
Introduction to stochastic numerics and computing
ergodic limits

M.V. Tretyakov
School of Mathematical Sciences, University of Nottingham, UK

Woudschoten Conference, 5th October 2016



Plan of the talk

What’s for?

Stochastics

SDE
Link to PDEs

Numerics

Types of convergence
Mean-square approximations
Weak approximations

Computing ergodic limits

Ensemble and time averaging and computational errors
Gradient system and ‘non-Markovian’ scheme

Conclusions



What’s for?

Molecular dynamics (MD) - canonical ensemble (NVT ) – see Part II
on Friday

Financial Engineering (pricing and hedging derivatives; management
of couterparty risk, etc.)

Bayesian statistics

SDEs ⇐⇒ linear parabolic and elliptic PDEs

Other (models in biology, chemistry, economics, etc.)



Stochastics: SDEs

Assume that deterministic functions b(t, x) and br (t, x), r = 1, . . . , q,
have some good analytical properties. The solution of the (Ito)
stochastic differential equation

dX = b(t,X )dt +

q∑
r=1

σr (t,X )dwr (t), X (t0) = x , (1)

is a stochastic process X (t) such that

X (t) = x +

∫ t

t0

b(s,X (s))ds +

q∑
r=1

∫ t

t0

σr (s,X (s))dwr (s) (2)

Ito, Stratonovich?

T∫
0

σr (t,X (t))dwr (t) = l.i.m.
δ→0

N−1∑
i=0

σr (ti ,X (ti ))× (wr (ti+1)− wr (ti )),

T∫
0

σr (t,X (t))◦dwr (t) = l.i.m.
δ→0

N−1∑
i=0

σr

(
ti ,

X (ti ) + X (ti+1)

2

)
(wr (ti+1)−wr (ti ))
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Feynman-Kac formula

Lu(t, x) : =
∂

∂t
u(t, x) +

1

2

q∑
r=1

d∑
i,j=1

σi
rσ

j
r

∂2

∂x i∂x j
u(t, x) (3)

+
d∑

i=1

bi
∂

∂x i
u(t, x)

The Cauchy problem for linear parabolic PDE:

Lu = 0, t < T , x ∈ Rd , (4)

u(T , x) = f (x), x ∈ Rd . (5)

Then
u(t0, x) = Ef (Xt0,x(T )), (6)

where Xt0,x(t), t ≥ t0, is the solution of the Ito SDEs

dX = b(t,X )dt +

q∑
r=1

σr (t,X )dwr (t), X (t0) = x . (7)
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Numerics

dX = b(t,X )dt +

q∑
r=1

σr (t,X )dwr (t), X (0) = x , (8)

Consider a numerical method for (8) based on the one-step
approximation:

Xt,x(t + h) ' X̄t,x(t + h) = x + A(t, x , h; ξ), 0 ≤ t < t + h ≤ T , (9)

where ξ is a random vector with moments of a sufficiently high order and
A is a d-dimensional vector function. Introduce (for simplicity) the
equidistant partition of the time interval [0,T ] into N parts with the step
h = T/N: 0 = t0 < t1 < · · · < tN = T , tk+1 − tk = h.

According to (9), we construct the sequence

X0 = x , Xk+1 = Xk + A(tk ,Xk , h; ξk+1), k = 0, . . . ,N − 1, (10)

where ξ1 is independent of X0 and ξk+1 for k > 0 is independent of
X0, . . . ,Xk , ξ1, . . . , ξk .
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Numerics - Example

Euler’s method:

Xk+1 = Xk + bkh +

q∑
r=1

σr k∆kwr (h), (11)

where ∆kwr (h) = wr (tk+1)− wr (tk), and the index k at σr and b
indicates that these functions are evaluated at the point (tk ,Xk).

