

Acknowledgements

Co-authors

- Evrim Acar (Univ. Copenhagen*)
- Woody Austin (Univ. Texas Austin*)
- Brett Bader (Digital Globe*)
- Grey Ballard (Sandia)
- Eric Chi (NC State Univ.*)
- Danny Dunlavy (Sandia)
- Sammy Hansen (IBM*)
- Joe Kenny (Sandia)
- Jackson Mayo (Sandia)
- Morten Mørup (Denmark Tech. Univ.)
- Todd Plantenga (FireEye*)
- Martin Schatz (Univ. Texas Austin*)
- Teresa Selee (GA Tech Research Inst.*)
- Jimeng Sun (GA Tech)

Plus many more collaborators for workshops, tutorials, etc.

* $=$ Worked for Sandia at some point

A Tensor is an d-Way Array

Tensor Decompositions are the New Matrix Decompositions

Singular value decomposition (SVD), eigendecomposition (EVD), nonnegative matrix factorization (NMF), sparse SVD, etc.

Viewpoint 1: Sum of outer products, useful for interpretation

Viewpoint 2: High-variance subspaces, useful for compression

CP Model: Sum of d-way outer products, useful for interpretation

CANDECOMP, PARAFAC, Canonical Polyadic, CP
Tucker Model: Project onto high-variance subspaces to reduce dimensionality

HO-SVD, Best Rank-(R1,R2,...,RN) decomposition Other models for compression include hierarchical Tucker and tensor train.

CP: Sum of Outer Products

CANDECOMP/PARAFAC or canonical polyadic (CP) Model

$$
\min _{\mathcal{M}} \sum_{i j k}\left(x_{i j k}-m_{i j k}\right)^{2} \quad \text { subject to } \quad m_{i j k}=\sum_{r} \lambda_{r} x_{i r} y_{j r} z_{k r}
$$

Tensor Factorization "Sorts Out" Comingled Data

Data measurements are recorded at multiple sites (channels) over time. The data is transformed via a continuous wavelet transform.

$\mathcal{A}=\mathbf{x}_{1} \circ \mathbf{y}_{1} \circ \mathbf{z}_{1}+\mathbf{x}_{2} \circ \mathbf{y}_{2} \circ \mathbf{z}_{2}+\mathcal{E}$

Acar, Bingol, Bingol, Bro and Yener,

Temporal Networks \& Analysis

Conference

Tasks: Principal Components, Multidimensional Scaling, Clustering, Classification, Temporal Link Prediction

DBLP has data from 1936-2007
(used only "inproceedings" from 1991-2000)

Data	10 Years: 1991-2000
\# Authors (min 10 papers)	7108
\# Conferences	1103
Links	113 k (0.14\% dense)

$c_{i j k}=\#$ papers by author i at conference j in year k

$$
a_{i j k}=\left\{\begin{array}{lc}
\log \left(c_{i j k}\right)+1 & \text { if } c_{i j k}>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

DBLP Component \#30 (of 50)

DBLP Component \#19 (of 50)

Top 3 Authors: Lionel M Ni, Prithviraj Banerjee, Howard Jay Siegel

Top 3 Confs: ICPP, IPPS, SC

DBLP Component \#43 (of 50)

Top 3 Authors: Franz Baader, Henri Prade, Didier Dubois

Tensor Factorizations have Numerous Applications

- Collaborative filtering
- Higher-order graph/image matching
- Modeling fluorescence excitation-emission data (chemometrics)
- Signal processing
- Brain imaging (e.g., fMRI) data

Furukawa, Kawasaki, Ikeuchi, and Sakauchi,

- Network analysis and link prediction
- Image compression and classification; texture analysis
- Text analysis, e.g., multi-way LSI
- Approximating Newton potentials, stochastic PDEs, etc.

