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Networks are Increasingly Prevalent 
in Data Analysis… 
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• Computer traffic 

• Social networks 

• Biological signaling 

• Communications 

• Financial analysis 

• Physical proximity 

• Recommendation systems 

• Publishing 

• Etc. 

One-Way Network 

Two-Way Network 



Network Models yield Understanding 

 Discover underlying principals  
 “Physics” 
 Global vs. local properties  

 Determine key metrics 
 Degree distribution 
 Motif (triangles, etc.) distribution 
 Community structure 
 Diameter 
 Eigenvalues 
 Etc. 

 Generate artificial data 
 Scale up or down in size 
 Surrogate for real data, protecting 

privacy and security 
 Easy to share and reproduce 
 Compressed representations 

 Desired model properties 
 Calibrates to real data 
 Scalable to billions of edges 
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A Good Network Model should have 
a Heavy-Tailed Degree Distribution 
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The degree distribution is one way to 

characterize a graph.  

 

Barabasi & Albert, Science, 1999: 

“A common property of many 

large networks is that the vertex 

connectivities follow a scale-free 

power-law distribution” 
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A Good Network Model should have 
High Clustering Coefficients 
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Node clustering coefficient: 

Degree-d clustering coefficient: 

Global clustering coefficient: 

In social networks, the clustering 

coefficients decrease smoothly as 

the degree increases. High 

degree nodes generally have little 

social cohesion. 



Current Network Models Cannot 
Match Both Degree & Triangle Dist. 

 Erdȍs-Rényi (1960) 
 All edges have equal probability 

 Con: Poisson degree distribution 

 

 Preferential Attachment  
(Barabási-Albert 1999) 
 Nodes join the graph sequentially 

 Prefer nodes of higher degree 

 Pro: Power-law degree distribution 

 Con: Too few triangles 

 

 Stochastic Blockmodel  
(Holland et al. 1983) 
 Each node belongs to a block 

 Edge probability between blocks 

 Pro: Explicit community structure 

 Con: Wrong degree distribution 

 Con: Too few triangles 

 

 Stochastic Kronecker, aka R-MAT 
(Chakrabarti et al. 2004) 
 Edge probabilities defined by Kronecker 

products of generator matrices 

 Pro: Scalable 

 

 

 

 

 

 Con: Wrong degree distribution 

 Con: Too few triangles 

 Chung-Lu (2002),  
aka Configuration Model 
 Edge probabilities defined by desired 

degree of endpoints 

 Pro: Scalable 

 Pro: Matches many degree distributions 

 Con: Too few triangles 

 

10/8/2015 Kolda - Woudschoten Conference - Networks 6 

Focus on One-Way Models 



Fast Chung-Lu: Scalable Generator 
that Matches Degree Distribution 

 Given degree distribution  
 ) Know desired degree of each node, di 

 Total edges E = ½di 

 Choose 2 endpoints at random per edge, proportional to di 
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Chung & Lu (PNAS 2002, Annals of Combinatorics 2002), Pinar, Seshadhri, Kolda (SDM’12) 



CL Matches Degree Distribution  
but not Clustering Coefficients 

10/8/2015 Kolda - Woudschoten Conference - Networks 8 



Non-neglible Clustering Coefficients  
Requires Dense Subgraphs! 

 For sparse graphs, very 
small chance that a node’s 
neighbors are connected 

 But, high clustering 
coefficient ) neighbors 
heavily connected 

 Theorem: There must be 
dense Erdȍs-Rényi 
subgraphs! 

 We create “affinity blocks” 
of heavily connected nodes 
 Each affinity block is an 

Erdȍs-Rényi graph 
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Block Two-Level Erdös-Rényi (BTER) 
creates Affinity Blocks  
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Preprocessing 

• Create affinity blocks of 
nodes with (nearly) same 
degree, determined by 
degree distribution 
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Phase 2 
• CL model on excess 

degree  

• Creates connections 

across blocks 

Phase 1 
• Erdös-Rényi graphs in 

each block 

• Essentially all triangles 

occur in these blocks 

• Connectivity per block 

based on clustering 

coefficient 

 

 

Seshadhri, Kolda, Pinar (Phys. Rev. E 2012) 

Kolda, Plantenga, Pinar, Seshadhri (SISC 2014) 



Affinity Blocks of ER Subgraphs with 
a Specified Clustering Coefficient 
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Random ER subgraph 

6 nodes of degree 5 

Labeled by # triangles 

Excess degree denoted  

by red stubs. 

Some edges are 

dedicated to the ER 

subgraph. The 

remainder are “excess 

degree.” 



