### Stochastic geometric integration

#### M.V. Tretyakov School of Mathematical Sciences, University of Nottingham, UK

Woudschoten Conference, 7th October 2016

### Plan of the talk

- Introduction
- Stochastic Hamiltonian systems and sympletic integrators
- Intro to molecular dynamics
- Langevin thermostats for Rigid Body Dynamics
- Quasi-symplectic integrators for Langevin equation
- Geometric integrators for Langevin thermostats for Rigid Body Dynamics
- Gradient thermostats for Rigid Body Dynamics and Geometric integrator
- Geometric integrators for stochastic Landau-Lifshitz equation
- Numerical experiments for Rigid Body Dynamics
- Langevin thermostat for systems with hydrodynamic interactions
- Conclusions

### Introduction

Hamiltonian H(p, r)

$$\dot{P} = \frac{\partial H}{\partial r}, \quad P(0) = p,$$

$$\dot{R} = -\frac{\partial H}{\partial p}, \quad R(0) = r$$

#### Introduction

Hamiltonian H(p, r)

$$\dot{P} = \frac{\partial H}{\partial r}, \quad P(0) = p,$$

$$\dot{R} = -\frac{\partial H}{\partial p}, \quad R(0) = r$$

The map  $(p, r) \rightarrow (P(t; p, r), R(t; p, r))$  preserves symplectic structure:  $dP \wedge dR = dp \wedge dr$ 

The sum of the oriented areas of projections of a two-dimensional surface onto the coordinate planes  $(p^1, r^1), \ldots, (p^n, r^n)$  is an integral invariant.

#### Introduction

Hamiltonian H(p, r)

$$\dot{P} = \frac{\partial H}{\partial r}, \quad P(0) = p,$$

$$\dot{R} = -\frac{\partial H}{\partial p}, \quad R(0) = r$$

The map  $(p, r) \rightarrow (P(t; p, r), R(t; p, r))$  preserves symplectic structure:

$$dP \wedge dR = dp \wedge dr$$

The sum of the oriented areas of projections of a two-dimensional surface onto the coordinate planes  $(p^1, r^1), \ldots, (p^n, r^n)$  is an integral invariant. A method for (2) based on the one-step approximation

$$ar{P}=ar{P}(t+h;t,p,r),\ \ ar{R}=ar{R}(t+h;t,p,r)$$

preserves symplectic structure if  $d\bar{P} \wedge d\bar{R} = dp \wedge dr$ . [Hairer, Lubich, Wanner; Springer, 2002]

Let H(p, r) be a separable Hamiltonian:

$$H(\mathbf{r},\mathbf{p}) = \frac{\mathbf{p}^{\mathsf{T}}\mathbf{p}}{2m} + U(\mathbf{r})$$

Let H(p, r) be a separable Hamiltonian:

$$H(\mathbf{r},\mathbf{p}) = \frac{\mathbf{p}^{\mathsf{T}}\mathbf{p}}{2m} + U(\mathbf{r})$$

$$\frac{d\mathbf{R}}{dt} = \frac{\mathbf{P}}{m}, \quad \mathbf{R}(0) = \mathbf{r},$$

$$\frac{d\mathbf{P}}{dt} = \mathbf{f}(\mathbf{R}), \quad \mathbf{P}(0) = \mathbf{p},$$
(1)

where  $\mathbf{f}(\mathbf{r}) = -\nabla_{\mathbf{r}} U(\mathbf{r})$ .

Let H(p, r) be a separable Hamiltonian:

$$H(\mathbf{r},\mathbf{p}) = \frac{\mathbf{p}^{\mathsf{T}}\mathbf{p}}{2m} + U(\mathbf{r})$$

$$\frac{d\mathbf{R}}{dt} = \frac{\mathbf{P}}{m}, \quad \mathbf{R}(0) = \mathbf{r},$$

$$\frac{d\mathbf{P}}{dt} = \mathbf{f}(\mathbf{R}), \quad \mathbf{P}(0) = \mathbf{p},$$
(1)

where  $\mathbf{f}(\mathbf{r}) = -\nabla_{\mathbf{r}} U(\mathbf{r})$ .

Example of splitting:

1/2 step 
$$\frac{d\mathbf{P}}{dt} = \mathbf{f}(\mathbf{R})$$
 +full step of  $\frac{d\mathbf{R}}{dt} = \frac{\mathbf{P}}{m} + 1/2$  step  $\frac{d\mathbf{P}}{dt} = \mathbf{f}(\mathbf{R})$ 

(the Störmer-Verlet scheme; partitioned Runge-Kutta methods)

$$\mathcal{P}_{1,k} = \mathbf{P}_k + \frac{h}{2}\mathbf{f}(\mathbf{R}_k),$$
  
$$\mathbf{R}_{k+1} = \mathbf{R}_k + \frac{h}{m}\mathcal{P}_{1,k},$$
  
$$\mathbf{P}_{k+1} = \mathcal{P}_{1,k} + \frac{h}{2}\mathbf{f}(\mathbf{R}_{k+1})$$

symplectic, 2nd order, one evaluation of force per step [Hairer, Lubich, Wanner; Springer, 2002]

#### Stochastic Hamiltonian systems

Stochastic Hamiltonian system:

$$dP = f(t, P, Q)dt + \sum_{r=1}^{m} \sigma_r(t, P, Q) \circ dw_r(t), \ P(t_0) = p, \qquad (2)$$

$$dQ = g(t, P, Q)dt + \sum_{r=1}^{m} \gamma_r(t, P, Q) \circ dw_r(t), \ Q(t_0) = q,$$
  
$$f^i = -\partial H/\partial q^i, \ g^i = \partial H/\partial p^i, \qquad (3)$$
  
$$\sigma^i_r = -\partial H_r/\partial q^i, \ \gamma^i_r = \partial H_r/\partial p^i, \quad i = 1, \dots, n, \quad r = 1, \dots, m.$$

The phase flow  $(p,q)\mapsto (P,Q)$  of (2) preserves symplectic structure:

$$dP \wedge dQ = dp \wedge dq, \tag{4}$$

where

$$\omega^2 = dp \wedge dq = dp^1 \wedge dq^1 + \dots + dp^n \wedge dq^n$$
(5)

is the differential 2-form. Bismut 1981; Milstein, Repin&T. SINUM 2002

### Symplectic integrators

A method for (2) based on the one-step approximation

$$ar{P}=ar{P}(t+h;t,p,q),\ \ ar{Q}=ar{Q}(t+h;t,p,q)$$

preserves symplectic structure if

$$d\bar{P} \wedge d\bar{Q} = dp \wedge dq \,. \tag{6}$$

Milstein, Repin&T. SINUM 2002; Milstein&T IMA JNA 2003; Milstein&T, Springer 2004

#### Symplectic integrators

Kubo oscillator [Kubo, Toda, Hashitsume, Springer 1985]:

$$dX^{1} = -aX^{2}dt - \sigma X^{2} \circ dw(t), \quad X^{1}(0) = x^{1}, \quad (7)$$
  
$$dX^{2} = aX^{1}dt + \sigma X^{1} \circ dw(t), \quad X^{2}(0) = x^{2}.$$

 $\mathcal{H}(X^{1}(t), X^{2}(t)) = \mathcal{H}(x^{1}, x^{2}) = (x^{1})^{2} + (x^{2})^{2}$  for  $t \geq 0$ .

#### Symplectic integrators

Kubo oscillator [Kubo, Toda, Hashitsume, Springer 1985]:

$$dX^{1} = -aX^{2}dt - \sigma X^{2} \circ dw(t), \quad X^{1}(0) = x^{1}, \quad (7)$$
  
$$dX^{2} = aX^{1}dt + \sigma X^{1} \circ dw(t), \quad X^{2}(0) = x^{2}.$$

 $\mathcal{H}(X^{1}(t), X^{2}(t)) = \mathcal{H}(x^{1}, x^{2}) = (x^{1})^{2} + (x^{2})^{2}$  for  $t \geq 0$ .

Hamiltonian H(x)

Hamiltonian H(x)microcanonical ensemble (*NVE*)

Hamiltonian H(x)microcanonical ensemble (*NVE*) canonical ensemble (*NVT*)

Hamiltonian H(x)microcanonical ensemble (*NVE*) canonical ensemble (*NVT*)

 $\rho(x) \propto \exp(-\beta H(x)),$ 

where  $\beta = 1/(k_B T) > 0$  is an inverse temperature.

Hamiltonian H(x)microcanonical ensemble (*NVE*) canonical ensemble (*NVT*)

$$\rho(x) \propto \exp(-\beta H(x)),$$

where  $\beta = 1/(k_B T) > 0$  is an inverse temperature.

Two computational tasks

- nondynamic quantities
- o dynamic quantities

Milstein&T. Physica D 2007

Consider a system of *n* rigid three-dimensional molecules described by the center-of-mass coordinates  $\mathbf{r} = (r_1^{T^{\mathsf{T}}}, \ldots, r^{n^{\mathsf{T}}})^{\mathsf{T}} \in \mathbb{R}^{3n}$ ,  $r^j = (r_1^j, r_2^j, r_3^j)^{\mathsf{T}} \in \mathbb{R}^3$ , and the rotational coordinates in the quaternion representation  $\mathbf{q} = (q_1^{T^{\mathsf{T}}}, \ldots, q^{n^{\mathsf{T}}})^{\mathsf{T}} \in \mathbb{R}^{4n}$ ,  $q^j = (q_0^j, q_1^j, q_2^j, q_3^j)^{\mathsf{T}} \in \mathbb{R}^4$ , such that  $|q^j| = 1$ .

Consider a system of *n* rigid three-dimensional molecules described by the center-of-mass coordinates  $\mathbf{r} = (r_1^{T}, \ldots, r^{n^{T}})^{T} \in \mathbb{R}^{3n}$ ,  $r^j = (r_1^j, r_2^j, r_3^j)^{T} \in \mathbb{R}^3$ , and the rotational coordinates in the quaternion representation  $\mathbf{q} = (q_1^{T}, \ldots, q^{n^{T}})^{T} \in \mathbb{R}^{4n}$ ,  $q^j = (q_0^j, q_1^j, q_2^j, q_3^j)^{T} \in \mathbb{R}^4$ , such that  $|q^j| = 1$ . Following [Miller III et al *J. Chem. Phys.*, 2002]

$$H(\mathbf{r},\mathbf{p},\mathbf{q},\pi) = \frac{\mathbf{p}^{\mathsf{T}}\mathbf{p}}{2m} + \sum_{j=1}^{n}\sum_{k=1}^{3}V_{k}(q^{j},\pi^{j}) + U(\mathbf{r},\mathbf{q}),$$
(8)

where  $\mathbf{p} = (p^{1^{\mathsf{T}}}, \dots, p^{n^{\mathsf{T}}})^{\mathsf{T}} \in \mathbb{R}^{3n}$ ,  $p^{j} = (p_{1}^{j}, p_{2}^{j}, p_{3}^{j})^{\mathsf{T}} \in \mathbb{R}^{3}$ , are the center-of-mass momenta conjugate to  $\mathbf{r}$ ;  $\boldsymbol{\pi} = (\pi^{1^{\mathsf{T}}}, \dots, \pi^{n^{\mathsf{T}}})^{\mathsf{T}} \in \mathbb{R}^{4n}$ ,  $\pi^{j} = (\pi^{j}_{0}, \pi^{j}_{1}, \pi^{j}_{2}, \pi^{j}_{3})^{\mathsf{T}} \in \mathbb{R}^{4}$ , are the angular momenta conjugate to  $\mathbf{q}$ ;

