Recent Advances in Recommender Systems and Future Directions

George Karypis

Department of Computer Science & Engineering University of Minnesota

OVERVIEW OF RECOMMENDER SYSTEMS

Recommender Systems

Recommender systems have emerged as a key enabling technology for ecommerce.

- Virtual experts that are keenly aware of a customer's preferences.
- They are used to filter vast amounts of data in order to identify information that is relevant to a user.

Data sources

- Information about the items:
 - Product descriptions, product specifications, article content, media attributes, etc.
- Information about the users:
 - Profile data such as demographic, social-economic, and behavioral information.
 - Social/trust networks; either implicit or explicit.
- Transactional information:
 - History of user-item purchases.
 - Product ratings, product reviews.
 - Implicit vs. explicit information.

Problems & approaches

Recommendation problems

- Rating prediction
 - Predict the rating that a user will give to a particular item.
- Top-N recommendation
 - Identify a set of items that the user will like.
- Cold-start recommendations
 - Compute recommendations for previously unseen users and/or items.
- Group recommendations
 - Compute recommendations that satisfy a group of users.
- Assortment recommendations
 - Recommend an automatically constructed assortment of items: e.g., vacation package, outfit, playlist.
- Context aware recommendations.

Recommendation approaches

- Non-personalized methods
 - Rule-based systems, popularity-based models, methods based on global models.
- Methods relying on a user's historical profile
 - Predictive models estimated using a user's individual preferences.
- Collaborative filtering methods
 - Approaches that leverage information from other users and items.

Collaborative Filtering (CF)

- Derives recommendations by exploiting the "wisdom of the crowd".
- It can be viewed as an instance of multi-task learning and transfer learning.
- It is the most prominent approach today:
 - Used by large, commercial e-commerce sites.
 - Well-understood, various algorithms and variations exist.
 - Applicable in many domains (book, movies, DVDs, ..).
 - It can operate both in a content agnostic and content aware setting.
 - It can handle both explicit and implicit preference information.

Overview of CF methods

- User-, item-, and graph-based neighborhood methods.
 - Lazy learners.
- Methods that use various machine learning approaches to learn a predictive model from historical data.
 - Latent-space models based on matrix/tensor completion.
 - Linear and non-linear multi-regression models.
 - Probabilistic models.
 - Auto-encoder-based neural networks.

—

Item-based nearest-neighbor (1)

	The Matrix	Titanic	Die Hard	Forrest Gump	Wall-E
John	5	1		2	2
Lucy	1	5	2	5	5
Eric	2	(?)	3	5	4
Diane	4	3	5	3	

Key assumptions:

- Items belong into (overlapping) groups that elicit similar likes/dislikes.
- Users' preferences remain stable and consistent over time.

The basic technique:

- Given Eric ("active user") and Titanic ("active item") that Eric has not yet seen.
- Find a set of items (nearest neighbors) that Eric already rated such that other users liked each of them in a similar fashion as they liked Titanic.
- Use Eric's ratings on these items to predict how much Eric will like Titanic.

For top-N, do this for every unrated item and return the N items with the highest predicted rating.

Item-based nearest-neighbor (2)

- Item-based methods pre-compute and store the *k* most similar other items for each item.
- The prediction scores are estimated using only those most similar items.

$$\hat{r}_{ui} = f(r_{u:}, s_{:i})$$
 (e.g., $\hat{r}_{ui} = r_{u:} s_{:i}$)

where

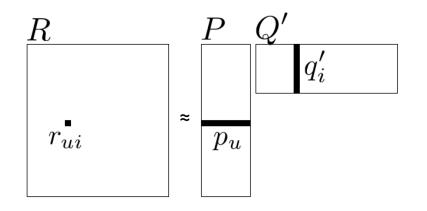
 $R \in \mathbb{R}^{n \times m}$ is the matrix of historical ratings and

 $S \in \mathbb{R}^{m \times m}$ is the *item-item* similarity matrix storing the k highest similarities along each row.

• Similarities: cosine, Jaccard, correlation coefficient, conditional probability, ...

