

Ophimization Challenges in Tensor Decomposition

Tamara G. Kolda Sandía Natíonal Laboratoríes Lívermore, CA

Fortieth Numerical Analysis Conference Woudschoten Past, Present and Future of Scientific Computing Zeist, The Netherlands Oct. 7, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Acknowledgements

Co-authors

- Evrim Acar (Univ. Copenhagen*)
- Woody Austin (Univ. Texas Austin*)
- Brett Bader (Digital Globe*)
- Grey Ballard (Sandia)
- Eric Chi (NC State Univ.*)
- Danny Dunlavy (Sandia)
- Sammy Hansen (IBM*)
- Joe Kenny (Sandia)
- Jackson Mayo (Sandia)
- Morten Mørup (Denmark Tech. Univ.)
- Todd Plantenga (FireEye*)
- Martin Schatz (Univ. Texas Austin*)
- Teresa Selee (GA Tech Research Inst.*)
- Jimeng Sun (GA Tech)

Plus many more collaborators for workshops, tutorials, etc.

* = Worked for Sandia at some point

A Tensor is an d-Way Array

Tensor Decompositions are the New Matrix Decompositions

Singular value decomposition (SVD), eigendecomposition (EVD), nonnegative matrix factorization (NMF), sparse SVD, etc.

Viewpoint 1: Sum of outer products, useful for interpretation

Viewpoint 2: High-variance subspaces, useful for compression

CP Model: Sum of d-way outer products, useful for interpretation

CANDECOMP, PARAFAC, Canonical Polyadic, CP

Tucker Model: Project onto high-variance subspaces to reduce dimensionality

HO-SVD, Best Rank-(R1,R2,...,RN) decomposition

Other models for compression include hierarchical Tucker and tensor train.

CP: Sum of Outer Products

CANDECOMP/PARAFAC or canonical polyadic (CP) Model

Key references: Hitchcock, 1927; Harshman, 1970; Carroll and Chang, 1970

10/7/2015

Kolda - Woudschoten Conference - Zeist

Tensor Factorization "Sorts Out" Comingled Data

$$\mathcal{A} = \mathbf{x}_1 \circ \mathbf{y}_1 \circ \mathbf{z}_1 + \mathbf{x}_2 \circ \mathbf{y}_2 \circ \mathbf{z}_2 + \boldsymbol{\mathcal{E}}$$

Acar, Bingol, Bingol, Bro and Yener, Bioinformatics, 2007

10/7/2015

Temporal Networks & Analysis

<u>**Tasks</u>**: Principal Components, Multidimensional Scaling, Clustering, Classification, Temporal Link Prediction</u>

DBLP has data from 1936-2007 (used only "inproceedings" from 1991-2000)

Data	10 Years: 1991-2000
# Authors (min 10 papers)	7108
# Conferences	1103
Links	113k (0.14% dense)

 $c_{ijk} =$ # papers by author i at conference j in year k

 $a_{ijk} = \begin{cases} \log(c_{ijk}) + 1 & \text{if } c_{ijk} > 0\\ 0 & \text{otherwise} \end{cases}$

Conference

Let's look at some components sorted by size from a 50-component (R=50) factorization...

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010

10/7/2015

DBLP Component #30 (of 50)

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010

Sandia National

DBLP Component #19 (of 50)

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010

Sandia National

DBLP Component #43 (of 50)

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010

Sandia National

Tensor Factorizations have Numerous Applications

- Modeling fluorescence excitation-emission data (chemometrics)
- Signal processing
- Brain imaging (e.g., fMRI) data
- Network analysis and link prediction
- Image compression and classification; texture analysis
- Text analysis, e.g., multi-way LSI
- Approximating Newton potentials, stochastic PDEs, etc.
- Collaborative filtering
- Higher-order graph/image matching

Furukawa, Kawasaki, Ikeuchi, and Sakauchi, *EGRW '02*

Sidiropoulos, Giannakis, Bro, IEEE Trans. Signal Processing, 2000

Hazan, Polak, and Shashua, ICCV 2005

$$\begin{split} \mathcal{L}(x,t,\omega;u) &= f(x,t,\omega) \quad (x,t) \in \mathcal{D} \times [0,T] \\ \mathcal{B}(x,t,\omega;u) &= g(x,t) \quad (x,t) \in \partial \mathcal{D} \times [0,T] \\ \mathcal{I}(x,0,\omega;u) &= h(x,\omega) \quad x \in \mathcal{D}, \end{split}$$