Consider a system of *n* rigid three-dimensional molecules described by the center-of-mass coordinates  $\mathbf{r} = (r^{1^{\mathsf{T}}}, \ldots, r^{n^{\mathsf{T}}})^{\mathsf{T}} \in \mathbb{R}^{3n}$ ,  $r^{j} = (r_{1}^{j}, r_{2}^{j}, r_{3}^{j})^{\mathsf{T}} \in \mathbb{R}^{3}$ , and the rotational coordinates in the quaternion representation  $\mathbf{q} = (q^{1^{\mathsf{T}}}, \ldots, q^{n^{\mathsf{T}}})^{\mathsf{T}} \in \mathbb{R}^{4n}$ ,  $q^{j} = (q_{0}^{j}, q_{1}^{j}, q_{2}^{j}, q_{3}^{j})^{\mathsf{T}} \in \mathbb{R}^{4}$ , such that  $|q^{j}| = 1$ . Following [Miller III et al *J. Chem. Phys.*, 2002]

$$H(\mathbf{r},\mathbf{p},\mathbf{q},\pi) = \frac{\mathbf{p}^{\mathsf{T}}\mathbf{p}}{2m} + \sum_{j=1}^{n}\sum_{k=1}^{3}V_{k}(q^{j},\pi^{j}) + U(\mathbf{r},\mathbf{q}),$$
(8)

where  $\mathbf{p} = (p^{1^{\mathsf{T}}}, \dots, p^{n^{\mathsf{T}}})^{\mathsf{T}} \in \mathbb{R}^{3n}$ ,  $p^{j} = (p_{1}^{j}, p_{2}^{j}, p_{3}^{j})^{\mathsf{T}} \in \mathbb{R}^{3}$ , are the center-of-mass momenta conjugate to  $\mathbf{r}$ ;  $\boldsymbol{\pi} = (\pi^{1^{\mathsf{T}}}, \dots, \pi^{n^{\mathsf{T}}})^{\mathsf{T}} \in \mathbb{R}^{4n}$ ,  $\pi^{j} = (\pi^{j}_{0}, \pi^{j}_{1}, \pi^{j}_{2}, \pi^{j}_{3})^{\mathsf{T}} \in \mathbb{R}^{4}$ , are the angular momenta conjugate to  $\mathbf{q}$ ;

$$V_{l}(q,\pi) = \frac{1}{8I_{l}} \left[\pi^{\mathsf{T}} S_{l} q\right]^{2}, \quad q,\pi \in \mathbb{R}^{4}, \quad l = 1, 2, 3,$$
 (9)

 $I_l$  – the principal moments of inertia and the constant 4-by-4 matrices  $S_l$  :

$$\begin{split} S_1 q &= (-q_1, q_0, q_3, -q_2)^\mathsf{T}, \ S_2 q = (-q_2, -q_3, q_0, q_1)^\mathsf{T}, \\ S_3 q &= (-q_3, q_2, -q_1, q_0)^\mathsf{T}. \end{split}$$

$$S_{1} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, S_{2} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$
$$S_{3} = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix},$$

$$S_{1} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, S_{2} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$
$$S_{3} = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix},$$

Also introduce  $S_0 = \text{diag}(1, 1, 1, 1), D = \text{diag}(0, 1/I_1, 1/I_2, 1/I_3)$ , and

$$S(q) = [S_0q, S_1q, S_2q, S_3q] = \left[egin{array}{cccc} q_0 & -q_1 & -q_2 & -q_3 \ q_1 & q_0 & -q_3 & q_2 \ q_2 & q_3 & q_0 & -q_1 \ q_3 & -q_2 & q_1 & q_0 \end{array}
ight].$$

$$S_{1} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}, S_{2} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$
$$S_{3} = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix},$$

Also introduce  $S_0 = \text{diag}(1, 1, 1, 1), D = \text{diag}(0, 1/I_1, 1/I_2, 1/I_3)$ , and

$$S(q) = [S_0q, S_1q, S_2q, S_3q] = \left[egin{array}{cccc} q_0 & -q_1 & -q_2 & -q_3 \ q_1 & q_0 & -q_3 & q_2 \ q_2 & q_3 & q_0 & -q_1 \ q_3 & -q_2 & q_1 & q_0 \end{array}
ight].$$

The rotational kinetic energy of a molecule:

$$\sum_{l=1}^{3} V_{l}(q,\pi) = \frac{1}{8} \pi^{\mathsf{T}} S(q) D S^{\mathsf{T}}(q) \pi \, .$$

We assume that  $U(\mathbf{r}, \mathbf{q})$  is a sufficiently smooth function. Let  $f^{j}(\mathbf{r}, \mathbf{q}) = -\nabla_{r^{j}} U(\mathbf{r}, \mathbf{q}) \in \mathbb{R}^{3}$ , the net force acting on molecule j, and  $F^{j}(\mathbf{r}, \mathbf{q}) = -\tilde{\nabla}_{q^{j}} U(\mathbf{r}, \mathbf{q}) \in T_{q^{j}} \mathbb{S}^{3}$ , which is the rotational force. Note that, while  $\nabla_{r^{j}}$  is the gradient in the Cartesian coordinates in  $\mathbb{R}^{3}$ ,  $\tilde{\nabla}_{q^{j}}$  is the directional derivative tangent to the three dimensional sphere  $\mathbb{S}^{3}$  implying that

$$\mathbf{q}^{\mathsf{T}}\tilde{\nabla}_{q^{j}}U(\mathbf{r},\mathbf{q})=0. \tag{10}$$

We assume that  $U(\mathbf{r}, \mathbf{q})$  is a sufficiently smooth function. Let  $f^{j}(\mathbf{r}, \mathbf{q}) = -\nabla_{r^{j}} U(\mathbf{r}, \mathbf{q}) \in \mathbb{R}^{3}$ , the net force acting on molecule j, and  $F^{j}(\mathbf{r}, \mathbf{q}) = -\tilde{\nabla}_{q^{j}} U(\mathbf{r}, \mathbf{q}) \in T_{q^{j}} \mathbb{S}^{3}$ , which is the rotational force. Note that, while  $\nabla_{r^{j}}$  is the gradient in the Cartesian coordinates in  $\mathbb{R}^{3}$ ,  $\tilde{\nabla}_{q^{j}}$  is the directional derivative tangent to the three dimensional sphere  $\mathbb{S}^{3}$  implying that

$$\mathbf{q}^{\mathsf{T}}\tilde{\nabla}_{q^{j}}U(\mathbf{r},\mathbf{q})=0. \tag{10}$$

We note

$$\sum_{l=1}^{3} \nabla_{\pi} V_{l}(q, \pi) = \frac{1}{4} \sum_{l=1}^{3} \frac{1}{I_{l}} S_{l} q [S_{l} q]^{\mathsf{T}} \pi \qquad (11)$$
$$= \frac{1}{4} S(q) D S^{\mathsf{T}}(q) \pi,$$
$$\sum_{l=1}^{3} \nabla_{q} V_{l}(q, \pi) = -\frac{1}{4} \sum_{l=1}^{3} \frac{1}{I_{l}} [\pi^{\mathsf{T}} S_{l} q] S_{l} \pi.$$

The Hamilton equations of motion are

$$\frac{dR^{j}}{dt} = \frac{P^{j}}{m}, \quad R^{j}(0) = r^{j}, \quad (12)$$

$$\frac{dP^{j}}{dt} = f^{j}(\mathbf{R}, \mathbf{Q}), \quad P^{j}(0) = p^{j}, \quad (12)$$

$$\frac{dQ^{j}}{dt} = \frac{1}{4}S(Q^{j})DS^{\mathsf{T}}(Q^{j})\Pi^{j}, \quad Q^{j}(0) = q^{j}, \quad |q^{j}| = 1, \quad (12)$$

$$\frac{d\Pi^{j}}{dt} = \frac{1}{4}\sum_{l=1}^{3}\frac{1}{I_{l}} \left(\Pi^{j}\mathsf{T}S_{l}Q^{j}\right)S_{l}\Pi^{j} + F^{j}(\mathbf{R}, \mathbf{Q}), \quad \Pi^{j}(0) = \pi^{j}, \quad q^{j}\mathsf{T}\pi^{j} = 0, \quad j = 1, \dots, n$$

The Hamilton equations of motion are

$$\frac{dR^{j}}{dt} = \frac{P^{j}}{m}, \quad R^{j}(0) = r^{j}, \quad (12)$$

$$\frac{dP^{j}}{dt} = f^{j}(\mathbf{R}, \mathbf{Q}), \quad P^{j}(0) = p^{j}, \quad (12)$$

$$\frac{dQ^{j}}{dt} = \frac{1}{4}S(Q^{j})DS^{\mathsf{T}}(Q^{j})\Pi^{j}, \quad Q^{j}(0) = q^{j}, \quad |q^{j}| = 1, \quad (12)$$

$$\frac{d\Pi^{j}}{dt} = \frac{1}{4}\sum_{l=1}^{3}\frac{1}{l_{l}} \left(\Pi^{j}\mathsf{T}S_{l}Q^{j}\right)S_{l}\Pi^{j} + F^{j}(\mathbf{R}, \mathbf{Q}), \quad \Pi^{j}(0) = \pi^{j}, \quad q^{j}\mathsf{T}\pi^{j} = 0, \quad j = 1, \dots, n$$

We have

$$|Q^{j}(t)| = 1, \quad j = 1, \dots, n, \text{ for } t \ge 0.$$
 (13)

The Hamilton equations of motion are

$$\frac{dR^{j}}{dt} = \frac{P^{j}}{m}, \quad R^{j}(0) = r^{j}, \quad (12)$$

$$\frac{dP^{j}}{dt} = f^{j}(\mathbf{R}, \mathbf{Q}), \quad P^{j}(0) = p^{j}, \quad (12)$$

$$\frac{dQ^{j}}{dt} = \frac{1}{4}S(Q^{j})DS^{\mathsf{T}}(Q^{j})\Pi^{j}, \quad Q^{j}(0) = q^{j}, \quad |q^{j}| = 1, \quad (12)$$

$$\frac{d\Pi^{j}}{dt} = \frac{1}{4}\sum_{l=1}^{3}\frac{1}{l_{l}} \left(\Pi^{j}\mathsf{T}S_{l}Q^{j}\right)S_{l}\Pi^{j} + F^{j}(\mathbf{R}, \mathbf{Q}), \quad \Pi^{j}(0) = \pi^{j}, \quad q^{j}\mathsf{T}\pi^{j} = 0, \quad j = 1, \dots, n$$

We have

$$|Q^{j}(t)| = 1, \quad j = 1, \dots, n, \text{ for } t \ge 0.$$
 (13)

$$Q^{j T}(t) \Pi^{j}(t) = 0, \ \ j = 1, \dots, n, \ \ \text{for} \ t \ge 0$$
 (14)

The Hamilton equations of motion are

$$\frac{dR^{j}}{dt} = \frac{P^{j}}{m}, \quad R^{j}(0) = r^{j}, \quad (12)$$

$$\frac{dP^{j}}{dt} = f^{j}(\mathbf{R}, \mathbf{Q}), \quad P^{j}(0) = p^{j}, \quad (12)$$

$$\frac{dQ^{j}}{dt} = \frac{1}{4}S(Q^{j})DS^{\mathsf{T}}(Q^{j})\Pi^{j}, \quad Q^{j}(0) = q^{j}, \quad |q^{j}| = 1, \quad (12)$$

$$\frac{d\Pi^{j}}{dt} = \frac{1}{4}\sum_{l=1}^{3}\frac{1}{l_{l}} \left(\Pi^{j}\mathsf{T}S_{l}Q^{j}\right)S_{l}\Pi^{j} + F^{j}(\mathbf{R}, \mathbf{Q}), \quad \Pi^{j}(0) = \pi^{j}, \quad q^{j}\mathsf{T}\pi^{j} = 0, \quad j = 1, \dots, n$$

We have

$$|Q^{j}(t)| = 1, \quad j = 1, \dots, n, \text{ for } t \ge 0.$$
 (13)

$$Q^{jT}(t)\Pi^{j}(t) = 0, \quad j = 1, ..., n, \text{ for } t \ge 0$$
 (14)

i.e.  $\Pi^{j}(t) \in T_{q^{j}}\mathbb{S}^{3}$ 

Symplectic integrator for (12) in [Miller III et al J. Chem. Phys., 2002]

• 1/2 step 
$$\frac{d\mathbf{P}}{dt} = \mathbf{f}(\mathbf{R}, \mathbf{Q}) + 1/2$$
 step of  $\dot{\Pi}^{j} = F^{j}(\mathbf{R}, \mathbf{Q})$   
+full step of  $\frac{d\mathbf{R}}{dt} = \frac{\mathbf{P}}{m}$ 

$$\frac{dQ^{j}}{dt} = \frac{1}{4}S(Q^{j})DS^{\mathsf{T}}(Q^{j})\Pi^{j}, \ \frac{d\Pi^{j}}{dt} = \frac{1}{4}\sum_{l=1}^{3}\frac{1}{I_{l}}\left(\Pi^{j\,\mathsf{T}}S_{l}Q^{j}\right)S_{l}\Pi^{j},$$

with 2nd order accuracy and so that  $|Q^j(t)| = 1$  and  $Q^{j \, \mathsf{T}}(t) \Pi^j(t) = 0;$ 

• 
$$1/2 \operatorname{step} \frac{d\mathbf{P}}{dt} = \mathbf{f}(\mathbf{R}, \mathbf{Q}) + 1/2 \operatorname{step} \operatorname{of} \dot{\Pi}^{j} = F^{j}(\mathbf{R}, \mathbf{Q})$$
  