G. Marujama (1955) showed the mean-square convergence of this
method, while I.I. Gichman and A.V. Skorokhod (1968) proved that the
order of accuracy of Euler’s method is 1/2, i.e.,

(E (X (tk)− Xk)2)1/2 ≤ Ch1/2 , (12)

where C is a constant not depending on k and h.
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Numerics - mean-square methods

We usually distinguish two types of convergence of numerical methods
for SDEs: mean-square (also called strong) and weak. Mean-square
methods are used for direct simulation of SDEs’ trajectories which, e.g.,
can give information on general behavior of a stochastic model.

Definition

If for some method we would have

(E (X (tk)− Xk)2)1/2 ≤ Chp , (13)

then we say that the mean-square order of accuracy of the method is
p.

[e.g. Milstein, T.; Springer, 2004]



Numerics - mean-square methods

We usually distinguish two types of convergence of numerical methods
for SDEs: mean-square (also called strong) and weak. Mean-square
methods are used for direct simulation of SDEs’ trajectories which, e.g.,
can give information on general behavior of a stochastic model.

Definition

If for some method we would have

(E (X (tk)− Xk)2)1/2 ≤ Chp , (13)

then we say that the mean-square order of accuracy of the method is
p.

[e.g. Milstein, T.; Springer, 2004]



Numerics - weak convergence

Weak methods are sufficient for evaluation of mean values and are
simpler than mean-square ones.

Definition

If an approximation X̄ is such that

|Ef (X̄ (T ))− Ef (X (T ))| ≤ Khp (14)

for f from a sufficiently large class of functions, then we say that the
weak order of accuracy of the approximation X̄ (the method X̄ ) is p.

If a method converges with an order p in the mean-square sense, it also
converges in the weak sense with order equal to or larger than p. The
opposite is not true.
The weak order of accuracy of Euler’s method (11) is 1.

[e.g. Milstein, T.; Springer, 2004]
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Numerics - weak convergence

A crude method like

Xk+1 = Xk + bkh +
√
h

q∑
r=1

σrkηrk , (15)

where ηrk , r = 1, . . . , q, k = 0, . . . ,N − 1, are independent random
variables taking the values +1 and −1 with probabilities 1/2, also has
first order of accuracy in the sense of weak approximation. We usually
call (15) as the weak Euler scheme (Milstein (1978); see also Talay
(1984), Milstein (1985) and Milstein&T, Springer, 2004).

The main interest in weak approximations lies in the hope to obtain
simpler methods and, in particular, methods not requiring modeling of
complicated random variables.
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Numerics - Monte Carlo

The Monte Carlo technique:

u ≡ Ef (X (T )) ' ū ≡ Ef (XN) ' û ≡ 1

M

M∑
m=1

f (X
(m)
N ) , (16)

where X
(m)
N , m = 1, . . . ,M, are independent realizations of the random

variable XN .

The error of the Monte Carlo method in (16) is evaluated by

σ̄ = c
[Var {f (XN)}]1/2

M1/2

In practice:

ū ∈ (û − c√
M

√
v̂ , û +

c√
M

√
v̂) , (17)

v̂ ≡ 1

M

M∑
m=1

[f (mXN)]2 − û2 ,

with probability 0.68 for c = 1, 0.95 for c = 2, and 0.997 for c = 3.
[e.g. Milstein, T.; Springer, 2004]
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Ergodic limits

For many applications (in particular, molecular dynamics and Bayesian
statistics), it is of interest to compute the mean of a given function with
respect to the invariant law of the diffusion, i.e. the ergodic limit.

Consider the system of Ito SDEs

dX = b(X )dt +

q∑
l=1

σr (X )dwr (t), X (0) = x (18)

We assume

(A1) The coefficients of (18) are sufficiently smooth functions in Rd .
(A2) The solution of (18) is regular, i.e., it is defined for all t ≥ 0.
(A3) The process X (t) is ergodic, i.e., there exists a unique invariant

measure µ of X and independently of x ∈ Rd there exists the limit

lim
t→∞

Eϕ(X (t; x)) =

∫
ϕ(x) dµ(x) := ϕerg (19)

for any function ϕ(x) with polynomial growth at infinity.
(A4) The Markov transition function P(t, x , dy) and the invariant

measure µ(dx) have sufficiently smooth densities p(t, x , y) and ρ(x),
respectively.