Doostan, laccarino, and Etemadi, J. Computational Physics, 2009

Duchenne, Bach, Kweon, Ponce, TPAMI 2011

J. Chemometrics, 2003

10/7/2015

CP-ALS: Fitting CP via Alternating Least Squares

Convex (línear least squares) subproblems can be solved exactly + Structure makes easy inversion

$$f(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = \sum_{ijk} \left(a_{ijk} - \sum_{r} x_{ir} \ y_{jr} \ z_{kr} \right)^2$$

Repeat until convergence:
Step 1:
$$\min_{\mathbf{X}} \sum_{ijk} \left(a_{ijk} - \sum_{r} x_{ir} y_{jr} z_{kr} \right)^{2}$$

Step 2: $\min_{\mathbf{Y}} \sum_{ijk} \left(a_{ijk} - \sum_{r} x_{ir} y_{jr} z_{kr} \right)^{2}$
Step 3: $\min_{\mathbf{Z}} \sum_{ijk} \left(a_{ijk} - \sum_{r} x_{ir} y_{jr} z_{kr} \right)^{2}$

Harshman, 1970; Carroll & Chang, 1970

Kolda - Woudschoten Conference - Zeist

CP-OPT: Fitting CP via "All-at-once" Optimization

- CP-OPT (Acar et al.): 1st-order method, better accuracy than ALS when R is too big
- CP-NLS (Paatero, Tomasi & Bro): Damped Gauss-Newton, accurate but slow
- CP-Newton (Phan et al.): Newton method, superior to CP-OPT for high order

Paatero 1997; Tomasi & Bro 2005, 2006; Acar, Dunlavy, & Kolda 2011; Phan, Tichavský, & Cichocki 2013

 \approx

 $\mathbf{U}_{\mathbf{X}_1}$

A

Challenges for CP Optimization Problem

- **Nonconvex:** Polynomial optimization problem \Rightarrow initialization matters
- **Permutation and scaling ambiguities:** Can reorder the r's and arbitrarily scale vectors within each component so long as the product of the scaling is $1 \Rightarrow$ May need regularization, # independent vars = R(N+P+Q-2)
- Rank unknown: Determining the "rank" R that yields exact fit is NP-hard (Håstad 1990, Hillar & Lim 2009) ⇒ No easy solution, need to try many
- Low-rank? Best "low-rank" factorization may not exist (Silva & Lim 2006) \Rightarrow Need bounds on components $\|\lambda_r \mathbf{x}_r \circ \mathbf{y}_r \circ \mathbf{z}_r\| = |\lambda_r| \|\mathbf{x}_r\| \|\mathbf{y}_r\| \|\mathbf{z}_r\|$
- Not nested: Best rank-(R-1) factorization may not be part of best rank-R factorization (Kolda 2001)

 Cannot use greedy algorithm

 $N \times P \times Q$

.A

 \approx

 \mathbf{X}_1

Opportunities for the CP Optimization Problem

k-rank(**X**) = maximum value k such that any k columns of **X** are linearly independent

Factorization is essentially unique (i.e., up to permutation and scaling) under the condition the the sum of the factor matrix k-rank values is ≥ 2R + d − 1 (Kruskal 1977)

 $k-rank(\mathbf{X}) + k-rank(\mathbf{Y}) + k-rank(\mathbf{Z}) \ge 2R + 2$

- If R < N,P,Q, then can use compression to reduce dimensionality before solving CP model (CANDELINC: Carroll, Pruzansky, and Kruskal 1980)
- Efficient sparse kernels exist (Bader & Kolda, SISC 2007)

Recommend: CP Factorization as National aboratories **Optimization Test Problem** \mathbf{y}_1 See function += create problem in Noise .A Tensor Toolbox for MATLAB Optimization test problems with tunable difficulty Vary order (illustration for order d=3) – higher order is more difficult Vary dimension – larger is generally more difficult Collinear $\cos(\Theta(\mathbf{x}_r, \mathbf{x}_s)) \approx 0$ Vary collinearity (i.e., overlap) in the factors

- Tensor can be sparse, dense, nonnegative, etc.
- Factors can be sparse, dense, nonnegative, etc.
- Can vary the amount of noise
- And more...missing data, different statistical models, symmetry

Sandia

Tensor Factorizations with Missing Data?