+full step of  $\frac{d\mathbf{R}}{dt} = \frac{\mathbf{P}}{m}$   
• full step of rotation, i.e. of

$$\frac{dQ^{j}}{dt} = \frac{1}{4}S(Q^{j})DS^{\mathsf{T}}(Q^{j})\Pi^{j}, \ \frac{d\Pi^{j}}{dt} = \frac{1}{4}\sum_{l=1}^{3}\frac{1}{l_{l}}\left(\Pi^{j\mathsf{T}}S_{l}Q^{j}\right)S_{l}\Pi^{j},$$

with 2nd order accuracy and so that  $|Q^j(t)| = 1$  and  $Q^{j\,\mathsf{T}}(t)\mathsf{\Pi}^j(t) = 0;$ 

• 1/2 step of 
$$\dot{\Pi}^j = F^j(\mathbf{R}, \mathbf{Q}) + 1/2$$
 step  $\frac{d\mathbf{P}}{dt} = \mathbf{f}(\mathbf{R}, \mathbf{Q})$ 

For the 'rotation' step, we use a composite map

$$\Psi_{t} = \Psi_{t/2,3} \circ \Psi_{t/2,2} \circ \Psi_{t,1} \circ \Psi_{t/2,2} \circ \Psi_{t/2,3}, \qquad (15)$$

where "o" denotes function composition, i.e.,  $(g \circ f)(x) = g(f(x))$  and the mapping  $\Psi_{t,l}(q,\pi) : (q,\pi) \mapsto (Q,\Pi)$  is defined by

$$Q = \cos(\chi_I t)q + \sin(\chi_I t)S_I q, \Pi = \cos(\chi_I t)\pi + \sin(\chi_I t)S_I \pi,$$
(16)

with

$$\chi_I = \frac{1}{4I_I} \pi^\mathsf{T} S_I q \, .$$

[Miller III et al J. Chem. Phys., 2002]

$$\mathbf{P}_0 = \mathbf{p}, \ \mathbf{R}_0 = \mathbf{r}, \ \mathbf{Q}_0 = \mathbf{q}, \ |q^j| = 1, \ j = 1, \dots, n, \ \Pi_0 = \pi, \ \mathbf{q}^{\mathsf{T}} \pi = 0,$$

$$\begin{aligned} \mathcal{P}_{1,k} &= \mathbf{P}_{k} + \frac{h}{2} \mathbf{f}(\mathbf{R}_{k}, \mathbf{Q}_{k}), \\ \Pi_{1,k}^{j} &= \Pi_{1,k}^{j} + \frac{h}{2} F^{j}(\mathbf{R}_{k}, \mathbf{Q}_{k}), \quad j = 1, \dots, n, \\ \mathbf{R}_{k+1} &= \mathbf{R}_{k} + \frac{h}{m} \mathcal{P}_{1,k}, \\ (Q_{k+1}^{j}, \Pi_{2,k}^{j}) &= \Psi_{h}(Q_{k}^{j}, \Pi_{1,k}^{j}), \\ \Pi_{k+1}^{j} &= \Pi_{2,k}^{j} + \frac{h}{2} F^{j}(\mathbf{R}_{k+1}, \mathbf{Q}_{k+1}), \quad j = 1, \dots, n, \\ \mathbf{P}_{k+1} &= \mathcal{P}_{1,k} + \frac{h}{2} \mathbf{f}(\mathbf{R}_{k+1}, \mathbf{Q}_{k+1}), \\ k &= 0, \dots, N-1 \end{aligned}$$

[Miller III et al J. Chem. Phys., 2002]
### Thermostats

### Thermostats

- Deterministic
- Stochastic

- Deterministic
- Stochastic

Now we derive stochastic thermostats for the molecular system (12), which preserve  $|Q^{j}(t)| = 1$  and  $Q^{jT}(t)\Pi^{j}(t) = 0$ . They take the form of ergodic stochastic differential equations (SDEs) with the Gibbsian (canonical ensemble) invariant measure possessing the density

$$\rho(\mathbf{r}, \mathbf{p}, \mathbf{q}, \pi) \propto \exp(-\beta H(\mathbf{r}, \mathbf{p}, \mathbf{q}, \pi)), \tag{17}$$

where  $\beta = 1/(k_B T) > 0$  is an inverse temperature.

Davidchack, Ouldridge&T. J Chem Phys 2015

Langevin thermostat for Rigid Body Dynamics

$$dR^{j} = \frac{P^{j}}{m}dt, \quad R^{j}(0) = r^{j}, \quad (18)$$
  
$$dP^{j} = f^{j}(\mathbf{R}, \mathbf{Q})dt - \gamma P^{j}dt + \sqrt{\frac{2m\gamma}{\beta}}dw^{j}(t), \quad P^{j}(0) = p^{j},$$

$$dQ^{j} = \frac{1}{4}S(Q^{j})DS^{\mathsf{T}}(Q^{j})\Pi^{j}dt, \ Q^{j}(0) = q^{j}, \ |q^{j}| = 1,$$
(19)

$$d\Pi^{j} = \frac{1}{4} \sum_{l=1}^{3} \frac{1}{l_{l}} \left( \Pi^{j \top} S_{l} Q^{j} \right) S_{l} \Pi^{j} dt + F^{j}(\mathbf{R}, \mathbf{Q}) dt - \Gamma J(Q^{j}) \Pi^{j} dt + \sqrt{\frac{2M\Gamma}{\beta}} \sum_{l=1}^{3} S_{l} Q^{j} dW_{l}^{j}(t), \quad \Pi^{j}(0) = \pi^{j}, \ q^{j \top} \pi^{j} = 0, \ j = 1, \dots, n,$$

where  $(\mathbf{w}^{\mathsf{T}}, \mathbf{W}^{\mathsf{T}})^{\mathsf{T}} = (w^{1\mathsf{T}}, \dots, w^{n\mathsf{T}}, W^{1\mathsf{T}}, \dots, W^{n\mathsf{T}})^{\mathsf{T}}$  is a (3n+3n)-dimensional standard Wiener process with  $w^{j} = (w_{1}^{j}, w_{2}^{j}, w_{3}^{j})^{\mathsf{T}}$  and  $W^{j} = (W_{1}^{j}, W_{2}^{j}, W_{3}^{j})^{\mathsf{T}}$ ;  $\gamma \geq 0$  and  $\Gamma \geq 0$  are the friction coefficients for the translational and rotational motions,  $\beta = 1/(k_{B}T) > 0$  and

$$I(q) = \frac{M}{4}S(q)DS^{\mathsf{T}}(q), \ \ M = \frac{4}{\sum_{l=1}^{3}\frac{1}{l_{l}}}.$$
 (20)

### Langevin thermostat for Rigid Body Dynamics

- The Ito interpretation of the SDEs (18)–(19) coincides with its Stratonovich interpretation.
- The solution of (18)-(19) preserves the quaternion length

$$|Q^{j}(t)| = 1, \ j = 1, \dots, n, \ \text{ for all } t \ge 0.$$
 (21)

• The solution of (18)–(19) automatically preserves the constraint:

$$Q^{j \, \mathsf{T}}(t) \Pi^{j}(t) = 0, \ \ j = 1, \dots, n, \ \ \text{for} \ t \ge 0$$
 (22)

• Assume that the solution  $X(t) = (\mathbf{R}^{\mathsf{T}}(t), \mathbf{P}^{\mathsf{T}}(t), \mathbf{Q}^{\mathsf{T}}(t), \Pi^{\mathsf{T}}(t))^{\mathsf{T}}$  of (18)–(19) is an ergodic process on

$$\mathbb{D} = \{ x = (\mathbf{r}^{\mathsf{T}}, \mathbf{p}^{\mathsf{T}}, \mathbf{q}^{\mathsf{T}}, \pi^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{R}^{14n} : |q^{j}| = 1, \quad q^{j^{\mathsf{T}}}\pi^{j} = 0, \quad j = 1, \dots, n \}.$$

Then it can be shown that the invariant measure of X(t) is Gibbsian with the density  $\rho(\mathbf{r}, \mathbf{p}, \mathbf{q}, \pi)$  on  $\mathbb{D}$ :

$$\rho(\mathbf{r}, \mathbf{p}, \mathbf{q}, \boldsymbol{\pi}) \propto \exp(-\beta H(\mathbf{r}, \mathbf{p}, \mathbf{q}, \boldsymbol{\pi}))$$
(23)

## Langevin equations and quasi-symplectic integrators

$$dR^{j} = \frac{P^{j}}{m}dt, \quad R^{j}(0) = r^{j}, \qquad (9)$$

$$dP^{j} = f^{j}(\mathbf{R}, \mathbf{Q})dt - \gamma P^{j}dt + \sqrt{\frac{2m\gamma}{\beta}}dw^{j}(t), \quad P^{j}(0) = p^{j}, \qquad (10)$$

$$dQ^{j} = \frac{1}{4}S(Q^{j})DS^{\mathsf{T}}(Q^{j})\Pi^{j}dt, \quad Q^{j}(0) = q^{j}, \quad |q^{j}| = 1, \qquad (10)$$

$$d\Pi^{j} = \frac{1}{4}\sum_{l=1}^{3}\frac{1}{l_{l}}\left(\Pi^{j}{}^{\mathsf{T}}S_{l}Q^{j}\right)S_{l}\Pi^{j}dt + F^{j}(\mathbf{R}, \mathbf{Q})dt - \Gamma J(Q^{j})\Pi^{j}dt + \sqrt{\frac{2M\Gamma}{\beta}}\sum_{l=1}^{3}S_{l}Q^{j}dW^{j}_{l}(t), \quad \Pi^{j}(0) = \pi^{j}, \quad q^{j}{}^{\mathsf{T}}\pi^{j} = 0, \quad j = 1, \dots, n,$$

#### Langevin equations and quasi-symplectic integrators

$$dR^{j} = \frac{P^{j}}{m}dt, \quad R^{j}(0) = r^{j}, \quad (9)$$

$$dP^{j} = f^{j}(\mathbf{R}, \mathbf{Q})dt - \gamma P^{j}dt + \sqrt{\frac{2m\gamma}{\beta}}dw^{j}(t), \quad P^{j}(0) = p^{j}, \quad (10)$$

$$dQ^{j} = \frac{1}{4}S(Q^{j})DS^{\mathsf{T}}(Q^{j})\Pi^{j}dt, \quad Q^{j}(0) = q^{j}, \quad |q^{j}| = 1, \quad (10)$$

$$d\Pi^{j} = \frac{1}{4}\sum_{l=1}^{3}\frac{1}{l_{l}}\left(\Pi^{j\,\mathsf{T}}S_{l}Q^{j}\right)S_{l}\Pi^{j}dt + F^{j}(\mathbf{R}, \mathbf{Q})dt - \Gamma J(Q^{j})\Pi^{j}dt + \sqrt{\frac{2M\Gamma}{\beta}}\sum_{l=1}^{3}S_{l}Q^{j}dW^{j}_{l}(t), \quad \Pi^{j}(0) = \pi^{j}, \quad q^{j\,\mathsf{T}}\pi^{j} = 0, \quad j = 1, \dots, n,$$

Let  $D_0 \in \mathbb{R}^d$ , d = 14n, be a domain with finite volume. The transformation  $x = (\mathbf{r}, \mathbf{p}, \mathbf{q}, \pi) \mapsto X(t) = X(t; x) = (\mathbf{R}(t; x), \mathbf{P}(t; x), \mathbf{Q}(t; x), \Pi(t; x))$ maps  $D_0$  into the domain  $D_t$ .

#### Langevin equations and quasi-symplectic integrators

$$V_t = \int_{D_t} dX^1 \dots dX^d \qquad (24)$$
$$= \int_{D_0} \left| \frac{D(X^1, \dots, X^d)}{D(x^1, \dots, x^d)} \right| dx^1 \dots dx^d.$$

The Jacobian  $\mathbb J$  is equal to

$$\mathbb{J} = \frac{D(X^1, \dots, X^d)}{D(x^1, \dots, x^d)} = \exp\left(-n(3\gamma + \Gamma) \cdot t\right). \tag{25}$$

### Quasi-symplectic integrators

It is natural to expect that making use of numerical methods, which are close, in a sense, to symplectic ones, has advantages when applying to stochastic systems close to Hamiltonian ones. In [Milstein&T. *IMA J. Numer. Anal.* 2003 (also Springer 2004)] numerical methods (they are called **quasi-symplectic**) for Langevin equations were proposed, which satisfy the two structural conditions:

### Quasi-symplectic integrators

It is natural to expect that making use of numerical methods, which are close, in a sense, to symplectic ones, has advantages when applying to stochastic systems close to Hamiltonian ones. In [Milstein&T. *IMA J. Numer. Anal.* 2003 (also Springer 2004)] numerical methods (they are called **quasi-symplectic**) for Langevin equations were proposed, which satisfy the two structural conditions:

- **RL1.** The method applied to Langevin equations degenerates to a symplectic method when the Langevin system degenerates to a Hamiltonian one.
- **RL2.** The Jacobian  $\mathbb{J} = D\bar{X}/Dx$  does not depend on x.

