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Linear elasticity

Given the load f : (3 — R”, find the displacement u : (3 — R"” and
the stress o : () — S" satisfying the constitutive equation

) syw arad
c=Ceu,
' elasticity tensor is SPD from 5" — "
the equilibrium equation

—dive =,

and boundary conditions likeu = gonIy;, on=tonl}.



Displacement formulation

Eliminating ¢ we get the displacement equation
—divCeu=f, u=0o0n0dQ

Multiplying by a test vector field and integrating over () by parts we
get the weak form: u € H'(Q;R") satisfies

B(u,v) := / Ceu:evdx = /f-vdx Vo € H'(Q; R")
Jo Jo



Displacement formulation

Eliminating ¢ we get the displacement equation
—divCeu=f, u=0o0nd0)

Multiplying by a test vector field and integrating over () by parts we
get the weak form: u € H'(Q;R") satisfies

B(u,v) := / Ceu:evdx = /f-vdx Vo € H'(Q; R")
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This is the Euler-Lagrange equation of a minimization:

u = argmin [%B(u,u) —(f,u)],
ueH (Q;R")

the variational form.



Finite element method

The discrete solution uy, is determined by Galerkin’s method using a
finite element subspace Vj, of F': 1, € V), satisfies

B(Mh,0> - (f/ U) Vo € Vh

Equivalently u; minimizes the energy over V.



Finite element method

The discrete solution uy, is determined by Galerkin’s method using a
finite element subspace Vj, of F': 1, € V), satisfies

B(up,v) = (f,v) YveV,
Equivalently u; minimizes the energy over V.

Korn'’s inequality says that the bilinear form is coercive over F':

B(u,u) > 7lull.

It follows that for any choice of V), Galerkin’s method is stable and so
quasioptimal:

1

[ —uplly < [[Bl[y™" inf |u — o).
UEV},



Dual variational principles

Finite elements based on the dual variational principle were
advocated from the dawn of finite elements (Fraeijs de Veubeke 65).

Primal variational form Dual variational form
1
1 _ .
u = argmin [E(Ceu,eu) — (f,u)] 7= a:g%(’;i‘:;) (Ao, o)
ueH (O;R") 7diva,:f

A = CJl



Dual variational principles

Finite elements based on the dual variational principle were
advocated from the dawn of finite elements (Fraeijs de Veubeke "65).

Primal variational form Dual variational form
1
e Al o= argmin - (Ac,o
u = argmin [E(Ceu,eu) —(f,u)] veHg(rdiv‘S”) ( )
ueH (Q;R") ~divo=f

A = CJl

It is not practical to find finite element subspaces that satisfy the constraint
—diveo = f, so we use a Lagrange multiplier:

(Ao, o) + (u,divo +f)]

N —

(o,u) = argcrit |
oeH(div;S")
ucl?(Q;R")



The saddle-point problem

(o0,u) = argcrit [E(AO’,O') + (u,divo +f)]
ceH(div;S") 2
uel?*(Q;R") L(cu)

» Weak formulation: Find (o,u) € H(div,5") x L*(Q;R") s.t.
(Ao, T) + (u,divt) =0 V7 € H(div,8"),

(dive,v) = —(f,v) Yo e L*(Q;R")

» Euler—Lagrange equations: Ac —eu =0, —dive=f.

» Lagrange multiplier is the displacement.

m Critical point is a saddle point:

L(o,0) < L(o,u) < L(t,v) Vo€ H(div,5"), v € L*((;R")
m Displacement boundary conditions are natural, not essential.
m The bilinear form
B(o,u;7,v) = (Ao, T) + (u,div 7) + (div o, v)

B*

0

» Finding stable finite elements is a major challenge.

is symmetric, but not coercive. ( B



A motivation: Poisson locking
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Py Lagrange, 88,374 triangles, dim Vj, = 89,972, E =10, v = 0.2
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Mixed methods are robust

Displacement method, Lagrange P, Mixed method, lowest order AFW

Detail of stress computed for v = 0.4999



Mixed methods are robust

Displacement method, Lagrange P Mixed method, lowest order AFW
Detail of stress computed for v = 0.4999

The method does not lose H' stability as v 1 0.5.
The problem is that C — oo, even though A has a perfectly nice limit.



Mixed methods are robust

Displacement method, Lagrange P Mixed method, lowest order AFW
Detail of stress computed for v = 0.4999

The method does not lose H' stability as v 1 0.5.
The problem is that C — oo, even though A has a perfectly nice limit.

Other issues with the displacement approach: thin domains, rough
coefficients, loss of accuracy for ¢, inapplicability to some materials, ...



Mixed formulations for various problems

Ao+ B*u = f Bo=g
elasticity Ac—ecu=20 —dive =f
Stokes —Au+gradp =f divu =0

Poisson eq u—gradp =0 —divu =f
Poisson-like Au—gradp =0 —divu+ap =f

biharmonic o —gradgradu =0 divdive = f



Brezzi’s theorem

Let a:VxV—-R and b:V xW — R bebdd bilinear forms
on H-spaces. Define Z = {v € V|b(v,w) =0 Yw e W }.

