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Integration In  one dimension

What is the area under the curve between 0 and 1?

Approximation:

4+

0
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

AREA = sum of the areas of the 8 rectangles

& height = curve values at the dots

_ 1
s width = —
8

We get a better approximation with more rectangles
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Integration in two dimensions

What is the volume under the surface for x and y between 0 and 17

20 ..

10 -Log

—_

Approximation:
VOLUME = sum of the volumes of the 8 X 8 = 64 rectangular prisms

& height = surface values at the dots
1 1 1

& basearea= — X — = —
8 8 64

Frances Kuo @ UNSW Australia p.3



Integration in two dimensions

Looking straight down at the xy-plane... we see a grid structure:

Approximation:

VOLUME = average of the surface values at the 8 X 8 = 64 dots

We get a better approximation with finer grids...

82 dots — k? dots
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Integration in s dimensions

Integral in high dimensions = “hyper volume” plot 2??

Example: Collateralized Mortgage Obligations

— a 30-year mortgage with monthly repayment calculations
s =30 X 12 = 360

Approximation by product grids:

s k2 points in the unit square

s k* points in the unit cube

& k? points in the “hyper cube”
0 1
A product rule with 64 points

(2D illustration)

s =360, k =2 = 2°%0 s astronomical (22° =~ one million)

We need to stay away from product grids in high dimensions
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Monte Carlo methods

Integral

~ average of function values at random points in the hyper cube

drawbacks: big gaps, clusters, slow convergence
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(2D illustrations)
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Quasi- Monte Carlo methods

Integral

~ average of function values at deterministically chosen points
In the hyper cube

advantages. more uniform than random, faster convergence

Family 1: lattice rules
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Quasi- Monte Carlo methods

Family 2: digital nets

It is all about having the right number of points in various subdivisions.

2D Example: we want to place 4 points in the unit square so that there is

exactly one point in each of the 4 rectangles of the same shape and size,
given by the three possible subdivisions:

Frances Kuo @ UNSW Australia p.8
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Quasi- Monte Carlo methods

Family 2: digital nets

It is all about having the right number of points in various subdivisions.

2D Exercise: draw a “(1, 4, 2)-net in base 2”, that is, we want to place

16 points in the unit square so that there are exactly 2 points in each

of the 8 rectangles of the same shape and size, given by the four
possible subdivisions:

1
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1
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Scrambling
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High dimensional numerical integration
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A product rule with 64 points A sparse grid with 49 points
If £(y) = y1 then the error of product rule is O(k~1) = O(n~1/%)
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First 64 points of a

64 random points 2D Sobol’ sequence

A lattice rule with 64 points
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MC v.s. QMC In the unit cube

Monte Carlo method
t; random uniform

n~'/2 convergence

order of variables irrelevant
1 °

64 random points

Frances Kuo @ UNSW Australia

1 n
d ~ — i
/W fw)dy ~ — ; £(t:)

Quasi-Monte Carlo methods
t; deterministic

close to n~! convergence or better

more effective for earlier variables and lower-order projections
order of variables very important
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First 64 points of a
2D Sobol’ sequence

use randomized QMC methods for error estimation

A lattice rule with 64 points
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QMC

Two main families of QMC methods:
& (t,m,s)-nets and (t,s)-sequences
& lattice rules

Niederreiter book (1992)
Sloan and Joe book (1994)

Dick and Pillichshammer book (2010)
Dick, K., Sloan Acta Numerica (2013)

(CBC) construction , “fast” CBC
Nuyens and Cools (2006)

Important developments:
& component-by-component
& higher order digital nets

Dick (2008)
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First 64 points of a
2D Sobol’ sequence

Having the right number of (0,6,2)-net

points in various sub-cubes
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A group under addition modulo Z
and includes the integer points



Lattice rules

Rank-1 lattice rules have points

z € 7° — the generating vector, with all components coprime to n

frac(-) — means to take the fractional part of all components

~ quality determined by the choice of z ~

n =64 z=(1,19) t; = frac (614(1, 19))

Frances Kuo @ UNSW Australia
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Randomly shifted lattice rules

Shifted rank-1 lattice rules have points

)
ti:frac(—z—l—A), 1=1,2,...,n
n

A € [0,1)® — the shift

~ use a number of random shifts for error estimation ~
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Component-by-component construction

® Want to find z for which some error criterion is as small as possible
~ Exhaustive search is practically impossible - too many choices! ~

® CBC algorithm [Korobov (1959); Sloan, Reztsov (2002); Sloan, K., Joe (2002),...]