### Quasi-symplectic integrators

It is natural to expect that making use of numerical methods, which are close, in a sense, to symplectic ones, has advantages when applying to stochastic systems close to Hamiltonian ones. In [Milstein&T. *IMA J. Numer. Anal.* 2003 (also Springer 2004)] numerical methods (they are called **quasi-symplectic**) for Langevin equations were proposed, which satisfy the two structural conditions:

- **RL1.** The method applied to Langevin equations degenerates to a symplectic method when the Langevin system degenerates to a Hamiltonian one.
- **RL2.** The Jacobian  $\mathbb{J} = D\bar{X}/Dx$  does not depend on x.

The requirement RL2 is natural since the Jacobian  $\mathbb{J}$  of the original system (18)–(19) does not depend on *x*. RL2 reflects the structural properties of the system which are connected with the law of phase volume contractivity. It is often possible to reach a stronger property consisting in the equality  $\overline{\mathbb{J}} = \mathbb{J}$ .

### Langevin integrators

Davidchack, Ouldridge&T. J Chem Phys 2015

For simplicity we use a uniform time discretization of a time interval [0, T] with the step h = T/N.

### Langevin integrators

Davidchack, Ouldridge&T. J Chem Phys 2015

For simplicity we use a uniform time discretization of a time interval [0, T] with the step h = T/N. Goal: to construct integrators

- quasi-symplectic
- preserve  $|ar{Q}^j(t_k)|=1, \ j=1,\ldots,n\,,$  for all  $t\geq 0$  automatically
- preserve  $\bar{Q}^{j\,\mathsf{T}}(t_k)\bar{\Pi}^j(t_k)=0\,,\ j=1,\ldots,n\,,$  for  $t\geq 0$  automatically
- of weak order 2 with one evaluation of force per step

To this end:

- stochastic numerics+splitting techniques [see e.g. Milstein&T, Springer 2004]
- the deterministic symplectic integrator from [Miller III et al *J. Chem. Phys.*, 2002]

Splitting the Langevin system:

$$dR^{j} = \frac{P^{j}}{m}dt, \quad R^{j}(0) = r^{j}, \qquad (26)$$

$$dP^{j} = f^{j}(\mathbf{R}, \mathbf{Q})dt + \sqrt{\frac{2m\gamma}{\beta}}dw^{j}(t), \qquad (27)$$

$$dQ^{j} = \frac{1}{4}S(Q^{j})DS^{\mathsf{T}}(Q^{j})\Pi^{j}dt, \qquad (27)$$

$$d\Pi^{j} = \frac{1}{4}\sum_{l=1}^{3}\frac{1}{l_{l}}(\Pi^{j\mathsf{T}}S_{l}Q^{j})S_{l}\Pi^{j}dt + F^{j}(\mathbf{R}, \mathbf{Q})dt + \sqrt{\frac{2M\Gamma}{\beta}}\sum_{l=1}^{3}S_{l}Q^{j}dW_{l}^{j}(t), \quad j = 1, ..., n,$$

Splitting the Langevin system:

$$dR^{j} = \frac{P^{j}}{m}dt, \quad R^{j}(0) = r^{j}, \qquad (26)$$

$$dP^{j} = f^{j}(\mathbf{R}, \mathbf{Q})dt + \sqrt{\frac{2m\gamma}{\beta}}dw^{j}(t), \qquad (27)$$

$$dQ^{j} = \frac{1}{4}S(Q^{j})DS^{\mathsf{T}}(Q^{j})\Pi^{j}dt, \qquad (27)$$

$$d\Pi^{j} = \frac{1}{4}\sum_{l=1}^{3}\frac{1}{l_{l}}\left(\Pi^{j\mathsf{T}}S_{l}Q^{j}\right)S_{l}\Pi^{j}dt + F^{j}(\mathbf{R}, \mathbf{Q})dt + \sqrt{\frac{2M\Gamma}{\beta}}\sum_{l=1}^{3}S_{l}Q^{j}dW_{l}^{j}(t), \quad j = 1, \dots, n,$$

and the deterministic system of linear differential equations

$$\dot{p} = -\gamma p, \quad \dot{\pi}^j = -\Gamma J(q^j)\pi^j, \quad j = 1, \dots, n.$$

Splitting the Langevin system:

$$dR^{j} = \frac{P^{j}}{m}dt, \quad R^{j}(0) = r^{j}, \qquad (26)$$

$$dP^{j} = f^{j}(\mathbf{R}, \mathbf{Q})dt + \sqrt{\frac{2m\gamma}{\beta}}dw^{j}(t), \qquad (27)$$

$$dQ^{j} = \frac{1}{4}S(Q^{j})DS^{\mathsf{T}}(Q^{j})\Pi^{j}dt, \qquad (27)$$

$$d\Pi^{j} = \frac{1}{4}\sum_{l=1}^{3}\frac{1}{l_{l}}\left(\Pi^{j\mathsf{T}}S_{l}Q^{j}\right)S_{l}\Pi^{j}dt + F^{j}(\mathbf{R}, \mathbf{Q})dt + \sqrt{\frac{2M\Gamma}{\beta}}\sum_{l=1}^{3}S_{l}Q^{j}dW_{l}^{j}(t), \quad j = 1, \dots, n,$$

and the deterministic system of linear differential equations

$$\dot{\boldsymbol{p}} = -\gamma \boldsymbol{p}, \quad \dot{\pi}^j = -\Gamma J(\boldsymbol{q}^j) \pi^j, \ j = 1, \dots, n.$$
 (28)

1/2 of (28) + step of a method for (26)-(27) + 1/2 of (28)

$$\begin{aligned} \mathbf{P}_{0} &= \mathbf{p}, \ \mathbf{R}_{0} = \mathbf{r}, \ \mathbf{Q}_{0} = \mathbf{q} \text{ with } |q^{j}| = 1, \ j = 1, \dots, n, \end{aligned}$$
(29)  
$$\Pi_{0} &= \pi \text{ with } \mathbf{q}^{T} \pi = \mathbf{0}, \end{aligned}$$
$$\begin{aligned} \mathcal{P}_{1,k} &= e^{-\gamma \frac{h}{2}} \mathbf{P}_{k}, \ \Pi_{1,k}^{j} = e^{-\Gamma J(Q_{k}^{j}) \frac{h}{2}} \Pi_{k}^{j}, \ j = 1, \dots, n, \end{aligned}$$

$$\begin{aligned} \mathcal{P}_{2,k} &= \mathcal{P}_{1,k} + \frac{h}{2} \mathbf{f}(\mathbf{R}_k, \mathbf{Q}_k) + \frac{\sqrt{h}}{2} \sqrt{\frac{2m\gamma}{\beta}} \boldsymbol{\xi}_k \\ \Pi_{2,k}^j &= \Pi_{1,k}^j + \frac{h}{2} F^j(\mathbf{R}_k, \mathbf{Q}_k) + \frac{\sqrt{h}}{2} \sqrt{\frac{2M\Gamma}{\beta}} \sum_{l=1}^3 S_l \mathbf{Q}_k \eta_k^{j,l}, \ j = 1, \dots, n, \end{aligned}$$

$$\begin{aligned} \mathbf{R}_{k+1} &= \mathbf{R}_k + \frac{h}{m} \mathcal{P}_{2,k}, \\ (Q_{k+1}^j, \Pi_{3,k}^j) &= \Psi_h(Q_k^j, \Pi_{2,k}^j), \ j = 1, \dots, n, \end{aligned}$$

$$\begin{aligned} \Pi_{4,k}^{j} &= \Pi_{3,k}^{j} + \frac{h}{2} F^{j}(\mathbf{R}_{k+1},\mathbf{Q}_{k+1}) + \frac{\sqrt{h}}{2} \sqrt{\frac{2M\Gamma}{\beta}} \sum_{l=1}^{3} S_{l} \mathbf{Q}_{k+1} \eta_{k}^{j,l}, \ j = 1, \dots, n, \\ \mathcal{P}_{3,k} &= \mathcal{P}_{2,k} + \frac{h}{2} \mathbf{f}(\mathbf{R}_{k+1},\mathbf{Q}_{k+1}) + \frac{\sqrt{h}}{2} \sqrt{\frac{2m\gamma}{\beta}} \boldsymbol{\xi}_{k}, \\ \mathbf{P}_{k+1} &= e^{-\gamma \frac{h}{2}} \mathcal{P}_{3,k}, \ \Pi_{k+1}^{j} = e^{-\Gamma J(Q_{k+1}^{j}) \frac{h}{2}} \Pi_{4,k}^{j}, \ j = 1, \dots, n, \\ k &= 0, \dots, N-1, \end{aligned}$$

 $\xi_k = (\xi_{1,k}, \dots, \xi_{3n,k})^{\mathsf{T}}$  and  $\eta_k^j = (\eta_{1,k}^j, \dots, \eta_{3,k}^j)^{\mathsf{T}}, j = 1, \dots, n$ , with their components being i.i.d. with the same law

$$P(\theta = 0) = 2/3, P(\theta = \pm\sqrt{3}) = 1/6.$$
 (30)

 $\xi_k = (\xi_{1,k}, \dots, \xi_{3n,k})^T$  and  $\eta_k^j = (\eta_{1,k}^j, \dots, \eta_{3,k}^j)^T$ ,  $j = 1, \dots, n$ , with their components being i.i.d. with the same law

$$P(\theta = 0) = 2/3, P(\theta = \pm\sqrt{3}) = 1/6.$$
 (30)

**Proposition 1.** The numerical scheme (29)-(30) for (18)-(19) is quasi-symplectic, it preserves the structural properties (21) and (22) and it is of weak order two.

$$d\mathbf{P}_{I} = -\gamma \mathbf{P}_{I} dt + \sqrt{\frac{2m\gamma}{\beta}} d\mathbf{w}(t),$$

$$d\Pi_{I}^{j} = -\Gamma J(q)\Pi_{I}^{j} dt + \sqrt{\frac{2M\Gamma}{\beta}} \sum_{l=1}^{3} S_{l} q dW_{l}^{j}(t);$$
(31)

$$d\mathbf{R}_{II} = \frac{\mathbf{P}_{II}}{m} dt, \ d\mathbf{P}_{II} = \mathbf{f}(\mathbf{R}_{II}, \mathbf{Q}_{II}) dt, \ dQ_{II}^{j} = \frac{1}{4} S(Q_{II}^{j}) DS^{\mathsf{T}}(Q_{II}^{j}) \Pi_{II}^{j} dt, \ (32)$$
$$d\Pi_{II}^{j} = F^{j}(\mathbf{R}_{II}, \mathbf{Q}_{II}) dt + \frac{1}{4} \sum_{l=1}^{3} \frac{1}{l_{l}} \left[ (\Pi_{II}^{j})^{\mathsf{T}} S_{l} Q_{II}^{j} \right] S_{l} \Pi_{II}^{j} dt, \ j = 1, \dots, n.$$

$$d\mathbf{P}_{I} = -\gamma \mathbf{P}_{I} dt + \sqrt{\frac{2m\gamma}{\beta}} d\mathbf{w}(t),$$

$$d\Pi_{I}^{j} = -\Gamma J(q)\Pi_{I}^{j} dt + \sqrt{\frac{2M\Gamma}{\beta}} \sum_{l=1}^{3} S_{l} q dW_{l}^{j}(t);$$
(31)

$$d\mathbf{R}_{II} = \frac{\mathbf{P}_{II}}{m} dt, \ d\mathbf{P}_{II} = \mathbf{f}(\mathbf{R}_{II}, \mathbf{Q}_{II}) dt, \ dQ_{II}^{j} = \frac{1}{4} S(Q_{II}^{j}) DS^{\mathsf{T}}(Q_{II}^{j}) \Pi_{II}^{j} dt, \ (32)$$
$$d\Pi_{II}^{j} = F^{j}(\mathbf{R}_{II}, \mathbf{Q}_{II}) dt + \frac{1}{4} \sum_{l=1}^{3} \frac{1}{l_{l}} \left[ (\Pi_{II}^{j})^{\mathsf{T}} S_{l} Q_{II}^{j} \right] S_{l} \Pi_{II}^{j} dt, \ j = 1, \dots, n.$$