100 channels channel time-freq experiments time-frequency

Biomedical signal processing

- EEG (electroencephalogram) signals can be recorded using electrodes placed on the scalp
- Missing data problem occurs when... •
 - Electrodes get loose or disconnected, causing the signal to be unusable
 - Different experiments have overlapping but not identical channels

Acar, Dunlavy, Kolda, Mørup, Scalable Tensor Factorizations with Missing Data, SDM'10

data are missing?

10/7/2015

The Missing Data Problem

 $\Omega^c = {\it subset of known entries (blue)}$

$$\min_{\mathbf{X},\mathbf{Y},\mathbf{Z}} \sum_{ijk\in\Omega^c} \left(a_{ijk} - \sum_r x_{ir} y_{jr} z_{kr} \right)^2$$

Approaches

- 1. Guess reasonable values for the missing elements (e.g., mean)
- 2. Expectation maximization: Use current model to generate missing data elements, update model, repeat
- 3. Ignore missing data in fitting the model, add regularization if the model is underspecified

Acar, Dunlavy, Kolda, Mørup, SDM'10 and Chemometrics and Intelligent Laboratory Systems 2011

Sandia National

Brain dynamics can be captured even extensive missing channels

Number of Missing Channels	Replace Missing Entries with Mean
1	0.98
10	0.82
20	0.67
30	0.45
40	0.24

Acar, Dunlavy, Kolda, Mørup, SDM'10 and Chemometrics and Intelligent Laboratory Systems 2011

10/7/2015

Brain dynamics can be captured even extensive missing channels

Number of Missing Channels	Replace Missing Entries with Mean	Ignore Missing Entries
1	0.98	1.00
10	0.82	0.98
20	0.67	0.95
30	0.45	0.89
40	0.24	0.65

Acar, Dunlavy, Kolda, Mørup, SDM'10 and Chemometrics and Intelligent Laboratory Systems 2011

10/7/2015

Brain dynamics can be captured even extensive missing channels

Acar, Dunlavy, Kolda, Mørup, SDM'10 and Chemometrics and Intelligent Laboratory Systems 2011

Kolda - Woudschoten Conference - Zeist

Sandia National Laboratories

Measureme

Measurements

ի ստելի հե

Measurement

Cross-Validation to Determine the Number of Components

<u>Problem</u>: Model error *always* reduces as rank increases, due to more parameters. <u>Solution</u>: Hide some data from the model, for independent check.

Create H holdout sets: $\Omega_1, ..., \Omega_H$. For each rank r and holdout set h...

For each rank r, compute average holdout error (or other statistics): $\bar{e}^{(r)} = \frac{1}{H} \sum_{h} e^{(hr)}$

Austin and Kolda, Statistical Rank Determination for Tensor Factorizations, in progress

Cross-Validation to Determine the Number of Components

10/7/2015

Kolda - Woudschoten Conference - Zeist

New "Stable" Approach: Poisson Tensor Factorization (PTF)

Maximize this: likelihood(
$$\mathfrak{M}$$
) = $\prod_{ijk} \frac{\exp(-m_{ijk}) m_{ijk}^{m_{ijk}}}{a_{ijk}!}$
By monotonicity of log, same as maximizing this: log-likelihood(\mathfrak{M}) = $c - \sum_{ijk} m_{ijk} - a_{ijk} \log(m_{ijk})$

This objective function is also known as Kullback-Liebler (KL) divergence. The factorization is automatically nonnegative.

Solving the Poisson Regression Problem

- Highly nonconvex problem!
 - Assume R is given
- Alternating Poisson regression
 - Assume (d-1) factor matrices are known and solve for the remaining one
 - Multiplicative updates like Lee & Seung (2000) for NMF, but improved
 - Typically assume data tensor A is sparse and have special methods for this
 - Newton or Quasi-Newton method

Chi & Kolda, SIMAX 2012; Hansen, Plantenga, & Kolda OMS 2015

Sandia National

PTF for Time-Evolving Social Network

ies

Enron email data from FERC investigation.

