉h for
h ≤ 6 fs for Langevin integrators and for h ≤ 4 fs for the gradient
integrator. Quantities EA are measured in the units of the corresponding
quantity A per fsp, where p = 2 for Langevin integrators and p = 1 for
the gradient integrator.



Langevin systems with hydrodynamic interactions

In modelling colloidal suspensions, DNA, proteins and other
macromolecules in solutions, solvent-mediated interactions between the
particles should be included. Particles moving in a viscous fluid induce a
flow field which affects other particles. These long-range interactions,
which are only present if particles are moving, are called hydrodynamic
interactions.

For a system of spherical particles, forces and torques due to
hydrodynamic interactions depend linearly on the linear and angular
velocities of the spheres through a position-dependent friction matrix
ξ(r).

[Davidchack, Ouldridge&T. work in progress]
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Langevin systems with hydrodynamic interactions

dR i =
P i

mi
dt, R i (0) = r i , (52)

dP i = f i (R,Q)dt −
n∑

j=1

ttξ(i,j)(R)

mj
P jdt

−1

2

n∑
j=1

trξ(i,j)(R)AT(Q j)D̂ j ŜT(Q j)Πjdt

+
n∑

j=1

ttb(i,j)(R)dw j(t) +
n∑

j=1

trb(i,j)(R)dW j(t), P i (0) = pi ,



Langevin systems with hydrodynamic interactions

dQ i =
1

4
Ŝ(Q i )D̂ i ŜT(Q i )Πidt, Q i (0) = qi , |qi | = 1, (53)

dΠi =
1

4
Ŝ(Πi )D̂ i Ŝᵀ(Q i )Πidt + F i (R,Q)dt

−
n∑

j=1

Š(Q i ) rrξ(i,j)(R)AT(Q j)D̂ j ŜT(Q j)Πjdt

−2
n∑

j=1

1

mj
Š(Q i ) rtξ(i,j)(R)P jdt

+2
n∑

j=1

Š(Q i ) rrb(i,j)(R)dW j(t)

+2
n∑

j=1

Š(Q i ) rtb(i,j)(R)dw j(t), Πi (0) = πi , qiTπi = 0,

i = 1, . . . , n,

where ttb(i,j)(r), trb(i,j)(r), rrb(i,j)(r), and rtb(i,j)(r), i , j = 1, . . . , n, are
3× 3-matrices.



Langevin systems with hydrodynamic interactions

The matrices ttb(i,j)(r), trb(i,j)(r,q), rrb(i,j)(r,q), and rtb(i,j)(r,q) are so
that the invariant measure of X (t) is Gibbsian with the density
ρ(r,p,q,π):

ρ(r,p,q,π) ∝ exp(−βH(r,p,q,π)).

[
ttb(r) trb(r)
rtb(r) rrb(r)

] [
ttbT(r) rtbT(r)
trbT(r) rrbT(r)

]
=

2

β

[
ttξ(r) trξ(r)
rtξ(r) rrξ(r)

]
:=

2

β
ξ(r).

[Davidchack, Ouldridge&T. work in progress]



Conclusions

As in the deterministic case, it is important to preserve structural
properties of stochastic systems for accurate long term simulations

Geometric integrators for stochastic Hamiltonian systems, for various
Langevin-type equations, for stochastic Landau-Lifshitz equation
were constructed

Testing of thermostats and numerical integrators.

Current work includes stochastic rigid body dynamics with
hydrodynamic interactions.

Development of more efficient methods for stochastic gradient
systems.
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