The SDEs (31) have the exact solution:

$$\mathbf{P}_{I}(t) = \mathbf{P}_{I}(0) \exp(-\gamma t) + \sqrt{\frac{2m\gamma}{\beta}} \int_{0}^{t} \exp(-\gamma (t-s)) d\mathbf{w}(s), \qquad (33)$$
  
$$\Pi_{I}^{j}(t) = \exp(-\Gamma J(q)t) \Pi_{I}^{j}(0) + \sqrt{\frac{2M\Gamma}{\beta}} \sum_{l=1}^{3} \int_{0}^{t} \exp(-\Gamma J(q)(t-s)) dW_{I}^{j}(s).$$

$$d\mathbf{P}_{I} = -\gamma \mathbf{P}_{I} dt + \sqrt{\frac{2m\gamma}{\beta}} d\mathbf{w}(t),$$

$$d\Pi_{I}^{j} = -\Gamma J(q)\Pi_{I}^{j} dt + \sqrt{\frac{2M\Gamma}{\beta}} \sum_{l=1}^{3} S_{l} q dW_{l}^{j}(t);$$
(31)

$$d\mathbf{R}_{II} = \frac{\mathbf{P}_{II}}{m} dt, \ d\mathbf{P}_{II} = \mathbf{f}(\mathbf{R}_{II}, \mathbf{Q}_{II}) dt, \ dQ_{II}^{j} = \frac{1}{4} S(Q_{II}^{j}) DS^{\mathsf{T}}(Q_{II}^{j}) \Pi_{II}^{j} dt, \ (32)$$
$$d\Pi_{II}^{j} = F^{j}(\mathbf{R}_{II}, \mathbf{Q}_{II}) dt + \frac{1}{4} \sum_{l=1}^{3} \frac{1}{l_{l}} \left[ (\Pi_{II}^{j})^{\mathsf{T}} S_{l} Q_{II}^{j} \right] S_{l} \Pi_{II}^{j} dt, \ j = 1, \dots, n.$$

The SDEs (31) have the exact solution:

$$\mathbf{P}_{I}(t) = \mathbf{P}_{I}(0) \exp(-\gamma t) + \sqrt{\frac{2m\gamma}{\beta}} \int_{0}^{t} \exp(-\gamma (t-s)) d\mathbf{w}(s), \qquad (33)$$
  
$$\Pi_{I}^{j}(t) = \exp(-\Gamma J(q)t) \Pi_{I}^{j}(0) + \sqrt{\frac{2M\Gamma}{\beta}} \sum_{l=1}^{3} \int_{0}^{t} \exp(-\Gamma J(q)(t-s)) dW_{I}^{j}(s).$$

1/2 step (33) + step of the symplectic method for (32) + 1/2 step (33).

The vectors  $\int_0^t e^{-\Gamma J(q)(t-s)} S_l q dW_l^j(s)$  in (33) are Gaussian with zero mean and covariance  $C_l(t;q) = \int_0^t e^{-\Gamma J(q)(t-s)} S_l q(S_l q)^{\mathsf{T}} e^{-\Gamma J(q)(t-s)} ds$ .

$$C(t;q) = \sum_{l=1}^{3} C_l(t;q) = \frac{2}{M\Gamma} S(q) \Lambda_C(t;\Gamma) S^{\mathsf{T}}(q),$$

where

$$\begin{split} \Lambda_{C}(t;\Gamma) = & \text{diag}(0, l_{1}(1 - \exp(-M\Gamma t/(2l_{1}))), l_{2}(1 - \exp(-M\Gamma t/(2l_{2}))), \\ & l_{3}(1 - \exp(-M\Gamma t/(2l_{3})))). \end{split}$$

Let  $\sigma(t; q)\sigma^{\mathsf{T}}(t; q) = C(t; q)$ , e.g.,  $\sigma(t; q)$  with the columns

$$\sigma_{I}(t;q) = \sqrt{\frac{2}{M\Gamma}I_{I}\left(1 - \exp(-\frac{M\Gamma t}{2I_{I}})\right)}S_{I}q, \ I = 1, 2, 3,$$

then  $\Pi_{I}^{\prime}(t)$  in (33) can be written as

$$\Pi_{I}^{j}(t) = \mathrm{e}^{-\Gamma J(q)t} \Pi_{I}^{j}(0) + \sqrt{\frac{2M\Gamma}{\beta}} \sum_{l=1}^{3} \sigma_{l}(t;q) \chi_{l}^{j}, \quad \chi_{l}^{j} \text{ are i.i.d. } \mathcal{N}(0,1).$$

$$\mathbf{P}_{0} = \mathbf{p}, \ \mathbf{R}_{0} = \mathbf{r}, \ \mathbf{Q}_{0} = \mathbf{q}, \ |\mathbf{q}^{j}| = 1, \ j = 1, \dots, n, \ \Pi_{0} = \boldsymbol{\pi}, \ \mathbf{q}^{\mathsf{T}} \boldsymbol{\pi} = 0,$$
(34)  
$$\mathcal{P}_{1,k} = \mathbf{P}_{k} e^{-\gamma h/2} + \sqrt{\frac{m}{\beta} (1 - e^{-\gamma h})} \boldsymbol{\xi}_{k},$$
$$\Pi_{1,k}^{j} = e^{-\Gamma J(\mathbf{Q}_{k}^{j}) \frac{h}{2}} \Pi_{k}^{j} + \sqrt{\frac{4}{\beta}} \sum_{l=1}^{3} \sqrt{I_{l} \left(1 - e^{-\frac{M\Gamma h}{4I_{l}}}\right)} S_{l} \mathbf{Q}_{k}^{j} \eta_{k}^{j,l}, \ j = 1, \dots, n,$$

$$\begin{aligned} \mathcal{P}_{2,k} &= \mathcal{P}_{1,k} + \frac{h}{2} \mathbf{f}(\mathbf{R}_{k}, \mathbf{Q}_{k}), \\ \Pi_{2,k}^{j} &= \Pi_{1,k}^{j} + \frac{h}{2} F^{j}(\mathbf{R}_{k}, \mathbf{Q}_{k}), \quad j = 1, \dots, n, \\ \mathbf{R}_{k+1} &= \mathbf{R}_{k} + \frac{h}{m} \mathcal{P}_{2,k}, \\ (Q_{k+1}^{j}, \Pi_{3,k}^{j}) &= \Psi_{h}(Q_{k}^{j}, \Pi_{2,k}^{j}), \quad \Pi_{4,k}^{j} = \Pi_{3,k}^{j} + \frac{h}{2} F^{j}(\mathbf{R}_{k+1}, \mathbf{Q}_{k+1}), \quad j = 1, \dots, n, \\ \mathcal{P}_{3,k} &= \mathcal{P}_{2,k} + \frac{h}{2} \mathbf{f}(\mathbf{R}_{k+1}, \mathbf{Q}_{k+1}), \\ \mathbf{P}_{k+1} &= \mathcal{P}_{3,k} e^{-\gamma h/2} + \sqrt{\frac{m}{\beta}(1 - e^{-\gamma h})} \boldsymbol{\zeta}_{k}, \\ \Pi_{k+1}^{j} &= e^{-\Gamma J(Q_{k+1}^{j})\frac{h}{2}} \Pi_{4,k}^{j} + \sqrt{\frac{4}{\beta}} \sum_{l=1}^{3} \sqrt{l_{l} \left(1 - e^{-\frac{M\Gamma h}{4l_{l}}}\right)} S_{l} Q_{k+1}^{j} \varsigma_{k}^{j,l}, \\ j &= 1, \dots, n, \quad k = 0, \dots, N-1, \end{aligned}$$

 $\boldsymbol{\xi}_{k} = (\xi_{1,k}, \dots, \xi_{3n,k})^{\mathsf{T}}, \, \boldsymbol{\zeta}_{k} = (\zeta_{1,k}, \dots, \zeta_{3n,k})^{\mathsf{T}}, \, \eta_{k}^{j} = (\eta_{1,k}^{j}, \dots, \eta_{3,k}^{j})^{\mathsf{T}}, \\ j = 1, \dots, n, \text{ with their components being i.i.d. with the same law (30):}$ 

$$P(\theta = 0) = 2/3, \ \ P(\theta = \pm \sqrt{3}) = 1/6.$$

**Proposition 2.** The numerical scheme (34), (30) for (18)–(19) is quasi-symplectic, it preserves (21) and (22) and it is of weak order two.

Based on the same spliting (31) and (32) as Langevin B, i.e., the determinisitic Hamiltonian system + OU.

To construct the method:

- 1/2 step of the symplectic method for (32)
- step of OU (33)
- 1/2 step of the symplectic method for (32)

Based on the same spliting (31) and (32) as Langevin B, i.e., the determinisitic Hamiltonian system + OU.

To construct the method:

- 1/2 step of the symplectic method for (32)
- step of OU (33)
- 1/2 step of the symplectic method for (32)

Various splittings are compared for a translational Langevin thermostat in [Leimkuhler&Matthews 2013]

$$P_{0} = \mathbf{p}, \quad \mathbf{R}_{0} = \mathbf{r}, \quad \mathbf{Q}_{0} = \mathbf{q}, \quad |q^{j}| = 1, \quad j = 1, \dots, n, \quad \Pi_{0} = \boldsymbol{\pi}, \quad \mathbf{q}^{\mathsf{T}} \boldsymbol{\pi} = 0, \quad (35)$$

$$\mathcal{P}_{1,k} = \mathbf{P}_{k} + \frac{h}{2} \mathbf{f}(\mathbf{R}_{k}, \mathbf{Q}_{k}), \quad j = 1, \dots, n, \quad \mathbf{R}_{1,k} = \mathbf{R}_{k} + \frac{h}{2} \mathcal{F}^{j}(\mathbf{R}_{k}, \mathbf{Q}_{k}), \quad j = 1, \dots, n, \quad \mathbf{R}_{1,k} = \mathbf{R}_{k} + \frac{h}{2m} \mathcal{P}_{1,k}, \quad (\mathcal{Q}_{1,k}^{j}, \Pi_{2,k}^{j}) = \Psi_{h/2}(\mathcal{Q}_{k}^{j}, \Pi_{1,k}^{j}), \quad j = 1, \dots, n, \quad \mathcal{P}_{2,k} = \mathcal{P}_{1,k} e^{-\gamma h} + \sqrt{\frac{m}{\beta}(1 - e^{-2\gamma h})} \boldsymbol{\xi}_{k}$$

$$\Pi_{3,k}^{j} = e^{-\Gamma J(\mathcal{Q}_{1,k}^{j})^{h}} \Pi_{2,k}^{j} + \sqrt{\frac{4}{\beta}} \sum_{l=1}^{3} \sqrt{l_{l}} \left(1 - e^{-\frac{M\Gamma h}{2l_{l}}}\right) S_{l} \mathcal{Q}_{1,k}^{j} \eta_{k}^{j,l}, \quad j = 1, \dots, n, \quad \mathbf{R}_{1,k} = \mathbf{R}_{k} + \frac{1}{2} \sum_{l=1}^{3} \sqrt{l_{l}} \left(1 - e^{-\frac{M\Gamma h}{2l_{l}}}\right) S_{l} \mathcal{Q}_{1,k}^{j} \eta_{k}^{j,l}, \quad j = 1, \dots, n, \quad \mathbf{R}_{1,k} = \mathbf{R}_{k} + \frac{1}{2} \sum_{l=1}^{3} \sqrt{l_{l}} \left(1 - e^{-\frac{M\Gamma h}{2l_{l}}}\right) S_{l} \mathcal{Q}_{1,k}^{j} \eta_{k}^{j,l}, \quad j = 1, \dots, n, \quad \mathbf{R}_{1,k} = \mathbf{R}_{k} + \frac{1}{2} \sum_{l=1}^{3} \sqrt{l_{l}} \left(1 - e^{-\frac{M\Gamma h}{2l_{l}}}\right) S_{l} \mathcal{Q}_{1,k}^{j} \eta_{k}^{j,l}, \quad j = 1, \dots, n,$$

$$\begin{aligned} \mathbf{R}_{k+1} &= R_{1,k} + \frac{h}{2m} \mathcal{P}_{2,k}, \\ (\mathcal{Q}_{k+1}^{j}, \Pi_{4,k}^{j}) &= \Psi_{h/2}(\mathcal{Q}_{1,k}^{j}, \Pi_{3,k}^{j}), \ j = 1, \dots, n, \\ \mathbf{P}_{k+1} &= \mathcal{P}_{2,k} + \frac{h}{2} \mathbf{f}(\mathbf{R}_{k+1}, \mathbf{Q}_{k+1}), \\ \Pi_{k+1}^{j} &= \Pi_{4,k}^{j} + \frac{h}{2} F^{j}(\mathbf{R}_{k+1}, \mathbf{Q}_{k+1}), \ j = 1, \dots, n. \end{aligned}$$

where  $\boldsymbol{\xi}_k = (\xi_{1,k}, \dots, \xi_{3n,k})^T$  and  $\eta_k^j = (\eta_{1,k}^j, \dots, \eta_{3,k}^j)^T$ ,  $j = 1, \dots, n$ , with their components being i.i.d. random variables with the same law (30).