BTER has Many Affinity Blocks;  
Blocks are Relatively Small 
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Red = Phase 1 

Blue = Phase 2 



BTER has better Clustering 
Coefficients than CL or SKG 
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BTER has better Clustering 
Coefficients than CL or SKG (again) 
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BTER has better Eigenvalues too! 
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Open Question: Can BTER Capture 
Higher-order (4-Vertex) Patterns? 
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(2) 3-star (3) K3+tail 

(4) C4 (5) C4+chord (6) K4 

(1) 3-path 

3-star 3-path K3+tail C4 C4+chord K4 

Real 1.74e10 8.35e09 1.41e09 7.21e07 7.85e07 5.89e06 

BTER 9.88e09 7.40e09 1.49e09 8.23e07 1.11e08 1.43e07 



Edge Independence is Key to 
Scalability for BTER 

 Phase 1  
 Edge independence:  

 Choose random block proportional to its “weight”  
 Choose uniform random edge within block 

 Single block b 
 Block size = nb  
 Connectivity = ½b 
 Expected # edges = ½b nb (nb -1)/2  
 Weight = # edges to be inserted 

 

 
 Total edge insertions = b wb 

 

 Phase 2 edges: 
 Edge independence: Fast CL based on excess degree 
 To run simultaneously with phase 1, compute expected 

excess degree: 
 

 Total edge insertions = ½ i ei 
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Coupon  

Collector 



Scalable BTER is Based on a Series of 
Random Decisions, Cost = O(M log N)  
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Choose phase 1 or 2? 

Create Phase 2 edge 

using CL model on 

expected “excess 

degree” 

Create Block 1 edge 

per ER model with 

connectivity ρ1 

Choose  

1st 

endpoint 

Choose 

2nd  

endpoint 

Create Block K edge 

per ER model with 

connectivity ρK 

Choose  

1st 

endpoint 

Choose 

2nd  

endpoint 

Choose  

1st 

endpoint 

Choose 

2nd  

endpoint 

Choose block  

proportional to number 

of “samples” per block 

Requires O(n) data to determine 

the various probabilities, and can 

be compressed to O(dmax). 

18 



BTER Phases 1 & 2 Simultaneous 
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Preprocessing 

• Create affinity blocks of 
nodes with (nearly) same 
degree, determined by 
degree distribution 

• Connectivity per block based 
on clustering coefficient 

• For each node, compute 
desired  

• within-block degree 
• excess degree 
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Phase 2 
• CL model on excess 

degree (a sort of  

weighted Erdös-Rényi) 

• Creates connections 

across blocks 

Phase 1 
• Erdös-Rényi graphs in 

each block 

• Need to insert extra 

links to insure enough 

unique links per block 

 

Occurring independently 

Seshadhri, Kolda, Pinar (Phys. Rev. E 2012) 

Kolda, Plantenga, Pinar, Seshadhri (SISC 2014) 



MapReduce BTER Implementation 
Models Graph with 5B Edges! 
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Data Source: Laboratory for Web Algorithms http://law.di.unimi.it/datasets.php  

uk-union: 122M nodes, 4.7B undirected edges, davg = 76. clustering coeff.= 0.007 

BTER model: 120M nodes, 4.4B undirected edges, davg = 73, clustering coeff. = 0.111 

32-node Hadoop cluster 

22 minutes run time 

http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php


BTER Scales in MapReduce:  
15 min for 4B-edge network 
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256M 

Vertices, 

4,096M 

Edges 

32-node x 4-procs-per-node Hadoop Cluster 

# mappers = # vertices / 1M 

# reducers = min{ 128, # mappers } 
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Kolda, Plantenga, Pinar, Seshadhri (SISC, to appear) 

1M 
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16M 

Edges 
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 Setup  
 32 nodes  

 32 GB RAM per node 

 Scaling 
 32 to 1,024M vertices 

 Up to 18B edges 

 BTER set up and edge 
generation scale nicely, as 
expected 

 Total time = 3 minutes for 
18B unique edges 

 

 Thanks to Dylan Stark 
(Sandia) for MPI version and 
compiling these results 

 Future work: Remove need 
for edge deduplication 

BTER Scales in MPI: 
3 min for 18B-edge network 
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BTER Benchmark Degree Distribution: 
Recommend Generalized Log Normal 

 Power Law (PL) 

 

 

 Generalized Log-Normal 

 

 

 Discrete versions 

 

 

 User specifies desired average degree and 
absolute max degree. Also require 
tolerance so that n¢²tol ¿ 1. 