[Hasminskii 1980; 2012]
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Ergodic limits

Ergodicity. We are interested here in systems which solutions satisfy a
stronger condition than (A3):

(A3e) The process X (t) is exponentially ergodic, i.e., for any x ∈ Rd and
any function ϕ with a polynomial growth we have the following
strengthening of (19):

|Eϕ(X (t; x))− ϕerg | ≤ Ce−λt , t ≥ 0, (20)

where C > 0 and λ > 0 are some constants.

It follows from (20) (and (19)) that for any ε > 0 there exists T0 > 0
such that for all T ≥ T0

|Eϕ(X (T ; x))− ϕerg | ≤ ε. (21)

Thus, the problem of computing the ergodic limit is reduced to evaluating
the expectation Eϕ(X (T )) at a finite (though usually large) time T .



Example: Langevin equations

Example

The Langevin equations are very popular in, e.g., molecular simulation:

dP = f (Q)dt − γPdt +

√
2γ

β
dw(t), P(0) = P0 = p, (22)

dQ = M−1Pdt, Q(0) = Q0 = q,

where P, Q, f (q) = −∇U(q) are n-dimensional column-vectors, γ > 0 is
a friction parameter, M is a non-singular, diagonal matrix, and
w(t) = (w1(t), . . . ,wn(t))> and wl(t) are independent standard Wiener
processes.
Let U(q) ≥ 0 for all q ∈ Rn and there exists an α1 > 0 and 0 < α2 < 1

such that 1
2 (∇U(q), q) ≥ α2U(q) + γ2 α2(2−α2)

8(1−α2)
|q|2 − α1. Then the

solution of (22) is exponentially ergodic [Mattingly, Stuart, Higham
(2002)] and its invaraint measure is Gibbsian with the density

ρ(p, q) ∝ exp

(
−β
{

1

2
p>M−1p + U(q)

})
(23)



Ensemble averaging

|Eϕ(X (T ; x))− ϕerg | ≤ ε.

(24)

Monte Carlo estimate for the ergodic limit ϕerg :

ϕ̂erg =
1

M

M∑
m=1

ϕ
(
X̄ (m)(T ; x)

)
, (25)

where M is the number of independent approximate realizations and
X̄ (T ; x) is a weak approximation of X (T ; x) with order p > 0.

The total error
Rϕ̂erg := ϕ̂erg − ϕerg (26)

consists of three parts: the error ε of the ergodic limit approximation; the
error of numerical integration Khp; and the Monte Carlo error; i.e.,

Rϕ̂erg ∼ Khp + ε+ O

(
1√
M

)
.

[Milstein, T.; Physica D (2007)]
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Ensemble averaging

More precisely,

Bias(ϕ̂erg ) = |E ϕ̂erg − ϕerg | ≤ Khp + ε (27)

and the estimator’s variance is

Var(ϕ̂erg ) = O(1/M). (28)



Time averaging

lim
t→∞

1

t

t∫
0

ϕ(X (s; x))ds = ϕerg a.s., (29)

where the limit does not depend on x .

Then by approximating a single trajectory, one gets for a sufficiently large
T̃ :

1

T̃

T̃∫
0

ϕ(X (s; x))ds ≈ ϕ̌erg = ϕ̌erg
L :=

1

L

L∑
l=1

ϕ(X̄ (tl ; x)), (30)

where Lh = T̃ .
[Talay (1990); Talay, Tubaro (1990); Milstein, T (2007); Mattingly,
Stuart, T. (2010)]
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Time averaging

Under some conditions on the SDE coefficients:

Bias(ϕ̌erg
L ) ≤ K1h

p +
K2

T̃
; (31)

Var(ϕ̌erg
L ) ≤ K

T̃
; (32)

there exists a deterministic constant K so that for h sufficiently small,
positive ε > 0, and T̃ sufficiently large one has:

|ϕ̌erg
L − ϕ

erg | ≤ Khp +
C (ω)

T̃ 1/2−ε
a.s., (33)

where C (ω) > 0 is an a.s. bounded random variable depending on ε and
the particular ϕ.