Low-rank matrix approximation

The rating matrix can be approximated as the product of two low-rank matrices:

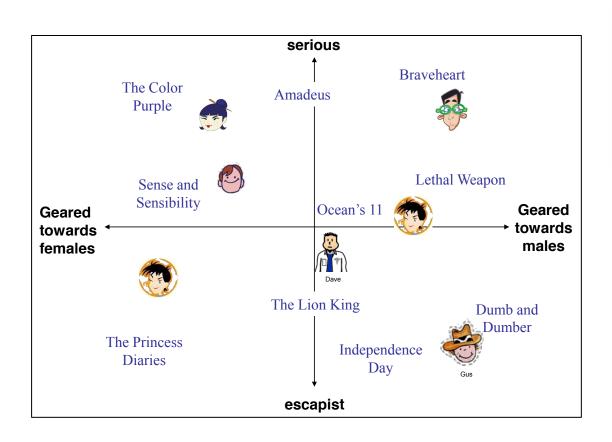


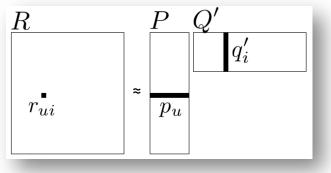
This low-rank decomposition can be used to compute the ratings for unseen items as:

$$\hat{r}_{ui} = p_u q_i'$$

Interpretation of latent factors

There is a low dimensional feature space (whose dimensionality is the rank of the decomposition) on which both users and items can be embedded in.





- The item vector can be thought of as capturing how much of each of the latent features the item possess.
- The user vector can be thought of as capturing the user's preference for these latent features.

Latent factors via matrix completion

• Estimate the latent factor matrices based only on the observed entries of the matrix.

Let Ω be the set of observed entries in the rating matrix R. The P and Q factors are estimated by solving the following optimization problem:

$$\underset{P,Q}{\text{minimize}} = \sum_{(u,i)\in\Omega} (r_{ui} - p_u q'_i)^2.$$

• This is a non-convex optimization problem and can converge to a local minima.

Improving accuracy of latent factor models

The performance of the rating prediction can be improved by

- Explicitly modeling global, user, and item biases
 - Biases: the baseline/expected ratings for all items by all users, for the items rated by a user, and for the users for a given item.
- Reducing model over-fitting via regularization:

$$\underset{P,Q,\mu,b_*}{\text{minimize}} = \sum_{(u,i)\in\Omega} (r_{ui} - \mu - b_u - b_i - p_u q_i')^2 + \lambda(\mu + ||b_*||_2^2 + ||P||_F^2 + ||Q||_F^2).$$

The estimated rating for user u on item i is given by:

$$\hat{r}_{ui} = \mu + b_u + b_i + pq'.$$

Recent trends

- The boundaries between traditional neighbor and latent factor models have become less separated.
- Neighbor schemes rely on the latent space to compute item-item similarities.

$$R \approx PQ', \quad \operatorname{sim}(i,j) = q_i q'_j.$$

 Latent factorization methods rely on similar items to derive a latent representation of a user.

$$\hat{r}_{ui} = \mu + b_u + b_i + \left(\frac{1}{|\mathcal{U}|^{\alpha}} \sum_{j \in \mathcal{U}} r_{ui} q_j\right) q'_i.$$

A SMALL DETOUR

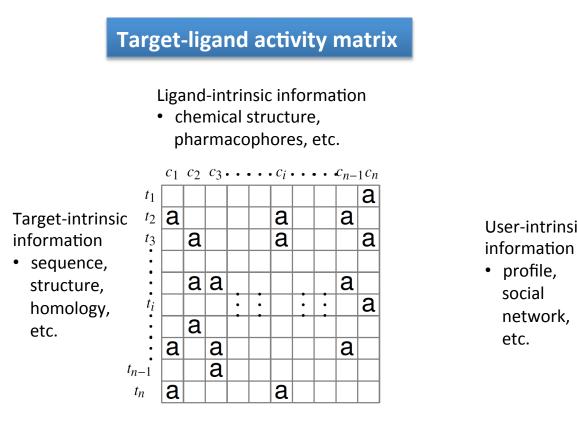
Chemical genetics (genomics)

Chemical Genetics (Genomics): The research field that is designed to discover and synthesize protein-binding small organic molecules that can alter the function of all the proteins and use them to study biological systems.