EGRW '02

Hazan, Polak, and Shashua, ICCV 2005

$$
\mathcal{L}(x, t, \omega ; u)=f(x, t, \omega) \quad(x, t) \in \mathcal{D} \times[0, T]
$$

$$
\mathcal{B}(x, t, \omega ; u)=g(x, t) \quad(x, t) \in \mathcal{O D} \times[0, T]
$$

$$
\mathcal{I}(x, 0, \omega ; u)=h(x, \omega) \quad x \in \mathcal{D},
$$

Doostan, Iaccarino, and Etemadi, J. Computational Physics, 2009

Sidiropoulos, Giannakis, Bro, IEEE Trans. Signal Processing, 2000

Duchenne, Bach, Kweon, Ponce, TPAMI 2011

Andersen and Bro,
J. Chemometrics, 2003

CP-ALS: Fitting CP via Alternating Least Squares

convex (linear least squares) subproblems can be solved exactly +
structure makes easy inversion

$$
f(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\sum_{i j k}\left(a_{i j k}-\sum_{r} x_{i r} y_{j r} z_{k r}\right)^{2}
$$

Repeat until convergence:
Step 1: $\min _{\mathbf{X}} \sum_{i j k}\left(a_{i j k}-\sum_{r} x_{i r} y_{j r} z_{k r}\right)^{2}$
Step 2: $\min _{\mathbf{Y}} \sum_{i j k}\left(a_{i j k}-\sum_{r} x_{i r} y_{j r} z_{k r}\right)^{2}$
Step 3: $\min _{\mathbf{Z}} \sum_{i j k}\left(a_{i j k}-\sum_{r} x_{i r} y_{j r} z_{k r}\right)^{2}$

CP-OPT: Fitting CP via "All-at-once" Optimization

$$
f(\mathbf{X}, \mathbf{Y}, \mathbf{Z})=\sum_{i j k}\left(a_{i j k}-\sum_{r} x_{i r} y_{j r} z_{k r}\right)^{2}
$$

- CP-OPT (Acar et al.): $1^{\text {st }}$-order method, better accuracy than ALS when R is too big
- CP-NLS (Paatero, Tomasi \& Bro): Damped Gauss-Newton, accurate but slow
- CP-Newton (Phan et al.): Newton method, superior to CP-OPT for high order

Structured

Structured Hessian can be written as
block diagonal plus low-rank correction

Challenges for CP Optimization Problem

\# variables $=R(N+P+Q)$ \# data points $=N P Q$

Rank $=$ minimal R to exactly reproduce tensor

- Nonconvex: Polynomial optimization problem \Rightarrow Initialization matters
- Permutation and scaling ambiguities: Can reorder the r's and arbitrarily scale vectors within each component so long as the product of the scaling is $1 \Rightarrow$ May need regularization, \# independent vars $=R(N+P+Q-2)$
- Rank unknown: Determining the "rank" R that yields exact fit is NP-hard (Håstad 1990, Hillar \& Lim 2009) \Rightarrow No easy solution, need to try many
- Low-rank? Best "low-rank" factorization may not exist (Silva \& Lim 2006) \Rightarrow Need bounds on components $\left\|\lambda_{r} \mathbf{x}_{r} \circ \mathbf{y}_{r} \circ \mathbf{z}_{r}\right\|=\left|\lambda_{r}\right|\left\|\mathbf{x}_{r}\right\|\left\|\mathbf{y}_{r}\right\|\left\|\mathbf{z}_{r}\right\|$
- Not nested: Best rank-(R-1) factorization may not be part of best rank-R factorization (Kolda 2001) \Rightarrow cannot use greedy algorithm

Opportunities for the CP Optimization Problem

$\mathrm{k}-\operatorname{rank}(\mathbf{X})=$ maximum value k such that any k columns of \mathbf{X} are linearly independent

- Factorization is essentially unique (i.e., up to permutation and scaling) under the condition the the sum of the factor matrix k-rank values is $\geq 2 R+d-1$ (Kruskal 1977)

$$
\mathrm{k}-\operatorname{rank}(\mathbf{X})+\mathrm{k}-\operatorname{rank}(\mathbf{Y})+\mathrm{k}-\operatorname{rank}(\mathbf{Z}) \geq 2 R+2
$$