Data	8540 Email Messages	
# Months	28 (Dec'99 – Mar'02)	
# Senders/Recipients	108 (>10 messages each)	
Links	8500 (3% dense)	

 a_{ijk} = # emails from sender i to recipient j in month k

Let's look at some components from a 10-component (R=10) factorization, sorted by size...

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012

10/7/2015

Kolda - Woudschoten Conference - Zeist

Enron Email Data (Component 1)

10/7/2015

Kolda - Woudschoten Conference - Zeist

Sandia National

Enron Email Data (Component 3)

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012

10/7/2015

Kolda - Woudschoten Conference - Zeist

Coupled Factorizations

$$\begin{split} \mathbf{\mathcal{M}} &\approx \sum_{r} \lambda_r \; \mathbf{x}_r \circ \mathbf{y}_r \circ \mathbf{z}_r \\ & \mathbf{B} &\approx \mathbf{X} \mathbf{W}^\mathsf{T} \end{split}$$

- Applications
 - Biology
 - Gene x Expression x Time
 - Gene x Function
 - Consumer information
 - Consumer x Purchase x Season
 - Consumer x Zip Code
- CMTF Toolbox (uses Tensor Toolbox)
 - Can do ALS or all-at-once optimization
 - Handles missing data

$$f(\mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}) = \frac{1}{2} \left\| \mathcal{A} - \sum_{r} \mathbf{x}_{r} \circ \mathbf{y}_{r} \circ \mathbf{z}_{r} \right\|^{2} + \frac{1}{2} \left\| \mathbf{B} - \mathbf{X} \mathbf{W}^{\mathsf{T}} \right\|^{2}$$

Acar, Dunlavy, Kolda, MLG'11; Acar et al., IEEE EMBC, 2013; Acar et al., BMC Bioinformatics, 2014

10/7/2015

Symmetric Tensor Factorization

- d = number of modes or ways, N = size of each mode
- symmetric = entries invariant to permutation of indices

Symmetry for
3-way tensor
$$(d = 3)$$
 $a_{ijk} = a_{ikj} = a_{jik} = a_{kij} = a_{jki} = a_{kji}$
for all $i, j, k \in \{1, 2, \dots, N\}$ N^d elements but only
 $N^d / d! + O(N^{d-1})$
distinct elements

Applications of symmetric tensors: diffusion tensor imaging (DTI/HARDI), higher-order statistics, higher-order derivatives, relativity, signal processing, etc.

10/7/2015

Sandia National

Best Symmetric Rank-1 Approximation

Model

 $\approx \lambda$

 $\min_{\lambda, \mathbf{x}} \sum_{ijk} (a_{ijk} - \lambda \, x_i x_j x_k)^2$

 \overline{ijk}

Qi 2005; Lim 2005; Chang, Pearson, & Zhang 2009

 \mathcal{A}

Data

Eliminate λ :

 $\lambda = \sum a_{ijk} x_i x_j x_k$

Adaptive Shifted Power Method: Special Optimization on a Sphere

$$\begin{array}{l} \hline \text{Theorem} \\ \text{Assume } \mathbf{w} \in \{ \mathbf{x} \mid \|\mathbf{x}\| = 1 \} , \\ \Omega = \text{open nbhd of } \mathbf{w}, \\ \widehat{f} \text{ convex and } C^1 \text{ on } \Omega \\ \text{Let } \mathbf{v} = \nabla \widehat{f}(\mathbf{w}) / \|\nabla \widehat{f}(\mathbf{w})\|. \\ \text{If } \mathbf{v} \in \Omega \text{ and } \mathbf{v} \neq \mathbf{w}, \\ \text{then } \widehat{f}(\mathbf{v}) > \widehat{f}(\mathbf{w}) \end{array}$$

Simple fixed point iteration is monotonically convergent:

$$\mathbf{x}_{k+1} \leftarrow \frac{\nabla \hat{f}(\mathbf{x}_k)}{\|\nabla \hat{f}(\mathbf{x}_k)\|}$$