(National Institute of General Medical Sciences)

- Chemical genetics is a promising approach for studying biological systems.
- It has a number of key advantages over approaches based on molecular genetics:
 - small molecules can work rapidly,
 - their action is reversible,
 - can modulate single functions of multi-function proteins,
 - can disrupt protein-protein interactions, and
 - if the target is pharmaceutical relevant, it can lead to the discovery of new drugs.

RS & CG – Data similarities



Activity information

• IC50, dose-response, etc.

User-item rating matrix

Item-intrinsic information

• descriptions, content, specification, attributes, etc.

i_n

r

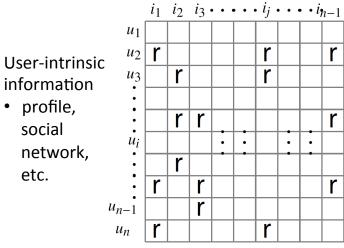
r

r

r

r

r

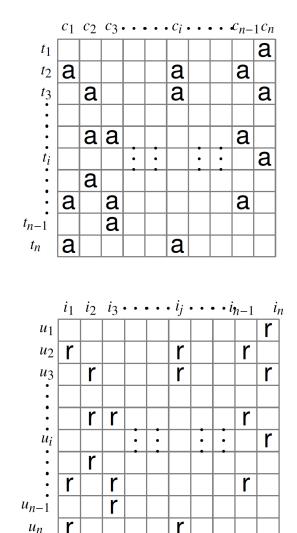


Transaction information

• rating, view, review, etc.

RS & CG – Similar problems

- Activity prediction => Rating prediction
- Secondary screening library design => Top-N recommendation
- Library design for a novel target => Cold-start recommendation
- De novo compound design => Assortment recommendation



 u_n

RS & CG – Similar principles

- Ligand binding is a process that involves:
 - Structure of protein's binding site and the structure of the ligand.
 - Non-covalent interactions between the atoms of the protein's binding site and that of the ligand.
- As a result:
 - The same ligand will bind to similar targets.
 - Similar ligands will bind to the same target.
 - Similar ligands will bind to similar targets.

• These are the same principles and assumptions behind recommender systems.

RS & CG – Similar methods

- Target-specific Structure-Activity Relationship (SAR) models.
 - The biological activity of a chemical compound is mathematically expressed as a function of its chemical structure.
- Chemogenomic approaches.
 - Proteins of the same family tend to bind to ligands with certain common characteristics.
- Multi-task learning approaches.
 - Models that estimate relations between protein- and ligand-derived features.

- Personalized content-based recommender systems.
 - The user's past transactions are used to derive content-based models for like/dislike prediction.
- Cluster-based recommender systems.
 - Content-based models for similar groups of users.
- Collaborative filtering approaches with side information.

RECENT DEVELOPMENTS IN ITEM-BASED APPROACHES

Estimating the similarity matrix

Goal:

Instead of using a pre-determined function to compute the item-item similarities, "learn" them directly from the data.

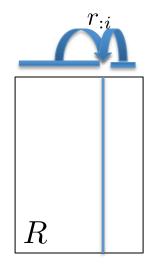
Learning problem formulation:

Estimate a linear model to predict each item based on the historical information of the other items.

Let w_i be the linear model for item i, let $R_{\neg i}$ be the $n \times (m-1)$ sub-matrix of R obtained by removing column i (i.e., the historical information for item i), and let $r_{:i}$ be the ith column of R. The w_i is estimated as:

$$\operatorname{minimize}_{w_i} \left(\frac{1}{2} ||r_{:i} - R_{\neg i} w_i||^2 + \operatorname{reg}(w_i) \right).$$

This model becomes the ith column of the item-item similarity matrix S.