- If $R \ll N, P, Q$, then can use compression to reduce dimensionality before solving CP model (CANDELINC: Carroll, Pruzansky, and Kruskal 1980)
- Efficient sparse kernels exist (Bader \& Kolda, SISC 2007)

Recommend: CP Factorization as Optimization Test Problem

See function create_problem in Tensor Toolbox for MATLAB

- Optimization test problems with tunable difficulty
- Vary order (illustration for order d=3) - higher order is more difficult
- Vary dimension - larger is generally more difficult
collínear
- Vary collinearity (i.e., overlap) in the factors $\quad \cos \left(\Theta\left(\mathbf{x}_{r}, \mathbf{x}_{s}\right)\right) \approx 0$
- Tensor can be sparse, dense, nonnegative, etc.
- Factors can be sparse, dense, nonnegative, etc.
- Can vary the amount of noise
- And more...missing data, different statistical models, symmetry

Tensor Factorizations with Missing Data?

Biomedical signal processing

- EEG (electroencephalogram) signals can be recorded using electrodes placed on the scalp
- Missing data problem occurs when...
- Electrodes get loose or disconnected, causing the signal to be unusable
- Different experiments have overlapping but not identical channels

time-freq

experiments

can we still do this calculation if data are missing?

The Missing Data Problem

$$
\begin{aligned}
\Omega & =\text { subset of missing entries (white) } \\
\Omega^{c} & =\text { subset of known entries (blue) }
\end{aligned}
$$

Approaches

1. Guess reasonable values for the missing elements (e.g., mean)
2. Expectation maximization: Use current model to generate missing data elements, update model, repeat
3. Ignore missing data in fitting the model, add regularization if the model is underspecified

Brain dynamics can be captured even extensive missing channels

Number of Missing Channels	Replace Missing Entries with Mean
1	0.98
10	0.82
20	0.67
30	0.45
40	0.24

Brain dynamics can be captured even extensive missing channels

Number of Missing Channels	Replace Missing Entries with Mean	Ignore Missing Entries
1	0.98	1.00
10	0.82	0.98
20	0.67	0.95
30	0.45	0.89
40	0.24	0.65

Acar, Dunlavy, Kolda, Mørup, SDM'10 and Chemometrics and Intelligent Laboratory Systems 2011

Brain dynamics can be captured even extensive missing channels

No Missing Data

30 Chan./Exp. Missing

experiments

Cross-Validation to Determine the Number of Components

Problem: Model error always reduces as rank increases, due to more parameters. Solution: Hide some data from the model, for independent check.

Create H holdout sets: $\Omega_{1}, \ldots, \Omega_{H}$. For each rank r and holdout set $h \ldots$

Each color corresponds to a holdout set. White is no data.

Train model:

Evaluate model on holdout data:

$$
\mathcal{M}^{(h r)}=\underset{\operatorname{rank}(\mathcal{M})=r}{\arg \min } \sum_{i j k \in \Omega_{h}^{c}}\left(a_{i j k}-m_{i j k}\right)^{2}
$$

$$
e^{(h r)}=\sqrt{\frac{1}{\left|\Omega_{h}\right|} \sum_{i j k \in \Omega_{h}}\left(a_{i j k}-m_{i j k}^{(h r)}\right)^{2}}
$$

For each rank r, compute average holdout error (or other statistics): $\bar{e}^{(r)}=\frac{1}{H} \sum_{h} e^{(h r)}$
Austin and Kolda, Statistical Rank Determination for Tensor Factorizations, in progress

