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Tensors

» Tensors are the generalization of matrices to higher dimensions.

» Allow us to represent and analyze multi-dimensional data
(multi-way data analysis).
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Notation

» The number of dimensions (or modes) is m.

» The size of a 3-mode tensor will be I x J x K.
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Tensor storage — coordinate form

Each non-zero is a tuple of indices and a value.
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Canonical polyadic decomposition (CPD)

» The CPD models a tensor as a summation of rank-1 tensors.
» A rank-1 tensor is the outer product of m vectors.

/4 /4

ik Y aibgafori=1,... L j=1,...Jk=1...K
f=1

Notation

» A B,C, each with F columns, will be used to denote the factor matrices
for a 3-mode tensor.

» AW A will be used for m > 3.




Applications

Tensor factorization has emerged as a popular tool in several
data-intensive fields:

» Context-aware recommender systems: top-/NN recommendation
and rating prediction.

» Precision healthcare: electronic health record analysis.

» Cybersecurity: intrusion detection.



Interpretation of decompositions

The values indicate the relative

times of the day.

corresponding values will be.

amount of usage during the different

The hours during which the tablets
are used the more, the higher their

The values indicate the
relative amount of usage of
the different users.

The more time a user
spends on his/her tablet, the
higher his/her value will be.

The values indicate the relative
amount of usage of the
different applications.

The more time users spend on
an application, the higher its
value will be.
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Example-2
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Example—3
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Datasets used

Dataset | J K nnz
NELL-2 12K oK 28K 77M
Beer 33K 66K 960K 94M

Netflix 480K 18K 2K 100M
Delicious 532K 17M 3M  140M
NELL-1 3M 2M  25M  143M
Yahoo 1M 625k 133 210M
Random-1 20M 20M 20M 1.0B
Random-2 50M 5M 5M 1.0B
Amazon 5M 18M 2M  1.7B

NELL tensors are made of noun-verb-noun triplets.

Beer and Amazon are user-item-word product reviews.
Netflix and Yahoo are user-item-time product ratings.
Delicious is made of user-item-tag triplets.

Random tensors are synthetic, uniformly distributed triplets.

vV v vYvyYy
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CPD - loss functions

The objective is a combination of the factorization quality (the /oss)
and regularization terms (to prevent overfitting).

minimize  L(X,A,B,C)+ A (||Allf +[|B||% + [|C||F)

"

Loss Regularization



CPD - loss functions

The objective is a combination of the factorization quality (the /oss)
and regularization terms (to prevent overfitting).

minimize  L(X, A, B,C)+ A (J|A|[£ + [|B[& + ||C|[)

"

Loss Regularization

Two loss functions covered today:
1. Least squares:

1
L(X,AB,C)= 3

2. Missing values:

;
/L(X,A,B,C):% 3 (X(i,j,k)—ZA(i,f)B(', F)C(k, f



Alternating least squares (ALS)

» The case of least-squares loss is usually computed using an

alternating approach.

» ALS cyclically updates one factor matrix at a time while holding

all others constant.

Algorithm 1 CPD-ALS

1: while not converged do

2: AT (CTc«BTB+ AN (Xy(CoB))"
3: T=(CTCxATA+ A (X (CoOA))"
4 CT=B'BxATA+ )" (X5 B@A)

Normal?a;uations R MTTKRP .

5. end while




Matricized tensor times Khatri-Rao product

MTTKRP is the core computation of each iteration of CPD-ALS:
A =Xy (CoB)

- o mm mm o mm mm mm o mm mm o mm mm o = = o= = ]

(CoB)




MTTKRP - elementwise

Elementwise formulation:

A(i,:) < A(i,:)+ X(i,j, k) [B(,:) * C(k,:)]
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Can we do better?

» Consider three nonzeros in the fiber X'(i,},:) (a vector):
A(i,:) < A(i,:) + X (i), k1) [BU,:) * Clki, )]
A(i,:) < A(i,:)+ X(i,j, k2) [B(,:) * C(ka,:)]
A(i,:) < A(i,:)+ X (i, j, ks) [B(,:) * C(ks,:)]

—



Can we do better?

» Consider three nonzeros in the fiber X'(i,},:) (a vector):
A(i,:) < A(i,:) + X (i), k1) [BU,:) * Clki, )]
A(i,:) < A(i,:)+ X(i,j, k2) [B(,:) * C(ka,:)]
A(i,:) < A(i,:)+ X (i, j, ks) [B(,:) * C(ks,:)]

—

» A little factoring...