SLIM – Sparse Linear Method

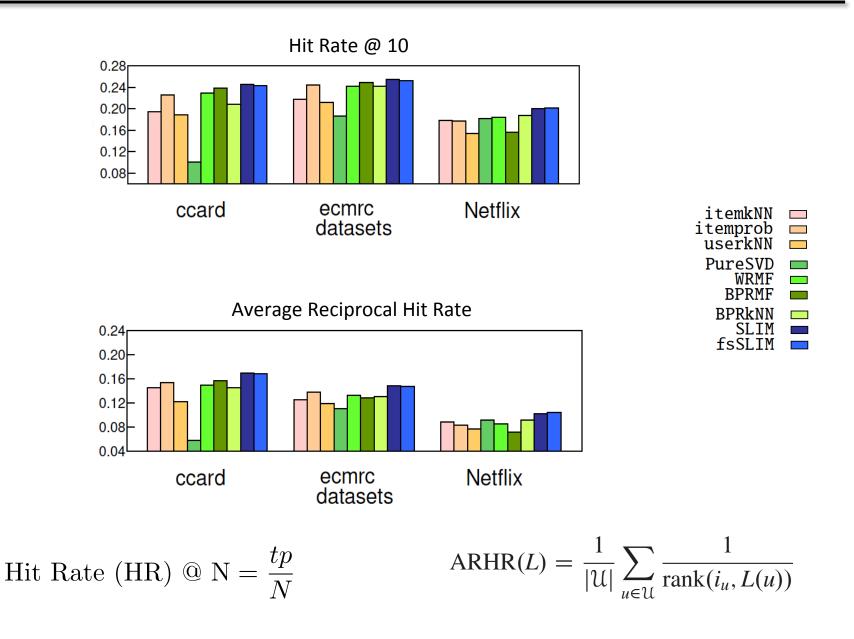
• The model (S) is estimated as:

 $\begin{array}{ll} \mbox{minimize} & \mbox{$\frac{1}{2}$}||R-RS||_F^2 + \frac{\beta}{2}||S||_F^2 + \lambda ||S||_1 \\ \mbox{subject to} & S \geq 0 \\ & \mbox{diag}(S) = 0 \end{array}$

This is a Structural Equation Model (SEM) with no exogenous variables. It can also be viewed as a network inference model.

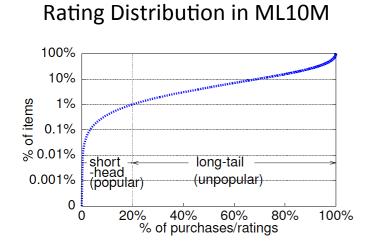
- Good performance is often achieved with 50-200 non-zeros per column.
 - Low storage requirements and low recommendation time.
- The model can be estimated efficiently:
 - Each column of *S* can be computed independently.
 - The solution of a column can "warm start" other similar columns.
 - Regularization space can be explored efficiently.
 - Item neighbors can be used for initial "feature" selection and restrict sparsity structure.

SLIM – Performance

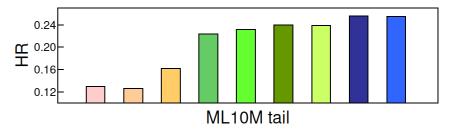


24

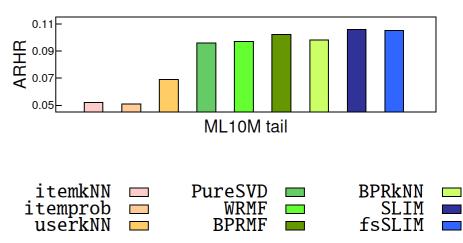
SLIM – Long-tail performance



HR@10 in ML10M Long Tail



ARHR in ML10M Long Tail



SLIM extensions

$$\begin{array}{ll} \underset{S}{\text{minimize}} & \frac{1}{2}||R-RS||_{F}^{2}+\frac{\beta}{2}||S||_{F}^{2}+\lambda||S||_{1}\\ \text{subject to} & S\geq 0\\ & \text{diag}(S)=0 \end{array}$$

- Low-rank constraints on *S* as an alternate way to control model complexity.
 - Either via the product of two low rank matrices or by minimizing the nuclear norm of S.
- Incorporation of item side information.
- Incorporation of different contexts.
- Incorporation of temporal information.
- Higher-order regression models.
- Fusion of global and local SLIM models.