Suppose that there exist y1,y2 > 0 such that

Bl: a(z,z) > 71 HZH%/ Vz e Z aoeraivity over kernel
B2: Ywe W30 #veV st bly,w) > 'VZHUHVHL?ML\AP condition

Then, forany Fe V*,Ge W*, FluecV, pec Wsuchthat

(,0) + b(v,p) = F(v), YoeV, ~ (0 = (F
' Z(Z,;) :vG]Zq), ‘v’zq) €q GUVGV. ’é Bo) QPB - (C)

Moreover,
[ullv +llpllw < c([Fllv + IGllw)
with ¢ depending only on 71, 72, and ||a]|.



Proof of Brezzi’s theorem

We want to show that ('2 [f) ) VX W — V* x W* is invertible,

where A:V — V*, B: V — W* are the linear ops associated to 2 and b.

If we decompose V = Z & Z* the big operator becomes

AZZ AZL 0
Az AL B | i ZxZExW = ZF x ZH x W,
0 B, 0

Bl implies that A7 is invertible, and B2 implies that B, is invertible.
Therefore B is invertible as well.

Move the last column to the first and interchange the first two rows,
so the operator becomes

Bi ALZ ALL
0 A, Ay | :WxZxZ+F 572 <7 x W
0o 0 B,

Triangular with invertible diagonal elements == invertible.
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Discretization

Now suppose we do Galerkin’s method with Vj, C V.and W, C W.

In order to insure that the discrete system is nonsingular we need
Brezzi’s B1 and B2 on the discrete level. For stability we need that the
constants 1 and v, do not degenerate with .

Define Z;, = {U eV ‘ b(Z}, w) =0 VYweW, }
Suppose that there exist y1, y2 > 0 independent of h such that

Bly: a(z,z) > nlzll}, VzeZz,

B2, YweW,30#veV, st blv,w) > yo|v|w|w

Then 3! uy, € Vy, p, € W), solving the Galerkin equations. Moreover,
— — <c| inf |u—v inf ||p— .
=l + lp = pllw < < (inf f—olly + inf lp—alw)

starting point for other estimates ...



The rub: finding stable elements

The greatest difficulty will often be the verification of
the abstract hypotheses proposed here.

— F. Brezzi, RAIRO 8(2) 1974

B1 and B2 are in opposition, and generally not easy to satisfy
simultaneously. Naive choices of elements for mixed formulations
are rarely stable.

Things are easier, though not easy, if the bilinear form a is coercive
over all of V, since then it is coercive over Z; with the same constant,
and any choice of spaces satisfies B1. The main example of this
situation is the Stokes system.



2D Stokes elements: naive elements are unstable

ue H(;R?) pel?(Q)

P1-P1 /\ /\ singular!

P1=P, /\ . unstable!

Dp,_pd ) unstable except for special
2 . meshes

pressure from Pp—Pj!

uniform mesh of 7,024 elements
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Stable 2D Stokes elements
PPy /\ P, bubble-P¢ A A
MINI A A Taylor-Hood A A

pressure from P, bubble-Pg
uniform mesh of 7,024 elements



Mixed Laplacian (=elasticity) in 1D

u—p' =0, —u'=f on(-1,1)
H(div) in D

1 1
B(u,p;v,q) ::/ (uv—f—pv'—i—u’q)dx:—/ fgdx YoeH!', gel?
-1 -1
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Mixed Laplacian (=elasticity) in 1D

u—p' =0, —u'=f on(-1,1)
H(div) in D

1 1
B(u,p;v,q) ::/ (uo+pd +u'q)dx = —/ fqdx YoeH, qgecl?
-1 -1

Py-Py: singular P1-Py: stable!
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Mixed Laplacian (=elasticity) in 1D

u—p' =0, —u'=f on(-1,1)
H(div) in D

1 1
B(u,p;v,q) ::/ (uo+pd +u'q)dx = —/ fqdx YoeH, qgecl?
-1 -1

Py-Py: singular P1-Py: stable! Py-Py: unstable!

u

APy




Mixed Laplacian (Darcy flow) in 2D computed with P;-Py

A\ A

unstable!

U= %gradp, divu =f

pressure field
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Darcy flow computed with Raviart-Thomas elements

Velocity shape functions: V(T) = { (a1 + bxy,a, + bxy) |a1,a5,b € R}

Degrees of freedom: u +— [, u-n /A.\

stable

V), x S, € H(div) x L?

pressure field



Higher order Raviart-Thomas elements

Velocity shape functions: V(T) = { (a3 + bxy,a, +bxy) | aq,a2,b € P1 }

Degrees of freedom: j A

stable

Vj, x S, C H(div) x L?

pressure field



Summary of the Raviart-Thomas elements

Let » > 1. For any triangle T define homoaeneous polys

m Shape functions: P, (T) := P,_1(T,R") & H,_1(T)(x1,x2)
» DOFs: 7+ [,7-npds, peP,_q(e), foreachedgee
T— [;T-pdx, pe€ P,_o(T,IR?)

» # DOFs = dim P, (T) and the DOFs are unisolvent

m Let V), be the assembled FE space for some mesh. The DOFs enforce
normal continuity, so V;, C H(div)

m LetW, = Pfiisf. Then div V), C W,,. It follows that Z;, C Z and so Bl
holds uniformly in /.

m The projection operator coming from the DOFs satisfies

. 5 oA g2
div 7, T = Py, divt, te€ H ((;R7). . | Py
div

From this B2 follows. Stability! Vi &% W,
= The following estimates hold:

lo—al <cillelly, [Idiv(e —op)| < ch|[divelly, [lu—wu,l < chflullra

» Using duality: |ju —uy|| < chllul|, if Qisconvexandr > 1

m Carries over to n dimensions