**Proposition 3.** The numerical scheme (35), (30) for (18)–(19) is quasi-symplectic, it preserves (21) and (22) and it is of weak order two.

Included in LAMMPS

## The gradient thermostat for rigid body dynamics

It is easy to verify that

$$\int_{\mathbb{D}_{mom}} \exp(-\beta H(\mathbf{r}, \mathbf{p}, \mathbf{q}, \pi)) d\mathbf{p} d\pi \propto \exp(-\beta U(\mathbf{r}, \mathbf{q})) =: \tilde{\rho}(\mathbf{r}, \mathbf{q}), \quad (36)$$

where  $(\mathbf{r}^{\mathsf{T}}, \mathbf{q}^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{D}' = \{(\mathbf{r}^{\mathsf{T}}, \mathbf{q}^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{R}^{7n} : |q^{j}| = 1\}$  and the domain of conjugate momenta  $\mathbb{D}_{\mathrm{mom}} = \{(\mathbf{p}^{\mathsf{T}}, \boldsymbol{\pi}^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{R}^{7n} : \mathbf{q}^{\mathsf{T}}\boldsymbol{\pi} = 0\}.$ 

## The gradient thermostat for rigid body dynamics

#### It is easy to verify that

$$\int_{\mathbb{D}_{\text{mom}}} \exp(-\beta H(\mathbf{r}, \mathbf{p}, \mathbf{q}, \pi)) d\mathbf{p} d\pi \propto \exp(-\beta U(\mathbf{r}, \mathbf{q})) =: \tilde{\rho}(\mathbf{r}, \mathbf{q}), \quad (36)$$

where  $(\mathbf{r}^{\mathsf{T}}, \mathbf{q}^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{D}' = \{(\mathbf{r}^{\mathsf{T}}, \mathbf{q}^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{R}^{7n} : |q^{j}| = 1\}$  and the domain of conjugate momenta  $\mathbb{D}_{\text{mom}} = \{(\mathbf{p}^{\mathsf{T}}, \boldsymbol{\pi}^{\mathsf{T}})^{\mathsf{T}} \in \mathbb{R}^{7n} : \mathbf{q}^{\mathsf{T}}\boldsymbol{\pi} = 0\}$ . We introduce the gradient system in the form of Stratonovich SDEs:

$$d\mathbf{R} = \frac{v}{m} \mathbf{f}(\mathbf{R}, \mathbf{Q}) dt + \sqrt{\frac{2v}{m\beta}} d\mathbf{w}(t), \quad \mathbf{R}(0) = \mathbf{r}, \quad (37)$$
$$dQ^{j} = \frac{\Upsilon}{M} F^{j}(\mathbf{R}, \mathbf{Q}) dt + \sqrt{\frac{2\Upsilon}{M\beta}} \sum_{l=1}^{3} S_{l} Q^{j} \circ dW_{l}^{j}(t), \quad (38)$$
$$Q^{j}(0) = q^{j}, \quad |q^{j}| = 1, \quad j = 1, \dots, n,$$

where the parameters v > 0 and  $\Upsilon > 0$  control the speed of evolution of the gradient system (37)–(38),  $\mathbf{f} = (f^{1T}, \dots, f^{nT})^{T}$  and the rest of the notation is as in (18)–(19). [Davidchack, Ouldridge&T. J Chem Phys 2015]

### The gradient thermostat for rigid body dynamics

This new gradient thermostat possesses the following properties.

- As in the case of (18)–(19), the solution of (37)–(38) preserves the quaternion length (21).
- Assume that the solution  $X(t) = (\mathbf{R}^{\mathsf{T}}(t), \mathbf{Q}^{\mathsf{T}}(t))^{\mathsf{T}} \in \mathbb{D}'$  of (37)–(38) is an ergodic process. Then, by the usual means of the stationary Fokker-Planck equation, one can show that its invariant measure is Gibbsian with the density  $\tilde{\rho}(\mathbf{r}, \mathbf{q})$  from (36).

The main idea is to rewrite the components  $Q^j$  of the solution to (37)–(38) in the form  $Q^j(t) = \exp(Y^j(t))Q^j(0)$  and then solve numerically the SDEs for the 4 × 4-matrices  $Y^j(t)$ . To this end, we introduce the 4 × 4 skew-symmetric matrices:

$$\mathbb{F}_j(\mathbf{r},\mathbf{q}) = F^j(\mathbf{r},\mathbf{q})q^{j\mathsf{T}} - q^j(F^j(\mathbf{r},\mathbf{q}))^\mathsf{T}, j = 1,\ldots,n.$$

The main idea is to rewrite the components  $Q^j$  of the solution to (37)–(38) in the form  $Q^j(t) = \exp(Y^j(t))Q^j(0)$  and then solve numerically the SDEs for the 4 × 4-matrices  $Y^j(t)$ . To this end, we introduce the 4 × 4 skew-symmetric matrices:

$$\mathbb{F}_j(\mathbf{r},\mathbf{q}) = F^j(\mathbf{r},\mathbf{q})q^{j\mathsf{T}} - q^j(F^j(\mathbf{r},\mathbf{q}))^\mathsf{T}, j = 1,\ldots,n.$$

Note that  $\mathbb{F}_j(\mathbf{r}, \mathbf{q})q^j = F^j(\mathbf{r}, \mathbf{q})$  under  $|q^j| = 1$  and the equations (38) can be written as

$$dQ^{j} = \frac{\Upsilon}{M} \mathbb{F}_{j}(\mathbf{R}, \mathbf{Q}) Q^{j} dt + \sqrt{\frac{2\Upsilon}{M\beta}} \sum_{l=1}^{3} S_{l} Q^{j} \circ dW_{l}^{j}(t), \ Q^{j}(0) = q^{j}, \ |q^{j}| = 1.$$
(39)

The main idea is to rewrite the components  $Q^j$  of the solution to (37)–(38) in the form  $Q^j(t) = \exp(Y^j(t))Q^j(0)$  and then solve numerically the SDEs for the 4 × 4-matrices  $Y^j(t)$ . To this end, we introduce the 4 × 4 skew-symmetric matrices:

$$\mathbb{F}_j(\mathbf{r},\mathbf{q}) = F^j(\mathbf{r},\mathbf{q})q^{j\mathsf{T}} - q^j(F^j(\mathbf{r},\mathbf{q}))^\mathsf{T}, j = 1,\ldots,n.$$

Note that  $\mathbb{F}_j(\mathbf{r}, \mathbf{q})q^j = F^j(\mathbf{r}, \mathbf{q})$  under  $|q^j| = 1$  and the equations (38) can be written as

$$dQ^{j} = \frac{\Upsilon}{M} \mathbb{F}_{j}(\mathbf{R}, \mathbf{Q}) Q^{j} dt + \sqrt{\frac{2\Upsilon}{M\beta}} \sum_{l=1}^{3} S_{l} Q^{j} \circ dW_{l}^{j}(t), \ Q^{j}(0) = q^{j}, \ |q^{j}| = 1.$$

$$(39)$$

One can show that

$$Y^{j}(t+h) = h \frac{\Upsilon}{M} \mathbb{F}_{j}(\mathbf{R}(t), \mathbf{Q}(t)) + \sqrt{\frac{2\Upsilon}{M\beta}} \sum_{l=1}^{3} \left( W_{l}^{j}(t+h) - W_{l}^{j}(t) \right) S_{l}$$

+ terms of higher order.

$$\mathbf{R}_{0} = \mathbf{r}, \ \mathbf{Q}_{0} = \mathbf{q}, \ |q^{j}| = 1, \ j = 1, \dots, n,$$
(40)  
$$\mathbf{R}_{k+1} = \mathbf{R}_{k} + h \frac{v}{m} \mathbf{f}(\mathbf{R}_{k}, \mathbf{Q}_{k}) + \sqrt{h} \sqrt{\frac{2v}{m\beta}} \boldsymbol{\xi}_{k},$$
$$Y_{k}^{j} = h \frac{\Upsilon}{M} \mathbb{F}_{j}(\mathbf{R}_{k}, \mathbf{Q}_{k}) + \sqrt{h} \sqrt{\frac{2\Upsilon}{M\beta}} \sum_{l=1}^{3} \eta_{k}^{j,l} S_{l},$$
$$Q_{k+1}^{j} = \exp(Y_{k}^{j}) Q_{k}^{j}, \ j = 1, \dots, n,$$
where  $\boldsymbol{\xi}_{k} = (\xi_{1,k}, \dots, \xi_{3n,k})^{\mathrm{T}}$  and  $\xi_{i,k}, \ i = 1, \dots, 3n, \eta_{k}^{j,l}, \ l = 1, 2, 3,$  $j = 1, \dots, n,$  are i.i.d. random variables with the same law

$$P(\theta = \pm 1) = 1/2.$$
 (41)
#### Geometric integrator for the gradient thermostat

$$\mathbf{R}_{0} = \mathbf{r}, \ \mathbf{Q}_{0} = \mathbf{q}, \ |q^{j}| = 1, \ j = 1, \dots, n,$$
(40)  
$$\mathbf{R}_{k+1} = \mathbf{R}_{k} + h \frac{\upsilon}{m} \mathbf{f}(\mathbf{R}_{k}, \mathbf{Q}_{k}) + \sqrt{h} \sqrt{\frac{2\upsilon}{m\beta}} \boldsymbol{\xi}_{k},$$
$$Y_{k}^{j} = h \frac{\Upsilon}{M} \mathbb{F}_{j}(\mathbf{R}_{k}, \mathbf{Q}_{k}) + \sqrt{h} \sqrt{\frac{2\Upsilon}{M\beta}} \sum_{l=1}^{3} \eta_{k}^{j,l} S_{l},$$
$$Q_{k+1}^{j} = \exp(Y_{k}^{j}) Q_{k}^{j}, \ j = 1, \dots, n,$$
where  $\boldsymbol{\xi}_{k} = (\xi_{1,k}, \dots, \xi_{3n,k})^{\mathrm{T}}$  and  $\xi_{i,k}, \ i = 1, \dots, 3n, \ \eta_{k}^{j,l}, \ l = 1, 2, 3,$  $j = 1, \dots, n,$  are i.i.d. random variables with the same law

$$P(\theta = \pm 1) = 1/2.$$
 (41)

Proposition 4. The numerical scheme (40)–(41) for (37)–(38) preserves the length of quaternions, i.e.,  $|Q_k^j| = 1$ , j = 1, ..., n, for all k, and it is of weak order one.

Davidchack, Ouldridge&T. J Chem Phys 2015

i =

Consider a system of *n* spins. Let  $B^i$  be the effective field acting on spin *i*  $B^i(\mathbf{x}) = -\nabla_i H(\mathbf{x}),$ 

where  $\nabla_i$  is the gradient with respect to the Cartesian components of the effective magnetic field acting on spin *i* and *H* is the Hamiltonian.