Factored similarity matrix

- SLIM (and traditional item-item approaches) cannot compute/learn relations between pairs of items that are not co-rated.
 - The estimated similarities for such pair of items will always be 0.
- They cannot produce meaningful recommendations that rely on transitivity within the item-item similarity graph.
- Can lead to poor recommendations, especially for sparser datasets, in which there are few pairs of co-rated items.

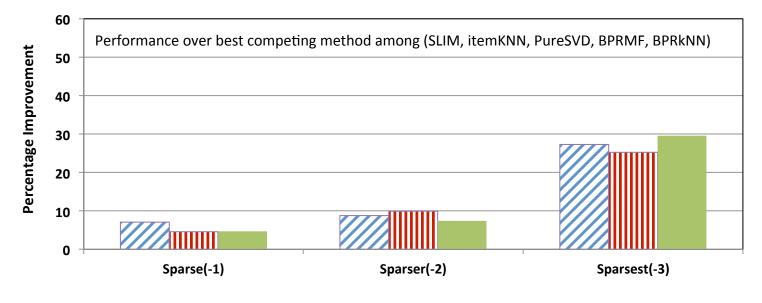
_	($r_{:}$	
R			

FISM – Factored SLIM

$$\underset{P,Q}{\text{minimize}} \left(\frac{1}{2} ||R - RPQ^T||_F^2 + \frac{\beta}{2} (||P||_F^2 + ||Q||_F^2) \right)$$

$$\hat{r}_{ui} = \sum_{j \in \mathcal{R}_u} r_{uj} p_j q_i^T$$

Since the overall problem is not convex, optimization and search over the regularization space becomes considerably more expensive. Scalable approaches rely on SGD.



Learning from higher-order relations

• If a customer buys a certain group of items, they are more (or less) likely to buy some other items.

- The joint distribution of a set of items can be different from the distributions of the individual items in the set.
- Higher order models are needed to capture such relations.

HOSLIM—Higher-order SLIM

- Key Idea: Use frequent itemsets to capture higher order relations.
- Two-step approach:
 - Given a user-item purchase matrix *R*, find all frequent itemsets and create a user-itemset matrix *R^f*.
 - Learn two similarity matrices S and S^f that capture item-item and itemset-item relations.
- Predict new items by combining information from *S* and *S*^{*f*}.

Model estimation:

$$\underset{S}{\text{minimize}} \quad \frac{1}{2}||R - RS - R^{f}S^{f}||_{F}^{2} + \frac{\beta}{2}(||S||_{F}^{2} + ||S^{f}||_{F}^{2}) + \lambda(||S||_{1} + ||S^{f}||_{1})$$

subject to $S \ge 0, \ S^f \ge 0,$ diag(S) = 0, and $s_{ji}^f = 0$ for $i \in \mathcal{I}_j$

Prediction: $\hat{r}_{ui} = r_{u:} s_{:i} + r_{u:}^f s_{:i}^f$

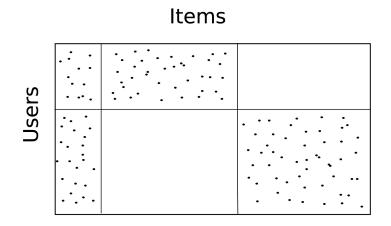
HOSLIM performance

	SLIM models				
	SLIM	HOSLIM	Improved		
Dataset	HR	HR	%		
groceries	0.259	0.338	32.03		
synthetic	0.733	0.860	17.33		
delicious	0.148	0.156	5.41		
ml	0.338	0.349	3.25		
retail	0.310	0.317	2.26		
bms-pos	0.502	0.509	1.39		
bms1	0.588	0.594	1.02		
ctlg3	0.581	0.582	0.17		

Considerable gains can be obtained for datasets that have such characteristics.

One model does not fit all

- In item-based methods, personalization occurs based on the items that the user has previously acted on.
 - The "recommendations" that these items trigger are not specific to each user but are global.