Cross-Validation to Determine the Number of Components

- Create H holdout sets: $\Omega_{1}, \ldots, \Omega_{H}$
- For $r=1,2, \ldots$
- Train model for $h=1, \ldots, H$
$\mathcal{M}^{(h r)}=\arg \min _{\mathcal{M}} \sum_{i j k \in \Omega_{h}^{c}}\left(a_{i j k}-m_{i j k}\right)^{2}$
- Compute error for $h=1, \ldots, H$
$e^{(h r)}=\sqrt{\frac{1}{\left|\Omega_{h}\right|} \sum_{i j k \in \Omega_{h}}\left(a_{i j k}-m_{i j k}^{(h r)}\right)^{2}}$
- Consider mean error
$\bar{e}^{(r)}=\frac{1}{H} \sum_{h} e^{(h r)}$

Example: $10 \times 10 \times 10$ tensor of rank-2 with component sizes of 1 and 0.1 , with 25% noise. Can we tell the difference between the second small component and noise?

Rank

Austin and Kolda, Statistical Rank Determination for Tensor Factorizations, in progress

New "Stable" Approach: Poisson Tensor Factorization (PTF)

$$
P(X=x)=\frac{\exp (-\lambda) \lambda^{x}}{x!}
$$

$$
m_{i j k}=\sum_{r} \lambda_{r} x_{i r} y_{j r} z_{k r}
$$

$$
a_{i j k} \sim \operatorname{Poisson}\left(m_{i j k}\right)
$$

Maximize this: $\quad \operatorname{likelihood}(\mathcal{M})=\prod_{i j k} \frac{\exp \left(-m_{i j k}\right) m_{i j k}^{a_{i j k}}}{a_{i j k}!}$
By monotonicity of log, same as maximizing this:

$$
\log \text {-likelihood }(\mathcal{M})=c-\sum_{i j k} m_{i j k}-a_{i j k} \log \left(m_{i j k}\right)
$$

This objective function is also known as Kullback-Liebler (KL) divergence.
The factorization is automatically nonnegative.

Solving the Poisson Regression Problem

- Highly nonconvex problem!
- Assume R is given
- Alternating Poisson regression
- Assume (d-1) factor matrices are known and solve for the remaining one
- Multiplicative updates like Lee \& Seung (2000) for NMF, but improved
- Typically assume data tensor A is sparse and have special methods for this
- Newton or Quasi-Newton method

Enron email data from FERC investigation.

Data	8540 Email Messages
\# Months	28 (Dec'99 - Mar'02)
\# Senders/Recipients	108 (>10 messages each)
Links	8500 (3\% dense)

$a_{i j k}=\#$ emails from sender i to recipient j in month k

Let's look at some components from a 10-component ($R=10$) factorization, sorted by size...

Enron Email Data (Component

Seniority	Gender	Department
Senior (57\%)	Female (33\%)	Legal (24%)
\square Junior (43\%)	Male (67\%)	Trading (31\%)
Other (45\%)		

Chi \& Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012

Enron Email Data (Component 3)

Senior; Mostly Male

recipient

Seniority	Gender	Department
$\begin{aligned} & \text { - Senior (57\%) } \\ & \text { Junior (43\%) } \end{aligned}$	Female (33\%) Male (67\%)	Legal (24\%) Trading (31\%) Other (45\%)

Coupled Factorizations

$$
\begin{gathered}
\mathcal{M} \approx \sum_{r} \lambda_{r} \mathbf{x}_{r} \circ \mathbf{y}_{r} \circ \mathbf{z}_{r} \\
\mathbf{B} \approx \mathbf{X W}^{\top}
\end{gathered}
$$

- Applications
- Biology
- Gene x Expression x Time
- Gene x Function
- Consumer information
- Consumer x Purchase x Season
- Consumer x Zip Code
- CMTF Toolbox (uses Tensor Toolbox)
- Can do ALS or all-at-once optimization
- Handles missing data

$$
f(\mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z})=\frac{1}{2}\left\|\mathcal{A}-\sum_{r} \mathbf{x}_{r} \circ \mathbf{y}_{r} \circ \mathbf{z}_{r}\right\|^{2}+\frac{1}{2}\left\|\mathbf{B}-\mathbf{X} \mathbf{W}^{\top}\right\|^{2}
$$