Consider a system of *n* spins. Let  $B^i$  be the effective field acting on spin *i*  $B^i(\mathbf{x}) = -\nabla_i H(\mathbf{x})$ ,

where  $\nabla_i$  is the gradient with respect to the Cartesian components of the effective magnetic field acting on spin *i* and *H* is the Hamiltonian.

$$dX^{i} = X^{i} \times a_{i}(\mathbf{X})dt + X^{i} \times \sigma(X^{i}) \circ dW^{i}(t), \qquad (42)$$
  
$$X^{i}(0) = x_{0}^{i}, \quad |x_{0}^{i}| = 1, \quad i = 1, \dots, n,$$

where  $X^i = (X_x^i, X_y^i, X_z^i)^{\top}$  are three-dimensional unit spin vectors and  $\mathbf{X} = (X^{1^{\top}}, \dots, X^{n^{\top}})^{\top}$  is a 3*n*-dimensional vector;  $W^i(t) = (W_x^i(t), W_y^i(t), W_z^i(t))^{\top}, W_x^i(t), W_y^i(t), W_z^i(t), i = 1, \dots, n,$  are independent standard Wiener processes;

Consider a system of *n* spins. Let  $B^i$  be the effective field acting on spin *i*  $B^i(\mathbf{x}) = -\nabla_i H(\mathbf{x})$ ,

where  $\nabla_i$  is the gradient with respect to the Cartesian components of the effective magnetic field acting on spin *i* and *H* is the Hamiltonian.

$$dX^{i} = X^{i} \times a_{i}(\mathbf{X})dt + X^{i} \times \sigma(X^{i}) \circ dW^{i}(t), \qquad (42)$$
  
$$X^{i}(0) = x_{0}^{i}, |x_{0}^{i}| = 1, i = 1, ..., n,$$

where  $X^i = (X_x^i, X_y^i, X_z^i)^{\top}$  are three-dimensional unit spin vectors and  $\mathbf{X} = (X^{1^{\top}}, \dots, X^{n^{\top}})^{\top}$  is a 3*n*-dimensional vector;  $W^i(t) = (W_x^i(t), W_y^i(t), W_z^i(t))^{\top}, W_x^i(t), W_y^i(t), W_z^i(t), i = 1, \dots, n,$ are independent standard Wiener processes;

$$a_i(\mathbf{x}) = -B^i(\mathbf{x}) - \alpha x^i \times B^i(\mathbf{x}) , \qquad (43)$$

 $lpha \geq$  0 is the damping parameter;  $\sigma(x), x \in \mathbb{R}^3$ , is a 3 imes 3-matrix:

$$\sigma(\mathbf{x})\mathbf{y} = -\sqrt{2D}\mathbf{y} - \alpha\sqrt{2D}\mathbf{x} \times \mathbf{y}, \quad D = \frac{\alpha}{(1+\alpha^2)} \frac{k_b T}{\hat{\mathbf{X}}\hat{B}} , \qquad (44)$$

 $\hat{X}$  is the magnetization of each spin and  $\hat{B}$  is a reference magnetic field strength.

Properties of SSL:

Properties of SSL:

• The length of each individual spin is a constant of motion, i.e.,

$$|X^{i}(t)| = 1, \ i = 1, \ldots, n, \ t \geq 0.$$

#### Properties of SSL:

• The length of each individual spin is a constant of motion, i.e.,

$$|X^{i}(t)| = 1, \ i = 1, \dots, n, \ t \ge 0.$$
 (45)

$$drac{1}{2}|X^i|^2=X^i dX^i=X^i\left[X^i imes \mathsf{a}_i(\mathbf{X})
ight]dt+X^i\left[X^i imes \sigma(X^i)\circ dW_i(t)
ight]=0.$$

#### Properties of SSL:

• The length of each individual spin is a constant of motion, i.e.,

$$|X^{i}(t)| = 1, \ i = 1, \dots, n, \ t \ge 0.$$
 (45)

$$drac{1}{2}|X^i|^2=X^i dX^i=X^i\left[X^i imes \mathsf{a}_i(\mathbf{X})
ight]dt+X^i\left[X^i imes \sigma(X^i)\circ dW_i(t)
ight]=0.$$

Ergodic

#### Properties of SSL:

• The length of each individual spin is a constant of motion, i.e.,

$$|X^{i}(t)| = 1, \ i = 1, \dots, n, \ t \ge 0.$$
 (45)

$$drac{1}{2}|X^i|^2=X^i dX^i=X^i\left[X^i imes a_i(\mathbf{X})
ight]dt+X^i\left[X^i imes \sigma(X^i)\circ dW_i(t)
ight]=0.$$

• Ergodic, the Gibbsian invariant measure with the density

$$\rho(\mathbf{x}) \propto \exp(-\beta H(\mathbf{x})) ,$$
(46)

where  $\beta = \hat{X}\hat{B}/(k_BT) > 0$  is the inverse temperature.

#### Properties of SSL:

• The length of each individual spin is a constant of motion, i.e.,

$$|X^{i}(t)| = 1, \ i = 1, \dots, n, \ t \ge 0.$$
 (45)

$$drac{1}{2}|X^i|^2=X^i dX^i=X^i\left[X^i imes \mathsf{a}_i(\mathbf{X})
ight]dt+X^i\left[X^i imes \sigma(X^i)\circ dW_i(t)
ight]=0.$$

• Ergodic, the Gibbsian invariant measure with the density

$$\rho(\mathbf{x}) \propto \exp(-\beta H(\mathbf{x})) ,$$
(46)

where  $\beta = \hat{X}\hat{B}/(k_BT) > 0$  is the inverse temperature.

Stratonovich form of the SDE

 Mid-point method - preserves spin length, has good long time simulation properties but very expensive for large spin systems since it is fully implicit:

$$X_{k+1}^{i} = X_{k}^{i} + h \frac{X_{k}^{i} + X_{k+1}^{i}}{2} \times a_{i} \left(\frac{\mathbf{X}_{k} + \mathbf{X}_{k+1}}{2}\right)$$
(47)  
+  $h^{1/2} \frac{X_{k}^{i} + X_{k+1}^{i}}{2} \times \sigma \left(\frac{X_{k}^{i} + X_{k+1}^{i}}{2}\right) \xi_{k+1}^{i}, \quad i = 1, \dots, n, \ k = 1, \dots, N,$ 

where  $\xi_{k+1}^i = \left(\xi_{k+1}^{i,1}, \xi_{k+1}^{i,2}, \xi_{k+1}^{i,3}\right)^\top$ ;  $\xi_k^{i,j}$ , j = 1, 2, 3,  $i = 1, \ldots, n$ ,  $k = 1, \ldots, N$ , are i.i.d. random variables which can be distributed according to, e.g.  $P(\xi_k^{i,j} = \pm 1) = 1/2$ . Alternatively, we can choose  $\xi_k^{i,j}$  being distributed as

$$\xi_{h} = \begin{cases} \zeta, \ |\zeta| \leq A_{h}, \\ A_{h}, \ \zeta > A_{h}, \\ -A_{h}, \ \zeta < -A_{h}, \end{cases}$$
(48)

where  $A_h = \sqrt{2|\ln h|}$  and  $\zeta \sim \mathcal{N}(0,1)$  [Milstein, Repin, T. SINUM 2002]

 Heun method - a projection is required to preserve spin length, has poor long time simulation properties but low cost per step since it is explicit

$$\begin{aligned} \mathcal{X}_{k}^{i} &= X_{k}^{i} + hX_{k}^{i} \times a_{i}(\mathbf{X}_{k}) + h^{1/2}X_{k}^{i} \times \sigma(X_{k}^{i})\xi_{k+1}^{i}, \quad (49) \\ &i = 1, \dots, n, \\ \mathcal{X}_{k+1}^{*i} &= X_{k}^{i} + \frac{h}{2} \left[ X_{k}^{i} \times a_{i}(\mathbf{X}_{k}) + \mathcal{X}_{k}^{i} \times a_{i}(\mathcal{X}_{k}) \right] \\ &+ \frac{h^{1/2}}{2} \left[ X_{k}^{i} \times \sigma(X_{k}^{i})\xi_{k+1}^{i} + \mathcal{X}_{k}^{i} \times \sigma(\mathcal{X}_{k}^{i})\xi_{k+1}^{i} \right], \\ \mathcal{X}_{k+1}^{i} &= X_{k+1}^{*i} / |X_{k+1}^{*i}|, \ i = 1, \dots, n, \\ k = 1, \dots, N, \end{aligned}$$

where  $\mathcal{X}_k = (\mathcal{X}_k^{1^{\top}}, \dots, \mathcal{X}_k^{n^{\top}})^{\top}$ ;  $\xi_{k+1}^i = \left(\xi_{k+1}^{i,1}, \xi_{k+1}^{i,2}, \xi_{k+1}^{i,3}\right)^{\top}$ ;  $\xi_k^{i,j}$ ,  $j = 1, 2, 3, i = 1, \dots, n, k = 1, \dots, N$ , are independent identically distributed (i.i.d.) random variables which can be distributed, e.g., as  $P(\xi_k^{i,j} = \pm 1) = 1/2$  or  $\xi_l^{i,j} \sim \mathcal{N}(0, 1)$ .

New semi-implicit methods [Mentink, T., Fasolino, Katsnelson, Rasing 2010] Semi-implicit scheme A (SIA)

$$\begin{aligned} \mathcal{X}_{k}^{i} &= X_{k}^{i} + hX_{k}^{i} \times a_{i}(\mathbf{X}_{k}) + h^{1/2}X_{k}^{i} \times \sigma(X_{k}^{i})\xi_{k+1}^{i}, \\ i &= 1, \dots, n, \\ X_{k+1}^{i} &= X_{k}^{i} + h\frac{X_{k}^{i} + X_{k+1}^{i}}{2} \times a_{i}\left(\frac{\mathbf{X}_{k} + \mathcal{X}_{k}}{2}\right) \\ &+ h^{1/2}\frac{X_{k}^{i} + X_{k+1}^{i}}{2} \times \sigma\left(\frac{X_{k}^{i} + \mathcal{X}_{k}^{i}}{2}\right)\xi_{k+1}^{i}, \ i = 1, \dots, n, \\ k &= 1, \dots, N, \end{aligned}$$
(50)

where  $\xi_{k+1}^{i} = \left(\xi_{k+1}^{i,1}, \xi_{k+1}^{i,2}, \xi_{k+1}^{i,3}\right)^{\top}$ ;  $\xi_{l}^{i,j}$  are i.i.d. random variables distributed as, e.g.  $P(\xi_{k}^{i,j} = \pm 1) = 1/2$ .

Semi-implicit scheme B (SIB)

$$\begin{aligned} \mathcal{X}_{k}^{i} &= X_{k}^{i} + h \frac{X_{k}^{i} + \mathcal{X}_{k}^{i}}{2} \times a_{i}(\mathbf{X}_{k}) + h^{1/2} \frac{X_{k}^{i} + \mathcal{X}_{k}^{i}}{2} \times \sigma(X_{k}^{i})\xi_{k+1}^{i}, \quad (51) \\ i &= 1, \dots, n, \\ X_{k+1}^{i} &= X_{k}^{i} + h \frac{X_{k}^{i} + X_{k+1}^{i}}{2} \times a_{i} \left(\frac{\mathbf{X}_{k} + \mathcal{X}_{k}}{2}\right) \\ &+ h^{1/2} \frac{X_{k}^{i} + X_{k+1}^{i}}{2} \times \sigma\left(\frac{X_{k}^{i} + \mathcal{X}_{k}^{i}}{2}\right) \xi_{k+1}^{i}, \quad i = 1, \dots, n, \\ k &= 1, \dots, N. \end{aligned}$$

Semi-implicit scheme B (SIB)

$$\begin{aligned} \mathcal{X}_{k}^{i} &= X_{k}^{i} + h \frac{X_{k}^{i} + \mathcal{X}_{k}^{i}}{2} \times a_{i}(\mathbf{X}_{k}) + h^{1/2} \frac{X_{k}^{i} + \mathcal{X}_{k}^{i}}{2} \times \sigma(X_{k}^{i})\xi_{k+1}^{i}, \quad (51) \\ i &= 1, \dots, n, \\ X_{k+1}^{i} &= X_{k}^{i} + h \frac{X_{k}^{i} + X_{k+1}^{i}}{2} \times a_{i} \left(\frac{\mathbf{X}_{k} + \mathcal{X}_{k}}{2}\right) \\ &+ h^{1/2} \frac{X_{k}^{i} + X_{k+1}^{i}}{2} \times \sigma\left(\frac{X_{k}^{i} + \mathcal{X}_{k}^{i}}{2}\right) \xi_{k+1}^{i}, \quad i = 1, \dots, n, \\ k &= 1, \dots, N. \end{aligned}$$

**Proposition 5.** The numerical schemes SIA and SIB for SSLE preserve the length of each spin and are of weak order one.

SIA and SIB are included in UppASD library

### Numerical experiments: rigid body thermostats

Davidchack, Handel&T. J Chem Phys 2009 and Davidchack, Ouldridge&T. J Chem Phys 2015

Two objectives for the experiments:

- $\bullet\,$  the dependence of the thermostat properties on the choice of parameters  $\gamma$  and  $\Gamma$  for the Langevin thermostat
- errors of the numerical schemes.

TIP4P rigid model of water (Jorgensen et. al J. Chem. Phys. 1983)

The quantities we measure include the translational temperature

$$\mathcal{T}_{\mathrm{tr}} = rac{\mathbf{p}^{\mathsf{T}}\mathbf{p}}{3nk_Bm}$$

rotational temperature

$$\mathcal{T}_{\rm rot} = \frac{2}{3nk_B} \sum_{j=1}^n \sum_{l=1}^3 V_l(q^j, \pi^j),$$

and potential energy per molecule

$$\mathcal{U}=rac{1}{n}U(\mathbf{r},\mathbf{q})$$



Figure: Langevin thermostat:  $\gamma = 4 \text{ ps}^{-1}$ ,  $\Gamma = 0$ .



Figure: Langevin thermostat:  $\gamma = 4 \text{ ps}^{-1}$ ,  $\Gamma = 0$ .