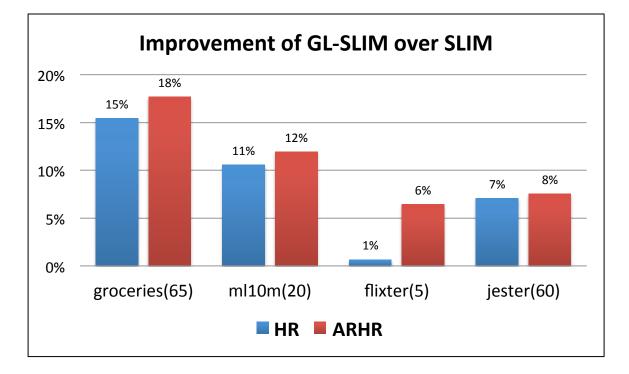


• Better performance can potentially be achieved by having user-specific item-based models.

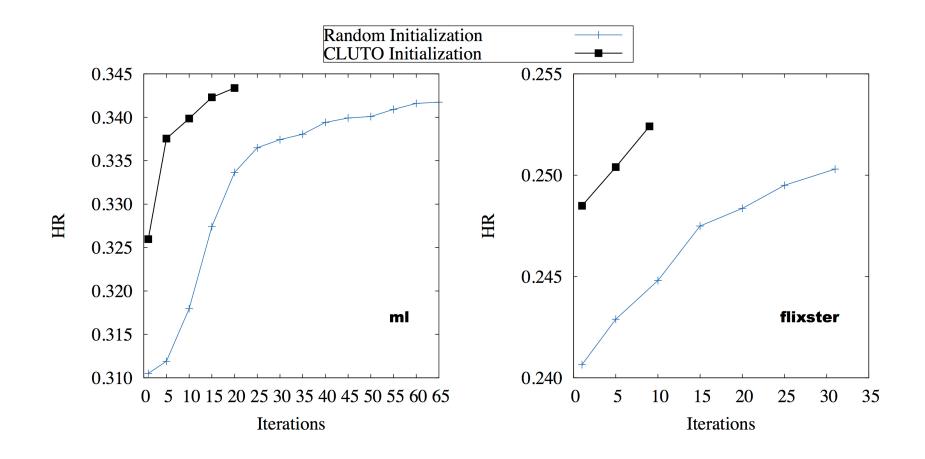
GLSLIM – Fusion of global and local SLIM models

Optimized using alternate optimization between solving for the various SLIM models and solving for the clustering and user membership.

GLSLIM – Fusion of global and local SLIM models



GLSLIM – Fusion of global and local SLIM models



Smart initialization reduces the number of iterations but does not significantly impact the final solution.

WRAPPING UP

Current state of the art

- Rating prediction
 - Factorization-based approaches are highly effective:
 - Good prediction performance, fast training time, they can incorporate side information, diverse objectives, etc.
- Top-N recommendation methods
 - No clear winning strategy has emerged.
 - Item-based methods outperform significantly more sophisticated methods.
 - There is significant ongoing research on ranking loss functions.

Scaling up

- Estimate only item factors from a subset of users & compute user factors on the fly.
- Warm-start the search over the regularization space:
 - For MF use SVD to eliminate bad local minima.
 - For SLIM use previous solutions and/or solutions for similar items.
- Sample the users. The goal is to get a reliable set of item-based models:
 - Item factors or item-item models.

Future directions

- Deep personalization
 - Context, location, time, etc.
- Behavior steering
 - Acquiring taste, modeling state, future benefits, etc.
- Content creation
 - Package recommendation, article generation, etc.
- Live evaluations
 - Open A/B testing platforms.

Final words...

- Recommender systems have extensive applications.
 - Both commercial, scientific, and societal applications.
- There are already high-quality software implementations of many of these algorithms.
 - They can be used as is, or used to quickly experiment with new modeling approaches and data sources.
- Multi-task learning underlies many of the learning methods.
 - A very active area of research with broad applications.
- The field is ripe for new methodological advances that will get us to the next level.

Acknowledgments

Students (current & former)

- Xia Ning
- Evangelia Christakopoulou
- Santosh Kabbur
- Asmaa El Badrawy
- Agoritsa Polyzou

Funding

• NSF, ARO, NIH, PayPal, Samsung, Intel.

References:

Recommender Systems Handbook, 2015 <u>http://www.springer.com/us/book/9781489976369</u> Papers at

http://www.cs.umn.edu/~karypis