1. Setz; = 1.

2. With z4 fixed, choose z5 to minimize the error criterion in 2D.

3. With z4, z5 fixed, choose z3 to minimize the error criterion in 3D.
4.

etc.
[K. (2003): Dick (2004)]

® Optimal rate of convergence @ (n~11%) in “weighted Sobolev space”,
Independently of s under an appropriate condition on the weights

~ Averaging argument: there is always one choice as good as average! ~

[Nuyens, Cools (2006)]
® Cost of algorithm for “product weights” is O(n log n s) using FFT

[Hickernell, Hong, LEcuyer, Lemieux (2000); Hickernell, Niederreiter (2003)]

® Extensible/embedded variants [Cools, K., Nuyens (2006)]
[Dick, Pillichshammer, Waterhouse (2007)]

http:// peopl e.cs. kul euven. be/ ~di r k. nuyens/ f ast - cbc/
http://peopl e.cs. kul euven. be/ ~di r k. nuyens/ gnt- gener at or s/
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http://people.cs.kuleuven.be/~dirk.nuyens/fast-cbc/
http://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/

Fast CBC construction

Natural ordering of the indices Generator ordering of the indices

Matrix-vector multiplication with a circulant matrix can be done using FFT

Images by Dirk Nuyens, KU Leuven

Frances Kuo @ UNSW Australia
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Fast CBC construction

n =128 = 27

[1 Natural ordering of the indices [  Symmetric reduction after application
S of Bs kernel function
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[0 Grouping on divisors [1 Generator ordering of the indices

Images by Dirk Nuyens, KU Leuven
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Setting 1: standard QMC for unit cube

®» \Worst case error bound
1 n
| fway- > s
[0’1]8 n =1

® Weighted Sobolev space [Sloan, Wozniakowski (1998)]

ol f
= S Gy @)
uC{l S} 714 0 1]|u| yu

< et t) (1]

dy.

“anchor” at 0 (also “unanchored”)
welghts Mixed first derivatives are square integrable
Small weight ~,, means that f depends weakly on the variables y,,

2% subsets

® Pair with randomly shifted lattice rules

®» Choose weights to minimize the error bound [K., Schwab, Sloan (2012)]
1/(2)) b 1/2 MREVICEEN
S Y v > ) == ()
M C{1:s} wC{1:s} ¥ Gy

\ . s G 7
-~ ~

bound on worst case error (CBC) bound on norm

® Construct points (CBC) to minimize the worst case error
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Setting 2: QMC integration over R”

® Change of variables

[ 5@ [Towpdy=[ @ @)aw

,1]°

» Norm with Weight function [Wasilkowski, Wozniakowski (2000)]

[K., Sloan, Wasilkowski, Waterhouse (2010); Nichols, K. (2014)]

® Pair with randomly shifted lattice rules

Frances Kuo @ UNSW Australia p.20



Setting 3: smooth integrands in the cube

® Norm involving higher order mixed derivatives

® Pair with higher order digital nets [Dick (2008)]

» Classical polynomial lattice rule [Niederreiter (1992)]
& n = b"™ points with prime b
& An irreducible polynomial with degree m
& A generating vector of s polynomials with degree < m

# |Interlaced polynomial lattice rule [Goda, Dick (2012)]

& Interlacing factor «
& An irreducible polynomial with degree m
& A generating vector of as polynomials with degree < m
& Digit interlacing function Z,, : [0,1)® — [0, 1)
(0.z11T12T13 ** * )b, (02122223« * )by « ooy (0.Za1Ta2Za3 )b

becomes (0.x11®21 -+ * Ta1T12T22 * * * Loy T13L23 " Tag *** )b

Frances Kuo @ UNSW Australia p.21



Properties of higher order digital nets

16 points obtained from a 4D Sobol’ sequence with interlacing factor 2:

Each rectangle contains exactly 2 points.

Frances Kuo @ UNSW Australia



Properties of higher order digital nets

16 points obtained from a 4D Sobol’ sequence with interlacing factor 2:

............................................

The shaded area contains exactly 2 points.
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Properties of higher order digital nets

16 points obtained from a 4D Sobol’ sequence with interlacing factor 2:

The shaded area contains exactly 2 points.