3
A(i,:) < A(:) + B(, ) = | > X(i,), k)Clk, :)
x=1

If v is the number of non-zeros in the (i, ) fiber, then from
aF + 2aF operations it reduces to (1 + a)F + (1 + «)F.
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Challenges

» Factoring out computation relies on sparsity structure.
A(i,:) < A(i,: : Z X(i,j, k

» Coordinate format does not naturally expose structure.
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Efficient MTTKRP [Smith et al. '15]

What is an ideal data structure for exposing structure?

» Fibers are stored contiguously.
» Slice X(i,:,:) is almost a CSR matrix.




Compressed sparse fiber (CSF) [smith & Karypis '15]

» Modes are recursively compressed.
» Paths from roots to leaves encode non-zeros.

» The tree structure encodes the opportunities for savings.
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MTTKRP example

Becomes:
A1)« AL, ) +
(A<2>(1, ) # (A<3>(1, ) # (1.0 AB(2,) 42,0 AW(3, :))))



Mode-centric CSF

» All of the non-zeros required to compute AM(j,:) are found in
the ith tree.

» Parallelism is easy: just distribute the trees to threads.

» This strategy requires a different CSF representation for each
mode.

» The mode-m CSF places the mth mode at the top.

30| (40|50 (6.0] (7.0](8.0]

» Can we work with just a single CSF?



MTTKRP example

Each tree is traversed depth-first.

destination { 0

prefix

suffix

prefix + AM(1,:) « AP (1)

AD A(Z) A(3) A(4)

suffix < 1.0 - AM(2,:) +2.0- AW (3, )

AC(1,:) « AB(1,:) + (prefix * suffix)




Parallelism — challenges?

» Like before, parallelize over the trees when computing for the
root level.

» Internal and leaf modes require more thought.
» First approach: mutex pool.
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Parallelism — tiling

» For p threads, do a p-way tiling of each tensor mode.

» Distributing the tiles allows us to eleminate the need for mutexes.
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Experimental setup

Implementation:

» SPLATT: the Surprisingly ParalleL spArse Tensor Toolkit.
» Written in C99 with OpenMP parallelism.

Benchmarks:

» COORD: a coordinate form representation.
» CSF-M: a single CSF representations with mutexes.
» CSF-T: a single tiled CSF representation.

» CSFx3: a separate, untiled CSF representation for each mode.
Machine configuration:

» Experiments performed on the Itasca-sb supercomputer at MSI.

» Nodes have two eight-core Intel processors (lvy Bridge).
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Storage comparison

Tiling overheads never exceed coordinate storage and offer significant
parallelism benefits.

T

I CSFx3 [@ COORD W CSF-M [EH CSF-Tl
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Tensor storage (GB)

10°

NELL-2 Beer Netflix Delicious NELL-1 Amazon
Dataset
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Serial MTTKRP

CSF variants achieve 1.5 — 6.0x speedup due to memory bandwidth

and operation reduction.
6 T T

I CSFx3 B CSF-M  — CSF-Tl

Speedup over COORD with 1 core

NELL-2 Beer Netflix Delicious NELL-1 Amazon
Dataset
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Parallel MTTKRP

CSFx3 and CSF-T achieve 10 — 55x speedup relative to serial
COORD.

60 T T T

B CSFx3 [ CSF-M [ CSF-T|

Speedup over COORD with 16 cores

NELL-2 Beer Netflix Delicious NELL-1 Amazon
Dataset
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Tensor reordering

We reorder the tensor to improve the access patterns on the factors.

3 3 2 2 ]
1 1
Xa) = 1 1 |2 2
- 3 3 —
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X' = 2 2 1 1
11

32 /71



Tensor reordering

Graph partitioning
» We model the sparsity structure of X with a tripartite graph.
» Slices are vertices, nonzeros connect slices with a triangle.
» Partitioning the graph finds regions with shared indices.

» We reorder the tensor to group indices in the same partition.

DO DO = | =
N = = =X
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Cache blocking over tensors

» Tiling lets us schedule nonzeros to reuse indices already in cache.

» Cost: more fibers.
» Tensor sparsity forces us to grow tiles.

» Cache tiles are not aligned, and thus do not let us parallelize over
any tensor mode like CSF-T.
» So, we return to CSFx3.
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Scaling NELL-2, speedup vs untiled

Optimizations result in small serial improvement and linear speedup.

16/| .- jdeal
e—e CSFx3

A—4 CSFx3+cache

Speedup relative to CSF-3

Cores
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Scaling Netflix, speedup vs untiled

Linear scalability is achieved on a two-socket NUMA system.

16| —

---  ideal
e—e CSFx3

&~—4 CSFx3+cache

Speedup relative to CSF-3
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MTTKRP communication

Non-zeros with shared indices contribute to the same MTTKRP
output, and are also used in later ALS steps.