There are three types of errors:

1 numerical integration error (estimated by Khp);
2 the error due to the distance from the stationary distribution (i.e.,

the error due to the finite time of integration T̃ estimated by K/T̃ );

3 the statistical error (∼ 1/
√
T̃ ).

[Talay (1990); Mattingly, Stuart, T. (2010)]
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Time averaging: stats error

Run a long trajectory MT̃ split into M blocks of a large length T̃ = hL
each. We evaluate the estimators mϕ̌

erg
L , m = 1, . . . ,M, for each block.

Since T̃ is big and a time decay of correlations is usually fast, mϕ̌
erg
L can

be considered as almost uncorrelated. We compute the sampled variance

D̂ =
1

M − 1

M∑
m=1

(
m
ϕ̌erg
L

)2 − ( 1

M

M∑
m=1m

ϕ̌erg
L

)2
.

For a sufficiently large T̃ and M, E ϕ̌erg
L belongs to the confidence interval

E ϕ̌erg
L ∈

(
ϕ̌erg
LM − c

√
D̂√
M
, ϕ̌erg

LM + c

√
D̂√
M

)
,

with probability, for example 0.95 for c = 2 and 0.997 for c = 3. Note
that E ϕ̌erg

L contains the two errors forming the bias.



Stochastic gradient system

[Leimkuhler, Matthews, T.; Proc. R. Soc. A (2014)]

dX = a(X)dt + σdw, X(0) = X0, (34)

a(x) := −∇U(x), x ∈ Rd , (35)

σ =
√

2/β, d = 3n, and w(t) is a standard d-dimensional Wiener
process.

We use the following notation for the solution of (34): X(t) = Xt0,x(t)
when X(t0) = x , t ≥ t0, and also we will write Xx(t) when t0 = 0.

The solution X(t) of (34) is exponentially ergodic and

ρ(x) ∝ exp

(
− 2

σ2
U(x)

)
if there exist c0 ∈ R and c1 > 0 such that

(x , a(x)) ≤ c0 − c1|x |2. (36)

[Hasminskii (1980), Mattingly, Stuart, Higham (2002)]
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Stochastic gradient system

The Euler scheme:

Xk+1 = Xk + ha(Xk) + σ
√
hξk+1, (37)

where ξk = (ξ1k , . . . , ξ
d
k )> and ξik , i = 1, . . . , d , k = 1, . . . , are i.i.d.

random variables with the law N (0, 1).

Heun’s scheme:

X̂k+1 = Xk + ha(Xk) + σ
√
hξk+1,

Xk+1 = Xk +
h

2

[
a(X̂k+1) + a(Xk)

]
+ σ
√
hξk+1.

(38)

Weak convergence:

|Eϕ(X (T ))− Eϕ(XN)| ≤ Khp (39)

N = T/h; Euler – p = 1, Heun – p = 2 [e.g. Milstein, T.; Springer 2004]

Ergodic limits [Talay (1990); Talay, Tubaro (1990); Mattingly, Stuart,
Higham (2002); Milstein, T (2007); Mattingly, Stuart, T. (2010)]:

|ϕerg − Eϕ(XN)| ≤ Khp + Ce−λT (40)
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Non-Markovian scheme

Xk+1 = Xk + ha(Xk) + σ

√
h

2
(ξk + ξk+1), (41)

where ξk = (ξ1k , . . . , ξ
i
k)> defined on (Ω,P,F) and ξik , i = 1, . . . , d ,

k = 1, . . . , are i.i.d. random variables with the law N (0, 1)
[Leimkuhler, Matthews (2013)]



Example

Let a(x) = −αx with α > 0, then X(t) from (34) is the
Ornstein-Uhlenbeck process, which is Gaussian with EXx(t) = xe−αt ,

Cov(Xx(s),Xx(t)) =
σ2

2α
(e−α(t−s) − e−α(t+s)) for s ≤ t and

Var(Xx(t)) = σ2

2α (1− e−2αt).

