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Linear elasticity

Given the load f : Ω→ Rn, find the displacement u : Ω→ Rn and
the stress σ : Ω→ Sn satisfying the constitutive equation

σ = C ε u,
sym grad

elasticity tensor is SPD from Sn → Sn

the equilibrium equation

−div σ = f ,

and boundary conditions like u = g on Γd, σn = t on Γt.
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Displacement formulation

Eliminating σ we get the displacement equation

−div C ε u = f , u = 0 on ∂Ω

Multiplying by a test vector field and integrating over Ω by parts we
get the weak form: u ∈ H̊1(Ω; Rn) satisfies

B(u, v) :=
∫

Ω
C ε u : ε v dx =

∫
Ω

f · v dx ∀v ∈ H̊1(Ω; Rn)

This is the Euler–Lagrange equation of a minimization:

u = arg min
u∈H̊1(Ω;Rn)

[
1
2

B(u, u)− (f , u)],

the variational form.
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Finite element method

The discrete solution uh is determined by Galerkin’s method using a
finite element subspace Vh of H̊1: uh ∈ Vh satisfies

B(uh, v) = (f , v) ∀v ∈ Vh

Equivalently uh minimizes the energy over Vh.

Korn’s inequality says that the bilinear form is coercive over H̊1:

B(u, u) ≥ γ‖u‖2
1.

It follows that for any choice of Vh Galerkin’s method is stable and so
quasioptimal:

‖u− uh‖1 ≤ ‖B‖γ−1 inf
v∈Vh
‖u− v‖1.
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Dual variational principles

Finite elements based on the dual variational principle were
advocated from the dawn of finite elements (Fraeijs de Veubeke ’65).

Primal variational form

u = arg min
u∈H̊1(Ω;Rn)

[
1
2
(C ε u, ε u)− (f , u)]

Dual variational form

σ = arg min
σ∈H(div;Sn)
−div σ=f

1
2
(Aσ, σ)

A = C
−1

It is not practical to find finite element subspaces that satisfy the constraint
−div σ = f , so we use a Lagrange multiplier:

(σ, u) = arg crit
σ∈H(div;Sn)
u∈L2(Ω;Rn)

[
1
2
(Aσ, σ) + (u, div σ + f )]

Hellinger–

Reissner

A := C−1
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The saddle-point problem

(σ, u) = arg crit
σ∈H(div;Sn)
u∈L2(Ω;Rn)

[
1
2
(Aσ, σ) + (u, div σ + f )︸ ︷︷ ︸

L(σ,u)

]

Weak formulation: Find (σ, u) ∈ H(div, Sn)× L2(Ω; Rn) s.t.

(Aσ, τ) + (u, div τ) = 0 ∀τ ∈ H(div, Sn),

(div σ, v) = −(f , v) ∀v ∈ L2(Ω; Rn)

Euler–Lagrange equations: Aσ− ε u = 0, −div σ = f .
Lagrange multiplier is the displacement.
Critical point is a saddle point:

L(σ, v) ≤ L(σ, u) ≤ L(τ, v) ∀σ ∈ H(div, Sn), v ∈ L2(Ω; Rn)

Displacement boundary conditions are natural, not essential.
The bilinear form
B(σ, u; τ, v) = (Aσ, τ) + (u, div τ) + (div σ, v)

is symmetric, but not coercive.
(
A B∗
B 0

)
Finding stable finite elements is a major challenge.
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A motivation: Poisson locking

P1 Lagrange, 88,374 triangles, dim Vh = 89, 972, E = 10, ν = 0.2

P1 Lagrange, 88,374 triangles, dim Vh = 89, 972, E = 10, ν = 0.4999
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Mixed methods are robust

Displacement method, Lagrange P1 Mixed method, lowest order AFW

Detail of stress computed for ν = 0.4999

The method does not lose H1 stability as ν ↑ 0.5.
The problem is that C→ ∞, even though A has a perfectly nice limit.

Other issues with the displacement approach: thin domains, rough
coefficients, loss of accuracy for σ, inapplicability to some materials, . . .
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Mixed formulations for various problems

Aσ + B∗u = f Bσ = g

elasticity Aσ− ε u = 0 −div σ = f

Stokes −∆u + grad p = f div u = 0

Poisson eq u− grad p = 0 −div u = f

Poisson-like Au− grad p = 0 −div u + αp = f

biharmonic σ− grad grad u = 0 div div σ = f
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Brezzi’s theorem

Let a : V×V → R and b : V×W → R be bdd bilinear forms
on H-spaces. Define Z = { v ∈ V | b(v, w) = 0 ∀w ∈ W }.
Suppose that there exist γ1, γ2 > 0 such that

B1: a(z, z) ≥ γ1‖z‖2
V ∀z ∈ Z

B2: ∀w ∈ W ∃0 6= v ∈ V s.t. b(v, w) ≥ γ2‖v‖V‖w‖W

coercivity over kernel

inf-sup
condition

Then, for any F ∈ V∗, G ∈ W∗, ∃! u ∈ V, p ∈ W such that

a(u, v) + b(v, p) = F(v), ∀v ∈ V,
b(u, q) = G(q), ∀q ∈ q ∈ W.