Figure: Langevin thermostat:  $\gamma = 4 \text{ ps}^{-1}$ ,  $\Gamma = 10 \text{ ps}^{-1}$ .

$${ au}_{{\mathcal T}_{
m tr}}=$$
 0.28 ps,  ${ au}_{{\mathcal T}_{
m rot}}=$  0.26 ps, and  ${ au}_{\mathcal U}=$  2.0 ps



Figure: Langevin thermostat. Dependence of relaxation time of the translational temperature on  $\gamma$  and  $\Gamma.$ 



Figure: Langevin thermostat. Dependence of relaxation time of the rotational temperature on  $\gamma$  and  $\Gamma.$ 



Figure: Langevin thermostat. Dependence of relaxation time of the potential energy on  $\gamma$  and  $\Gamma.$ 



Figure: Langevin thermostat. Dependence of relaxation time of the potential energy on  $\gamma$  and  $\Gamma.$ 

$$\gamma=2-8\,\mathrm{ps}^{-1}$$
 and  $\Gamma=3-40\,\mathrm{ps}^{-1}$ 

• Translational kinetic temperature

$$\langle \mathcal{T}_{\mathrm{tk}} \rangle_h = rac{\langle \mathbf{p}^\mathsf{T} \mathbf{p} \rangle_h}{3mk_B n};$$

Rotational kinetic temperature

$$\langle \mathcal{T}_{\mathrm{rk}} \rangle_h = \frac{2 \left\langle \sum_{j=1}^n \sum_{l=1}^3 V_l(q^j, \pi^j) \right\rangle_h}{3k_B n};$$

• Translational configurational temperature

$$\langle \mathcal{T}_{\mathrm{tc}} \rangle_h = \frac{\left\langle \sum_{j=1}^n |\nabla_{r^j} U|^2 \right\rangle_h}{k_B \left\langle \sum_{j=1}^n \nabla_{r^j}^2 U \right\rangle_h};$$

Rotational configurational temperature

$$\langle \mathcal{T}_{\mathrm{rc}} \rangle_h = rac{\left\langle \sum_{j=1}^n | \nabla_{\omega^j} U |^2 \right\rangle_h}{k_B \left\langle \sum_{j=1}^n \nabla_{\omega^j}^2 U \right\rangle_h},$$

where  $\nabla_{\omega^j}$  is the angular gradient operator for molecule *j*;

• Potential energy per molecule

$$\langle \mathcal{U} \rangle_h = \frac{1}{n} \langle U \rangle_h;$$

Excess pressure

$$\langle \mathcal{P}_{\mathrm{ex}} \rangle_{h} = -\frac{\left\langle \sum_{j=1}^{n} r^{j \mathsf{T}} f^{j} \right\rangle_{h}}{3V},$$

where V is the system volume;

 Radial distribution functions (RDFs) between oxygen (O) and hydrogen (H) interaction sites

$$\langle g_{\alpha\beta}(r) \rangle_h$$
,

where  $\alpha\beta = 00$ , OH, and HH.

Angle brackets with subscript h represent the average over a simulation run with time step h.

$$EA(\bar{X}) = EA(X) + C_A h^p + O(h^{p+1})$$

p=2 for Langevin integrators and p=1 for the gradient thermostat integrator

Talay&Tubaro Stoch.Anal.Appl. 1990



confidence intervals.

Results for Langevin A, B, and C thermostats with  $\gamma = 5 \text{ ps}^{-1}$  and  $\Gamma = 10 \text{ ps}^{-1}$  and gradient thermostat with v = 4 fs and  $\Upsilon = 1 \text{ fs}$ .

|                                   | Langevin A            |            | Langevin B            |             | Langevin C            |            | Gradient              |           |
|-----------------------------------|-----------------------|------------|-----------------------|-------------|-----------------------|------------|-----------------------|-----------|
| A, unit                           | $\langle A \rangle_0$ | $E_A$      | $\langle A \rangle_0$ | $E_A$       | $\langle A \rangle_0$ | EA         | $\langle A \rangle_0$ | EA        |
| $\mathcal{T}_{	ext{tk}}$ , K      | 300.0(2)              | -0.136(8)  | 299.9(2)              | 0.100(13)   | 300.0(2)              | -0.135(7)  | _                     | -         |
| $\mathcal{T}_{ m rk}$ , K         | 299.9(2)              | -0.808(8)  | 299.8(3)              | -0.092(13)  | 300.1(2)              | -0.803(8)  | _                     | -         |
| $\mathcal{T}_{ m tc}$ , K         | 300.1(3)              | 0.022(13)  | 299.9(4)              | 0.45(2)     | 300.1(3)              | 0.021(13)  | 299.6(1.0)            | 3.6(5)    |
| $\mathcal{T}_{ m rc}$ , K         | 299.8(3)              | 0.158(11)  | 299.6(4)              | 0.99(2)     | 299.9(3)              | 0.152(11)  | 298.6(1.6)            | 9.9(4)    |
| $\mathcal{U}$ , kcal/mol          | -9.068(4)             | -0.0004(2) | -9.071(4)             | 0.0059(2)   | -9.066(3)             | -0.0005(2) | -9.075(11)            | 0.033(4)  |
| $\mathcal{P}_{\mathrm{ex}}$ , MPa | -117.4(1.3)           | -0.02(5)   | -117.4(1.6)           | 0.27(9)     | -117.5(1.4)           | -0.01(5)   | -118(11)              | 1.7(2.8)  |
| $g_{00}(r_{00})$                  | 3.007(4)              | 0.0006(2)  | 3.009(4)              | -0.0027(2)  | 3.009(4)              | 0.0004(2)  | 3.012(9)              | -0.011(4) |
| $g_{\rm OH}(r_{\rm OH})$          | 1.490(3)              | 0.0003(2)  | 1.492(2)              | -0.0024(2)  | 1.490(2)              | 0.00028(9) | 1.491(7)              | -0.011(2) |
| $g_{\rm HH}(r_{\rm HH})$          | 1.283(2)              | 0.00012(7) | 1.284(2)              | -0.00082(6) | 1.282(2)              | 0.00018(7) | 1.284(4)              | -0.004(2) |

Values of  $\langle A \rangle_0$  and  $E_A$  were obtained by linear regression from  $\langle A \rangle_h$  for  $h \leq 6$  fs for Langevin integrators and for  $h \leq 4$  fs for the gradient integrator. Quantities  $E_A$  are measured in the units of the corresponding quantity A per fs<sup>p</sup>, where p = 2 for Langevin integrators and p = 1 for the gradient integrator.

In modelling colloidal suspensions, DNA, proteins and other macromolecules in solutions, solvent-mediated interactions between the particles should be included. Particles moving in a viscous fluid induce a flow field which affects other particles. These long-range interactions, which are only present if particles are moving, are called **hydrodynamic interactions**.

In modelling colloidal suspensions, DNA, proteins and other macromolecules in solutions, solvent-mediated interactions between the particles should be included. Particles moving in a viscous fluid induce a flow field which affects other particles. These long-range interactions, which are only present if particles are moving, are called **hydrodynamic interactions**.

For a system of spherical particles, forces and torques due to hydrodynamic interactions depend linearly on the linear and angular velocities of the spheres through a position-dependent friction matrix  $\xi(\mathbf{r})$ .

[Davidchack, Ouldridge&T. work in progress]

$$dR^{i} = \frac{P^{i}}{m^{i}}dt, \quad R^{i}(0) = r^{i},$$

$$dP^{i} = f^{i}(\mathbf{R}, \mathbf{Q})dt - \sum_{j=1}^{n} \frac{\text{tr}\xi^{(i,j)}(\mathbf{R})}{m^{j}}P^{j}dt$$

$$-\frac{1}{2}\sum_{j=1}^{n} \text{tr}\xi^{(i,j)}(\mathbf{R})A^{\mathsf{T}}(Q^{j})\hat{D}^{j}\hat{S}^{\mathsf{T}}(Q^{j})\Pi^{j}dt$$

$$+\sum_{j=1}^{n} \text{tr}b^{(i,j)}(\mathbf{R})dw^{j}(t) + \sum_{j=1}^{n} \text{tr}b^{(i,j)}(\mathbf{R})dW^{j}(t), \quad P^{i}(0) = p^{i},$$
(52)

$$dQ^{i} = \frac{1}{4}\hat{S}(Q^{i})\hat{D}^{i}\hat{S}^{\mathsf{T}}(Q^{i})\Pi^{i}dt, \quad Q^{i}(0) = q^{i}, \quad |q^{i}| = 1,$$
(53)  

$$d\Pi^{i} = \frac{1}{4}\hat{S}(\Pi^{i})\hat{D}^{i}\hat{S}^{\mathsf{T}}(Q^{i})\Pi^{i}dt + F^{i}(\mathbf{R}, \mathbf{Q})dt$$

$$-\sum_{j=1}^{n}\tilde{S}(Q^{i})^{\operatorname{rr}}\xi^{(i,j)}(\mathbf{R})A^{\mathsf{T}}(Q^{j})\hat{D}^{j}\hat{S}^{\mathsf{T}}(Q^{j})\Pi^{j}dt$$

$$-2\sum_{j=1}^{n}\frac{1}{m^{j}}\tilde{S}(Q^{i})^{\operatorname{rt}}\xi^{(i,j)}(\mathbf{R})P^{j}dt$$

$$+2\sum_{j=1}^{n}\tilde{S}(Q^{i})^{\operatorname{rr}}b^{(i,j)}(\mathbf{R})dW^{j}(t)$$

$$+2\sum_{j=1}^{n}\tilde{S}(Q^{i})^{\operatorname{rt}}b^{(i,j)}(\mathbf{R})dW^{j}(t), \quad \Pi^{i}(0) = \pi^{i}, \quad q^{i\mathsf{T}}\pi^{i} = 0,$$

$$i = 1, \dots, n,$$
where  ${}^{\operatorname{tt}}b^{(i,j)}(\mathbf{r}), \operatorname{tr}b^{(i,j)}(\mathbf{r}), \operatorname{rr}b^{(i,j)}(\mathbf{r}), \operatorname{and} \operatorname{rt}b^{(i,j)}(\mathbf{r}), i, j = 1, \dots, n,$  are 3 × 3-matrices.

The matrices  ${}^{\text{tt}}b^{(i,j)}(\mathbf{r})$ ,  ${}^{\text{tr}}b^{(i,j)}(\mathbf{r},\mathbf{q})$ ,  ${}^{\text{rr}}b^{(i,j)}(\mathbf{r},\mathbf{q})$ , and  ${}^{\text{rt}}b^{(i,j)}(\mathbf{r},\mathbf{q})$  are so that the invariant measure of X(t) is Gibbsian with the density  $\rho(\mathbf{r},\mathbf{p},\mathbf{q},\pi)$ :

$$\rho(\mathbf{r},\mathbf{p},\mathbf{q},\boldsymbol{\pi}) \propto \exp(-\beta H(\mathbf{r},\mathbf{p},\mathbf{q},\boldsymbol{\pi})).$$

$$\begin{bmatrix} {}^{\mathrm{tt}}b(\mathbf{r}) & {}^{\mathrm{tr}}b(\mathbf{r}) \\ {}^{\mathrm{rt}}b(\mathbf{r}) & {}^{\mathrm{rr}}b(\mathbf{r}) \end{bmatrix} \begin{bmatrix} {}^{\mathrm{tt}}b^{\mathrm{T}}(\mathbf{r}) & {}^{\mathrm{rt}}b^{\mathrm{T}}(\mathbf{r}) \\ {}^{\mathrm{tr}}b^{\mathrm{T}}(\mathbf{r}) & {}^{\mathrm{rr}}b^{\mathrm{T}}(\mathbf{r}) \end{bmatrix} = \frac{2}{\beta} \begin{bmatrix} {}^{\mathrm{tt}}\xi(\mathbf{r}) & {}^{\mathrm{tr}}\xi(\mathbf{r}) \\ {}^{\mathrm{rt}}\xi(\mathbf{r}) & {}^{\mathrm{rr}}\xi(\mathbf{r}) \end{bmatrix} := \frac{2}{\beta}\xi(\mathbf{r}).$$

[Davidchack, Ouldridge&T. work in progress]

# Conclusions

- As in the deterministic case, it is important to preserve structural properties of stochastic systems for accurate long term simulations
- Geometric integrators for stochastic Hamiltonian systems, for various Langevin-type equations, for stochastic Landau-Lifshitz equation were constructed
- Testing of thermostats and numerical integrators.
- Current work includes stochastic rigid body dynamics with hydrodynamic interactions.
- Development of more efficient methods for stochastic gradient systems.