For the Euler scheme (37):

EXN = x0(1− αh)N = x0e
−αT (1 +O(h)),

Var(XN) =
σ2

2α

1− (1− αh)2N

1 + αh

=
σ2

2α
(1− e−2αT )− σ2

2
h + e−2αTO(h) +O(h2), αh < 1,

where |O(hp)| ≤ Kh with K > 0 independent of T .
For the scheme (41):

EXN = x0(1− αh)N = x0e
−αT (1 +O(h)),

Var(XN) =
σ2

2α

[
1− (1− αh)2N

1− αh

]
=
σ2

2α
(1− e−2αT ) + e−2αTO(h).
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Assumptions

Assumption 1 There exist c0 ∈ R and c1 > 0 such that

(x , a(x)) ≤ c0 − c1|x |2.

Assumption 2 The potential U(x) ∈ C 7(Rd), its first-order derivatives
grow not faster than a linear function at infinity and higher derivatives
are bounded. The function ϕ(x) ∈ C 6(Rd) and it and its derivatives
grow not faster than a polynomial function at infinity.

The most restrictive condition in Assumption 2 is the requirement for
a(x) = −∇U to be globally Lipschitz:

|a(x)|2 ≤ K (1 + |x |2), (42)

where K > 0 is independent of x ∈ Rd , which can be relaxed via
[Milstein, T. (2005) and (2007): the concept of rejecting exploding
trajectories]



Introduce the operator L

L :=
∂

∂t
+ L,

where L

L :=
d∑

i=1

ai (x)
∂

∂x i
+
σ2

2

d∑
i=1

∂2

(∂x i )
2 . (43)

The function
u(t, x) = Eϕ(Xt,x(T )) (44)

satisfies the Cauchy problem for the backward Kolmogorov equation

Lu = 0, (45)

u(T , x) = ϕ(x).



Main theorem

Theorem (1; [Leimkuhler, Matthews, T.; Proc. R. Soc. A (2014)])

Let Assumptions 1-2 hold. Then the scheme (41) is first order weakly
convergent and for all sufficiently small h > 0 its error has the form

Eϕ(Xx(T ))− Eϕ(XN) = C0(T , x)h + C (T , x)h2, (46)

C0(T , x) = E

∫ T

0

B0(t,Xx(t))dt, (47)

B0(t, x) =
1

2

 d∑
i,j=1

aj(x)
∂ai (x)

∂x j
∂u(t, x)

∂x i

+
σ2

2

d∑
i,j=1

∂ai (x)

∂x j
∂2u(t, x)

∂x i∂x j
+
σ2

2

d∑
i,j=1

∂2ai (x)

(∂x j)
2

∂u(t, x)

∂x i

 ,
|C (T , x)| ≤ K (1 + |x |κe−λT ),

for some K > 0, κ ∈ N and λ > 0 independent of h and T .

[Leimkuhler, Matthews,T; Proc. R. Soc. A (2014)]



Corollary

Theorem 1:

Eϕ(Xx(T ))− Eϕ(XN) = C0(T , x)h + C (T , x)h2,

C0(T , x) = E

∫ T

0

B0(t,Xx(t))dt.