(A B∗

B 0

)(u
p

)
=

(
F
G

)

Moreover,
‖u‖V + ‖p‖W ≤ c(‖F‖∗V + ‖G‖∗W)

with c depending only on γ1, γ2, and ‖a‖.
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Proof of Brezzi’s theorem

We want to show that
(
A B∗
B 0

)
: V×W → V∗ ×W∗ is invertible,

where A : V → V∗, B : V → W∗ are the linear ops associated to a and b.

If we decompose V = Z⊕ Z⊥ the big operator becomesAZZ AZ⊥ 0
A⊥Z A⊥⊥ B∗⊥

0 B⊥ 0

 : Z× Z⊥ ×W → Z∗ × Z⊥∗ ×W∗.

B1 implies that AZZ is invertible, and B2 implies that B⊥ is invertible.
Therefore B∗⊥ is invertible as well.

Move the last column to the first and interchange the first two rows,
so the operator becomesB∗⊥ A⊥Z A⊥⊥

0 AZZ AZ⊥
0 0 B⊥

 : W× Z× Z⊥ → Z⊥∗ × Z∗ ×W∗.

Triangular with invertible diagonal elements =⇒ invertible.
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Discretization

Now suppose we do Galerkin’s method with Vh ⊂ V and Wh ⊂ W.

In order to insure that the discrete system is nonsingular we need
Brezzi’s B1 and B2 on the discrete level. For stability we need that the
constants γ1 and γ2 do not degenerate with h.

Define Zh = { v ∈ Vh | b(v, w) = 0 ∀w ∈ Wh }.
Suppose that there exist γ1, γ2 > 0 independent of h such that

B1h: a(z, z) ≥ γ1‖z‖2
V ∀z ∈ Zh

B2h: ∀w ∈ Wh ∃0 6= v ∈ Vh s.t. b(v, w) ≥ γ2‖v‖V‖w‖W

Then ∃! uh ∈ Vh, ph ∈ Wh solving the Galerkin equations. Moreover,

‖u− uh‖V + ‖p− ph‖W ≤ c
(

inf
v∈Vh
‖u− v‖V + inf

q∈Wh
‖p− q‖W

)
.

starting point for other estimates . . .
12 / 20



The rub: finding stable elements

The greatest difficulty will often be the verification of
the abstract hypotheses proposed here.

– F. Brezzi, RAIRO 8(2) 1974

B1 and B2 are in opposition, and generally not easy to satisfy
simultaneously. Naive choices of elements for mixed formulations
are rarely stable.

Things are easier, though not easy, if the bilinear form a is coercive
over all of V, since then it is coercive over Zh with the same constant,
and any choice of spaces satisfies B1. The main example of this
situation is the Stokes system.
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2D Stokes elements: naive elements are unstable

u ∈ H1(Ω; R2) p ∈ L2(Ω)

P1–P1 singular!

P1–P0 unstable!

P2–Pd
1

unstable except for special
meshes

pressure from P2–Pd
1

uniform mesh of 7,024 elements
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Stable 2D Stokes elements

P2–P0 P2 bubble–Pd
1

MINI Taylor–Hood

pressure from P2 bubble–Pd
1

uniform mesh of 7,024 elements
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Mixed Laplacian (=elasticity) in 1D

u− p′ = 0, −u′ = f on (−1, 1)

B(u, p; v, q) :=
∫ 1

−1
(u v+ p v′ + u′q) dx = −

∫ 1

−1
f q dx ∀v ∈ H1, q ∈ L2

H(div) in 1D

P1-P1: singular P1-P0: stable! P2-P0: unstable!
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Mixed Laplacian (Darcy flow) in 2D computed with P1-P0

u =
k
µ

grad p, div u = f

unstable!

pressure field
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Darcy flow computed with Raviart–Thomas elements

Velocity shape functions: V(T) = { (a1 + bx1, a2 + bx2) | a1, a2, b ∈ R }

Degrees of freedom: u 7→
∫

e u · n

stable

Vh × Sh ⊂ H(div)× L2

pressure field
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Higher order Raviart–Thomas elements

Velocity shape functions: V(T) = { (a1 + bx1, a2 + bx2) | a1, a2, b ∈ P1 }

Degrees of freedom:

stable

Vh × Sh ⊂ H(div)× L2

pressure field
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Summary of the Raviart–Thomas elements

Let r ≥ 1. For any triangle T define

Shape functions: P−r (T) := Pr−1(T, Rn)⊕Hr−1(T)(x1, x2)

DOFs: τ 7→
∫

e τ · n p ds, p ∈ Pr−1(e), for each edge e
τ 7→

∫
T τ · ρ dx, ρ ∈ Pr−2(T, R2)

# DOFs = dimP−r (T) and the DOFs are unisolvent
Let Vh be the assembled FE space for some mesh. The DOFs enforce
normal continuity, so Vh ⊂ H(div)
Let Wh = Pdisc

r−1 . Then div Vh ⊂ Wh. It follows that Zh ⊂ Z and so B1
holds uniformly in h.
The projection operator coming from the DOFs satisfies

div πhτ = PWh div τ, τ ∈ H1(Ω; R2).

From this B2 follows. Stability!
The following estimates hold:

‖σ− σ‖ ≤ chr‖σ‖r, ‖div(σ− σh)‖ ≤ chr‖div σ‖r, ‖u− uh‖ ≤ chr‖u‖r+1

Using duality: ‖u− uh‖ ≤ ch‖u‖r if Ω is convex and r > 1
Carries over to n dimensions

H1 div−→ L2yπh

yPWh

Vh
div−→ Wh

homogeneous polys
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