Symmetric Tensor Factorization

- $d=$ number of modes or ways, $N=$ size of each mode
- symmetric = entries invariant to permutation of indices

3-way tensor
$(d=3)$

$$
\begin{array}{cc}
\text { Symmetry for } & a_{i j k}=a_{i k j}=a_{j i k}=a_{k i j}=a_{j k i}=a_{k j i} \\
3 \text {-way tensor } & \text { for all } i, j, k \in\{1,2, \ldots, N\}
\end{array} \Rightarrow
$$

N^{d} elements but only
\Rightarrow
$N^{d} / d!+\mathrm{O}\left(N^{d-1}\right)$ distinct elements

Best rank-1 approximation
Rank-R factorization

Applications of symmetric tensors: diffusion tensor imaging (DTI/HARDI), higher-order statistics, higher-order derivatives, relativity, signal processing, etc.

Best Symmetric Rank-1 Approximation

Data

Model

$$
\mathcal{M}=\lambda \mathbf{x} \circ \mathbf{x} \circ \mathbf{x}
$$

$$
\min _{\lambda, \mathbf{x}} \sum_{i j k}\left(a_{i j k}-\lambda x_{i} x_{j} x_{k}\right)^{2}
$$

Eliminate λ :

$$
\lambda=\sum_{i j k} a_{i j k} x_{i} x_{j} x_{k}
$$

$$
\max _{\mathbf{x}} \mathcal{A} \mathbf{x}^{d} \equiv \sum_{i j k} a_{i j k} x_{i} x_{j} x_{k}
$$

Nonlinear Program

$\max _{\mathbf{x}} f(\mathbf{x}) \equiv \frac{\mathcal{A} \mathbf{x}^{d}}{\mathcal{B}_{\mathbf{x}^{d}}}\|\mathbf{x}\|^{d}$ subject to $\|\mathbf{x}\|=1$

FYI: Generalized Eigenpair

(Chang, Pearson, Zhang 2009)

$$
\mathcal{A} \mathbf{x}^{d-1}=\lambda \boldsymbol{\mathcal { B }} \mathbf{x}^{d-1}
$$

subject to $(\lambda, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^{N}$

$$
\left(\mathcal{A} \mathbf{x}^{d-1}\right)_{i} \equiv \sum_{i j k} a_{i j k} x_{j} x_{k} \text { for } i=1, \ldots, N
$$

$\mathcal{B}=\left\{\begin{array}{l}\text { "identity" tensor } \Rightarrow \text { Z-eigenproblem } \\ \text { "diagonal ones" tensor } \Rightarrow \text { H-eigenproblem }\end{array}\right.$
Qi 2005; Lim 2005; Chang, Pearson, \& Zhang 2009

Adaptive Shifted Power Method: Special Optimization on a Sphere

Theorem
Assume $\mathbf{w} \in\{\mathbf{x} \mid\|\mathbf{x}\|=1\}$,
$\Omega=$ open nbhd of \mathbf{w}, \hat{f} convex and C^{1} on Ω

Let $\mathbf{v}=\nabla \hat{f}(\mathbf{w}) /\|\nabla \hat{f}(\mathbf{w})\|$.
If $\mathbf{v} \in \Omega$ and $\mathbf{v} \neq \mathbf{w}$, then $\hat{f}(\mathbf{v})>\hat{f}(\mathbf{w})$

Simple fixed point iteration is monotonically convergent:

$$
\mathbf{x}_{k+1} \leftarrow \frac{\nabla \hat{f}\left(\mathbf{x}_{k}\right)}{\left\|\nabla \hat{f}\left(\mathbf{x}_{k}\right)\right\|}
$$

$$
\begin{gathered}
\text { creating local convexity on a sphere: } \\
\qquad \begin{array}{c}
\hat{f}(\mathbf{x})=f(\mathbf{x})+\alpha\|\mathbf{x}\|^{d} \\
\text { For } \mathbf{x} \in\{\mathbf{x} \mid\|\mathbf{x}\|=1\} \\
\hat{\mathbf{g}}(\mathbf{x})=\mathbf{g}(\mathbf{x})+\alpha d \mathbf{x} \\
\hat{\mathbf{H}}(\mathbf{x})=\mathbf{H}(\mathbf{x})+\alpha d \mathbf{I}+\alpha d(d-2) \mathbf{x x}^{\top}
\end{array}
\end{gathered}
$$