 

 

 

 Also have method for picking clustering 
coefficients that requires desired global 
clustering coefficient and absolute max 
clustering coefficient 
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Proposed Benchmark for BTER 
Requires only 5 Parameters 
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Kolda, Pinar, Plantenga, Seshadhri (SISC, 2014) 

1. # vertices = 106 

2. Avg. degree = 16 

3. Max degree = 104 

4. Max CC = 0.50 

5. Global CC = 0.10 

BTER Realization 

8M edges 

Max degree = 2,594 

Avg degree = 17 

Global CC = 0.104 

Time = 26 sec. 



Bipartite Graphs: aka Hypergraphs,  
Two-way Graphs, Affiliation Networks 

 Vertices separated into 
two partitions 

 Edges only allowed 
between partitions 

 Many networks have 
natural bipartite structure 
 Author-Paper 
 Actor-Movie  
 Person-Group 
 Protein-Function 
 P2P Exchange (User-File) 
 Company Board-Member 
 Word-Sentence   
 User-Rating 

 
10/8/2015 Kolda - Woudschoten Conference - Networks 25 



A Good Bipartite Model should have 
Heavy-Tailed Degree Distributions 
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Fast Bipartite Chung-Lu: Generator 
that Matches Degree Distributions 

 Given degree distributions for red and blue  
 Know desired degree of each node, di for red and dj for blue  
 Total edges E = di =dj  

 Choose one red and blue endpoints at random per edge 
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Fast Bipartite Chung-Lu Matches 
Degree Distributions for Real Data 
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Author-Paper 

Network 
(Newman, 2001) 

P2P File 

Exchange 
(Latapy, 2008) 

Flickr User 

Group  
(Mislove, 2007) 

Actor-Movie 

Network 
(Latapy, 2008) 



Fast Bipartite Chung-Lu Matches 
Degree Distributions for Real Data 
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Metamorphosis is the Bipartite 
Analogue of Clustering Coefficient 
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Caterpillars: Butterflies: 

Metamorphosis for Edge: 

Metamorphosis per Vertex: 

Metamorphosis per Degree: 

Global Metamorphosis: 

Global Metamorphosis: Robins & Alexander, 2004 



Metamorphosis is not a Consequence 
of Degree Distribution! 
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Chung-Lu creates caterpillars, but not enough butterflies 

Thus, Chung-Lu can’t match per-degree metamorphosis coefficients 

Condensed Matter Papers IMDB 

Original Chung-Lu Original Chung-Lu 

Caterpillars 1,236,527 2,187,676 856,471,460 1,109,298,124 

Butterflies 70,549 339 3,503,276 141,912 

Metamorphosis 2.28 x 10-1 6.20 x 10-4 1.64 x 10-2 5.12 x 10-4 



Modeling Bipartite Metamorphosis is 
Hard 

 
 Balancing act: avoid satisfying properties for one node type at 

expense of other  
 # nodes, degree range may be different for one node type   

 per-degree metamorphosis may be skewed  

 

 Our goal: develop generative bipartite model matching deg. 
dists. & per-degree metamorphosis coeff.  
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“Another [new] direction is the development of models of 2-mode 

networks capturing properties met in practice. Just as is the case for 

1-mode networks, much can be done concerning degrees, but very 

little is known concerning the modeling of clustering…” 

-Latapy, Magnien, & Del Vecchio, Social Networks, 2008 



Bipartite BTER creates Bipartite 
Affinity Blocks  

10/8/2015 Kolda - Woudschoten Conference - Networks 

Preprocessing 

• Create affinity blocks of with 
combinations of nodes from 
each partition 

• Need to balance different 
metamorphosis coefficients 
for each partition and degree 
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Phase 2 
• Bipartite CL model on 

excess degree  

• Creates connections 

across blocks 

Phase 1 
• Determine affinity block 

structure so that an 

appropriate number of 

butterflies are created 

• Ideally, treat each 

partition as bipartite 

Erdȍs-Rényi graph 

 



BTER Matches Degree Distributions 
and Metamorphosis for Real Data 

10/8/2015 Kolda - Woudschoten Conference - Networks 34 



BTER and Bipartite BTER are Useful 
Tools for Graph Generation 

 Generative Graph Models 
 Key metrics include degree distribution and 

measures of social cohesion 

 Clustering coefficient (by degree) measures 
cohesion in one-way graphs 

 Metamorphisis coefficient (by degree and 
partition) measures cohesion in two-way 
graphs 

 Useful as data surrogates, benchmarks, etc. 

 BTER Generative Graph Model 
 Identifies core structures in sparse 

networks with frequent triangles 

 Matches degree distribution and clustering 
coefficients 

 Scalable MPI & Hadoop implementations 

 Proposed benchmark using only five 
parameters 

 BTER Bipartite Generative Graph Model 
 Matches dual degree distributions 

 Harder to define affinity block structure, 
but reasonable match to metamorphosis 
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