Frances Kuo @ UNSW Australia
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Properties of higher order digital nets

16 points obtained from a 4D Sobol’ sequence with interlacing factor 2:

The shaded area contains exactly half of the points.

Frances Kuo @ UNSW Australia



Projections of higher order digital nets
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Images by Dirk Nuyens, KU Leuven
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Application 1. QMC for option pricing

Path-dependent option [Giles, K., Sloan, Waterhouse (2008)]
s TE 1
/ max <1 Z Sj(z) — K, O) exp(— )
RS 51 \/(271')3 det(E) ¥
- Write = = AA" G
= f(y ¢nor (y;) dy ©
/Rs w) 3-1;[1 (v3) Sub. z = Ay :
= g('w) dw Sub. Yy = (ﬁ;i)r(w) @
[0,1]®

® In the cube, g is unbounded and has a kink

® ANOVA decomposition: f(y) = >, cg1.s3 fu(¥u)

» All f, with u £ {1 : s} are smooth under BB
[Griebel, K., Sloan (2010, 2013, 2016)]

$» Smoothing by preintegration [Griewank, Ledvey, K., Sloan (in progress)]
(Pof)(y) = / f(y) Pnor (yr) dyr, 1S SMOOth for some choice of k
R
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Application 2: QMC for maximum likelihood

Generalized linear mixed model [K., Dunsmuir, Sloan, Wand, Womersley (2008)]

/ < ﬁ exp(m; (B + z5) — eﬁ+zﬂ')> exp(—z2z'x~1 )
RS

j=1 A v (27r)3 dei(®)
Z Re-center and re-scale, and multiply and divide by ¢
= | f@ ]] o(y;) ay A
e j=1 Sub. z = A_ly Tz cf. importance sampling
— g(w) dw Sub. y = & (w)
[0,1]#

5
o °
0.2

T 04

\\/

no re-centering (Worst) no re-écaling (bad) ¢norma| (good) qblogistié (better) qutudént-t (best)

® |nthe cube, g and/or its derivatives are unbounded

: : s [K., Sloan, Wasilkowski, Waterhouse (2010)]
® New weighted space setting over R INichols, K. (2014)]

® Differentiate f to estimate the norm [Sinescu, K., Sloan (2013)]
Frances Kuo @ UNSW Australia p.25



AppI|Cat|On 3: QMC fOI’ PDES with random coefft.

Uncertainty in groundwater flow

eg. risk analysis of radwaste disposal or CO, sequestration

Darcy’s law q+aVp = K

mass conservationlaw VY °'4 =0

Uncertainty in a(x,w) leads to uncertainty in g(x,w) and p(z,w)

Frances Kuo @ UNSW Australia p.26



Apphca.“()n 3: QMC fOI’ PDES with random coefft.

To compute the expected value of some quantity of interest:

1. Generate a number of realizations of the random field
(Some approximation may be required)

2. For each realization, solve the PDE using e.g. FEM / FVM / mFEM
3. Take the average of all solutions from different realizations

This describes Monte Carlo simulation.

Example : particle dispersion

op _
on 0
p=1 p=20
release point — ¢
—@
op _
on 0

Frances Kuo @ UNSW Australia p.27



App|lcatlon 3: QMC fOI’ PDES with random coefft.

To compute the expected value of some quantity of interest:

1. Generate a number of realizations of the random field
(Some approximation may be required)

2. For each realization, solve the PDE using e.g. FEM / FVM / mFEM
3. Take the average of all solutions from different realizations

This describes Monte Carlo simulation.

NOTE: expected value = (high dimensional) integral

10" . - - — use quasi-Monte Carlo methods

error

s = stochastic dimension
SEE PART 2

Frances Kuo @ UNSW Australia p.28



Summary of Part 1

®» OMC methods are equal-weight quadrature rules over the unit cube

o

o o o o

Transformation to the unit cube plays a crucial role (also for MC and SG)
Better convergence rates than MC (also higher order)

Good for earlier variables and lower-order projections

Ordering the variables is very important

Randomized QMC.:

unbiased, simple error estimation, good convergence rate

®» QMC error bound can be independent of dimension

®» OQMC analysis: weighted spaces, fast CBC construction

Frances Kuo @ UNSW Australia p.29
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