Use Weyl's inequality to choose α
Positive Stable Basins of Attraction for $3 \times 3 \times 3 \times 3$ Tensors

Regalia \& Kofidis 2002 \& 2003; Kolda \& Mayo 2012 \& 2014

Optimization for Symmetric CP Tensor Decomposition

Option 1: Standard least squares Exact penalty to remove scaling ambiguity

$$
\min _{\mathcal{M}} \sum_{i j k}\left(a_{i j k}-m_{i j k}\right)^{2}+\gamma \sum_{r}\left(\left\|\mathbf{x}_{r}\right\|^{2}-1\right)^{2} \text { s.t. } \mathcal{M}=\sum_{r} \lambda_{r} \mathbf{x}_{r}^{d}
$$

Option 2: Distinct elements only \Rightarrow Overall best option for time and accuracy

$$
\min _{\mathcal{M}} \sum_{i \leq j \leq k}\left(a_{i j k}-m_{i j k}\right)^{2}+\gamma \sum_{r}\left(\left\|\mathbf{x}_{r}\right\|^{2}-1\right)^{2} \text { s.t. } \mathcal{M}=\sum_{r} \lambda_{r} \mathbf{x}_{r}^{d}
$$

Option 3: Ignore symmetry \Rightarrow 2-100 tímes faster when it works
Uniqueness: $2 R+(d-1) \leq d \cdot \mathrm{k}-\operatorname{rank}(\mathbf{X})$

$$
\min _{\mathcal{M}} \sum_{i j k}\left(a_{i j k}-m_{i j k}\right)^{2} \text { s.t. } \mathcal{M}=\sum_{r} \lambda_{r} \mathbf{x}_{r} \circ \mathbf{y}_{r} \circ \mathbf{z}_{r}
$$

Orthogonal symmetric CP is equivalent to symmetric EVD.
(Kolda 2015)

Enron Email Data (Component 4)

Chi \& Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012

Enron Email Data (Component 5)

Seniority	Gender	Department
Senior (57%)	Female (33\%)	Legal (24%)
\square Junior (43%)	Male (67%)	Mrading (31%)
Other (45\%)		

Mostly Female

recipient

Chi \& Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012

Example $9 \times 9 \times 9$ Tensor of Unknown Rank

- Specific $9 \times 9 \times 9$ tensor factorization problem
- Corresponds to being able to do fast matrix multiplication of two 3×3 matrices
- Rank is between 19 and $23 \Rightarrow \leq 621$ variables

$$
\begin{array}{lll}
x_{1,1,1}=1 & x_{4,2,1}=1 & x_{7,3,1}=1 \\
x_{1,4,2}=1 & x_{4,5,2}=1 & x_{7,6,2}=1 \\
x_{1,7,3}=1 & x_{4,8,3}=1 & x_{7,9,3}=1 \\
x_{2,1,4}=1 & x_{5,2,4}=1 & x_{8,3,4}=1 \\
x_{2,4,5}=1 & x_{5,5,5}=1 & x_{8,6,5}=1 \\
x_{2,7,6}=1 & x_{5,8,6}=1 & x_{8,9,6}=1 \\
x_{3,1,7}=1 & x_{6,2,7}=1 & x_{9,3,7}=1 \\
x_{3,4,8}=1 & x_{6,5,8}=1 & x_{9,6,8}=1 \\
x_{3,7,9}=1 & x_{6,8,9}=1 & x_{9,9,9}=1
\end{array}
$$