Theorem (2; [Leimkuhler, Matthews, T.; Proc. R. Soc. A (2014)])

Let Assumptions 1-2 hold. Then the coefficient C0(T , x) from (47) goes
to zero as T →∞ :

|C0(T , x)| ≤ K (1 + |x |κ)e−λT (48)

for some constants K > 0, κ ∈ N and λ > 0, i.e., over a long integration
time the scheme (41) is of order two up to exponentially small correction.
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Sketch of the proof

C0(T , x) =

∫ T

0

EB0(t,Xx(t))dt =

∫ T

0

∫
Rd

B0(t, y)p(t, x , y)dydt (49)

=

∫ T

0

∫
Rd

B0(t, y)ρ(y)dydt

+

∫ T

0

∫
Rd

B0(t, y)[p(t, x , y)− ρ(y)]dydt,

where p(t, x , y) is the transition density for (34) and ρ(y) is the invariant
density.

∫
Rd

B0(t, y) exp

(
− 2

σ2
U(y)

)
dy = 0. (50)
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Discussion

1 We emphasize that the fact that the average of B0(t, x) with respect
to the invariant measure is equal to zero is the reason why the
scheme (41) is second order accurate in approximating ergodic limits.

2 In the case of the Euler scheme (37) we get the same error
expansion as (46) for the scheme (41) but with a different
B0(t, x) = BE

0 (t, x) (see [Milstein, T.; Springer 2004]):

BE
0 (t, x) =

1

2

 d∑
i,j=1

aj
∂u

∂x j
ai
∂u

∂x i

+
σ2

2

d∑
i,j

∂2aj

(∂x i )
2

∂u

∂x j
+
σ2

2

d∑
i,j=1

ai
∂3u

∂x i (∂x j)
2

+σ2
d∑

i,j=1

∂aj

∂x i
∂2u

∂x j∂x i
+
σ4

6

d∑
i,j=1

∂4u

(∂x i )
2

(∂x j)
2

 .
The average of BE

0 (t, x) with respect to the invariant measure is not
equal to zero and, consequently, the Euler scheme (37) approximates
ergodic limits with order one – the same order as its weak
convergence over a finite time interval.
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Discussion

3 Let a one-step weak approximation X̄t,x(t + h) of the solution
Xt,x(t + h) of (34) generate a method of order p. The global error
of the method:

R : = Eϕ(Xx(T ))− Eϕ(X̄x(T )) (51)

= C0(T , x)hp + · · ·+ Cn(T , x)hp+n + O(hp+n+1) ,

where n ∈ N and the functions C0(T , x), . . . ,Cn(T , x) are
independent of h which can be presented in the form

Ci (T , x) =

∫ T

0

EBi (s,Xx(s))ds.

One can deduce from the proof of Theorem 2 that if the averages of
Bi (s, x) 0 ≤ i ≤ n, with respect to the invariant measure are equal
to zero then in the limit of T →∞ the scheme has p + n order of
accuracy in h.

[Abdulle, Vilmart, Zygalakis 2014-15]
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Numerical experiments

Anharmonic scalar model: the one-dimensional potential energy
U(x) = cos(x)

L2 error:

√∑
i

(ρ̂i − ρi )2
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Figure: The error in computed distributions is plotted for each scheme.

[Leimkuhler, Matthews, T.; Proc. R. Soc. A (2014)]



Error in finite time
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Figure: The lower plot shows the error in the distribution after time t, as
computed using each scheme at h = 0.16. In the plots at the top, we compare
the error growth with respect to stepsize h at multiples of t = 0.96.



Conclusions

We discussed

Some basics of stochastic numerics

How to compute ergodic limits

A ‘non-Markovian’ scheme tailored towards computing ergodic limits

Further numerical aspects for SDEs:

Variance reduction/reduction of complexity

Geometric integration and computing ergodic limits (see Part II on
Friday)

DEs with small noise, DEs with coloured noise

Convergence/approximation of schemes in the case of nonglobally
Lipschitz coefficients of SDEs

Mean-square and weak approximation of SDEs in bounded domains
(absorbtion, reflection)
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