A |

38/7



Coarse-grained decomposition

[Choi & Vishwanathan '14, Shin & Kang '14]

» Processes own complete slices of X and aligned factor rows.

» [/p rows communicated to p—1 processes after each update.

i

39 /71



Fine-grained decomposition

[Kaya & Ucar '15]

» Most flexible: non-zeros individually assigned to processes.

» Two communication steps:

1. Aggregate partial computations after MTTKRP.
2. Exchange the updated factor values (dual of step 1).

» Hypergraph partitioning is used to minimize communication:

» Non-zeros mapped to vertices.
» [+J+K hyperedges.
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Medium-grained decomposition

[Smith & Karypis '16]

» Distribute over a grid of p = gxrxs partitions.

> rxs processes divide each Ay,..., Ag.

» Two communication steps like fine-grained.
» O(I/p) rows communicated to rxs processes.
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Experimental setup

Benchmarks:

» DFacTo: a publicly available coarse-grained MPI code.
» coarse: SPLATT with coarse-grained decomposition.

» medium: SPLATT with medium-grained decomposition.

v

fine: SPLATT with fine-grained decomposition.
» PaToH used for hypergraph partitioning.
Machine configuration:

» All experiments performed on the ltasca supercomputer at MSI.

» Nodes have two quad-core Intel processors (Sandy Bridge).



Average comm. volume with 128 MPI ranks

» Fine-grained decompositions have low communication volume
when they are feasible.
» Exception: a 1D decomposition on the Netflix user mode.

Average Communication Volume
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Maximum comm. volume with 128 MPI ranks

Hypergraph partitioning does not guarantee a balanced

communication volume.

Volume relative to coarse-grained
= = N
=) «n =)

o
[

o
)

Maximum Communication Volume

Bl medium
Il fine

Netflix Delicious NELL Amazon Randoml Random2
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Strong scaling: Netflix

All methods scale to 512 cores (64 MPI ranks).

«~ -2 DFacTo *— medium *-x fine
102 X coarse -- ideal

Time per iteration

8 1|6 3|2 64 128 256 512 1024
Number of cores
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Strong scaling: Amazon

Only the medium-grained decomposition scales on the large and
sparse Amazon.

~-o DFacTo *—e medium -- ideal
102 X% coarse L

Time per iteration
=

o

>

=
o
o
T

10-1 . . .
64 128 256 512 1024

Number of cores
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Tensor completion: loss function

» Objective: predict missing entries of X.
» We only want to model observed entries (non-zeros).
» A least-squares objective would predict zeros!

» The objective is a combination of the predicition ability (the
loss) and regularization terms (to prevent overfitting).

minimize  L(X, A, B,C)+ A (J|A|[£ + [|B[& +[|C|[)

Vv
Loss Regularization



Challenges

Optimization algorithms

» Algorithms for matrix completion are relatively mature.
» How do they adapt to tensors?

» We must consider multiple properties when comparing
algorithms:

1. Number of operations.
2. Convergence rate.

3. Computational intensity.
4. Parallelism.

Tensor properties

» Most matrix optimization algorithms parallelize over the many
rows and columns (e.g., users and items).

» Many domains have a mix of short and long modes.
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Alternating least squares (ALS)

» Each row of A is a linear least squares problem.
H; is an |X(/,:,:)|x F matrix:

» X(i,j, k) — B(j,:) x C(k,:) (elementwise multiplication).
> A(i,) « (HTH; + D)7 HT vec(X (i1, ).

~"

normal eq. MTTKRP
» O(F?) work per non-zero.
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Alternating least squares (ALS)

» Normal equations N; = H/ H; are formed one non-zero at a time.

» H vec(X(i,:,:)) is similarly accumulated into a vector g;.

Algorithm 2 ALS: updating A(i,:)

: N,' <— OFXF, qj < 0FX1

. for (i,j, k) € X(i,:,:) do
x < B(j,:) x« C(k,:)
N, < N; —|—XTX
qi < qi + X (i,j, k)xT

end for

A(i,:) + (N; + )" Lg;

N RN




Shared-memory parallelism

[Shao "12]

> Least squares problems are solved in batches of size B = O(100).
» Each core independently accumulates N; and g;.
» Corresponding N; and g, are aggregated.

» Finally, the B inversions and updates are performed in parallel.

[Smith et al. '16]

» Storing multiple representations of X allows us to parallelize over
rows of A, B, and C.

» No parallel reductions or synchronization required.
» Each core only requires O(F?) intermediate storage for N;.

» If mode is short, use method of [Shao '12] with a single batch of
size equal to the dimension of that mode.



Level-3 BLAS formulation [Smith et al. '16]

» Element-wise computation is an outer product formulation.
» O(F?) work with O(F?) data per non-zero.

» Place (B(j,:) * C(k,:)) into rows of a thread-local matrix Z.
» When Z is full, do a rank-k update: N; < N; + Z2'z.

Algorithm 3 ALS: updating A(/,:)

1: N, 0°%F g0, Zz+0
2: for (i,j, k) € X(i,:,:) do

3 x < B(j,:) « C(k,:)

4 if Z is full then

5: N;«~N;+272,Z+0
6

7

8

9

end if
qi < gi + X(Iv./v k)XT
: end for
. N; <N, +2'Z
10: A(i,:) < (N; + )\I)_lq,-




Distributed-memory parallelism

» Communicating the normal equations is very expensive.

» O(IF?) data communicated per process.
» Use a coarse-grained decomposition.

» Each process owns all necessary non-zeros and only needs to

exchange the updated factor rows.

» If mode is short, just communicate the normal equations with an

all-to-all reduction.

A

i

54 /71



Stochastic gradient descent (SGD)

» Randomly select entry X (i,, k) and update rows of A, B, and
C.

» O(F) work per non-zero.

> 1) is the step size; typically O(1073).



SGD: stratification [Beutel '14]

» Strata identify independent blocks of non-zeros.

» Each stratum is processed in parallel.

|

Limitations of stratification:

» There is only as much parallelism as the smallest dimension.

» Sparsely populated strata are communication bound.
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Hybrid stratified /asynchronous SGD ([smith et al. '16]

» Limit the number of strata to reduce communication and handle
short modes.

» Assign multiple processes to the same stratum (called a team).

» Each performs updates on its own versions of the factors.

» At the end, the updates are exchanged among the team.
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Coordinate descent (CCD++)

» Rank-1 factors are updated in sequence.

» O(F) work per non-zero (same as SGD).

= (D
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CCD++ parallelism

Sijk — X (i, ], k) ZA f)B(j, f)C(k, f)

Qj <— Z 5ijk ./7 kaf))

X (i)

Bi+ Y (B(.NC(k f))’

X (i)

[Karlsson '15, Shin '15]

» Each entry of A(:, f) is computed in parallel.

» Distributing non-zeros requires «; and (3; to be aggregated.

» Communication volume is O(/F) per process.

> All 0jj are totally parallel - no communication needed.

59 / 71



Shared-memory parallelism with CSF [smith et al. '16]

» Column-wise methods require F passes over the sparse tensor.
» CCD++ requires a high memory bandwidth.

» CSF shrinks the memory footprint of the tensor and structures
memory accesses.

» Fewer operations and a reduced memory bandwidth.

Example: loss computation.

v A(i,:) xB(j,:),
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Distributed-memory parallelism

» A medium-grained decomposition limits communication volume
to the grid layers.

» For short modes, we use a grid dimension of 1 and fully replicate
the factor.
» Non-zeros are still distributed and processed in parallel.
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Experimental setup

» ALS, CCD++, and SGD are implemented as part of SPLATT.
» All experiments are on the Yahoo (KDD cup) tensor.
» All experiments performed on the Cori supercomputer at NERSC.

» Nodes have two sixteen-core Intel processors (Haswell).



Strong Scaling: rank 10

» SGD exhibits initial slowdown as strata teams are populated.
> All methods scale to (past) 1024 cores.

4.00 ,
= ALS
. @ ® ® SGD
2.000 . A-A CCD++

Time per epoch (s)
o =
(7] =)
=) =)

e
N
(4

0.12

°'°§2 64 128 256 512 1024
Number of cores
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Benchmarking: rank 10

» base-ALS and base-CCD++ from [Karlsson et al. '15] (C++
and MPI).
» ALS and CCD++ are 153x and 21x faster, respectively.

512.00
A-A base-ALS
A
256'00« B8 splatt-ALS
128.00} . A %-X base-CCD++
Kol AL *—% splatt-CCD++
64.00 T el

Time per epoch (s)

0.061 2 4 8 16 32 64 128 256 512 1024
Number of cores
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Convergence @ 1 core

» Convergence is detected if the RMSE was not improved after 20
epochs.

» SGD rapidly converges to a high quality solution.

== F10 ALS
=-= F40 ALS
+— F10 CCD++
x--+ FA40 CCD++
— F10 SGD

- F40 SGD

30} [ |:

N
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Validation RMSE
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Convergence @ 1024 cores

» Convergence is detected if the RMSE was not improved after 20
epochs.

» ALS and CCD++ converge similarly. ALS has a slight advantage.

F10 ALS
F40 ALS
F10 CCD++
F40 CCD++
F10 SGD
- F40 SGD

30t|:

N
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N
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N
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