Creating local convexity on a sphere: $\hat{f}(\mathbf{x}) = f(\mathbf{x}) + \alpha ||\mathbf{x}||^d$ For $\mathbf{x} \in \{\mathbf{x} \mid ||\mathbf{x}|| = 1\}$: $\hat{\mathbf{g}}(\mathbf{x}) = \mathbf{g}(\mathbf{x}) + \alpha d\mathbf{x}$, $\hat{\mathbf{H}}(\mathbf{x}) = \mathbf{H}(\mathbf{x}) + \alpha d\mathbf{I} + \alpha d(d-2)\mathbf{x}\mathbf{x}^T$ Use Weyl's inequality to choose α Positive Stable Basins of Attraction for 3x3x3x3 Tensors

Sandia National Laboratories

Regalia & Kofidis 2002 & 2003; Kolda & Mayo 2012 & 2014 Han (2012): Optimization formulation; Cui, Dai, Nie (2014): SDP formulation

Optimization for Symmetric CP Tensor Decomposition

variables = R(N + 1)# data points = $N^d/d!$

Option 1: Standard least squares

Exact penalty to remove scaling ambiguity

$$\min_{\mathbf{\mathcal{M}}} \sum_{ijk} (a_{ijk} - m_{ijk})^2 + \gamma \sum_r (\|\mathbf{x}_r\|^2 - 1)^2 \text{ s.t. } \mathbf{\mathcal{M}} = \sum_r \lambda_r \mathbf{x}_r^d$$

Option 2: Distinct elements only \Rightarrow Overall best option for time and accuracy

$$\min_{\mathcal{M}} \sum_{i \le j \le k} (a_{ijk} - m_{ijk})^2 + \gamma \sum_r (\|\mathbf{x}_r\|^2 - 1)^2 \text{ s.t. } \mathcal{M} = \sum_r \lambda_r \mathbf{x}_r^d$$

Option 3: Ignore symmetry \Rightarrow 2-100 times faster when it works

Uniqueness:
$$2R + (d-1) \le d \cdot \text{k-rank}(\mathbf{X})$$

$$\min_{\mathcal{M}} \sum_{ijk} (a_{ijk} - m_{ijk})^2 \text{ s.t. } \mathcal{M} = \sum_r \lambda_r \mathbf{x}_r \circ \mathbf{y}_r \circ \mathbf{z}_r$$

Orthogonal symmetric CP is equivalent to symmetric EVD. (Kolda 2015)

Kolda, Math Prog B, 2015; Algebraic geometry: Brachat et al. (2010), Oeding & Ottaviani (2011); Complex: Nie 2015

10/7/2015

BTakeaways: **Optimization for Tensor Decomposition**

- Applications are ubiquitous in data analysis
- Many optimization challenges...

- Nonconvex (but one example of eliminating this)
- NP-hard to determine complexity (i.e., choice of R)
- Add complexity for higher order, higher dimension, constraints, coupled problems
- And opportunities...
 - How much and which data do we need?
 - Choice of objective function
 - Structure in derivatives
 - Structure in problems (e.g., symmetry)

Tamara G. Kolda: http://www.sandia.gov/~tgkolda/

10/7/2015

<u> Kolda - Woudschoten Conference - Zeist</u>

Enron Email Data (Component 4)

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012

Kolda - Woudschoten Conference - Zeist

Enron Email Data (Component 5)

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012

Kolda - Woudschoten Conference - Zeist

$x_{1,1,1} = 1$ $x_{4.2.1} = 1$ $x_{1,4,2} = 1$ $x_{4,5,2} = 1$

- $x_{1,7,3} = 1$ $x_{4,8,3} = 1$ $x_{2,1,4} = 1$
- $x_{2,4,5} = 1$ $x_{5,5,5} = 1$
- $x_{5,8,6} = 1$ $x_{2,7,6} = 1$ $x_{3,1,7} = 1$ $x_{6,2,7} = 1$
- $x_{3,7,9} = 1$ $x_{6,8,9} = 1$

Laderman 1976; Bini et al. 1979; Bläser 2003; Benson & Ballard, PPoPP'15

10/7/2015

Kolda - Woudschoten Conference - Zeist

37

Example 9 x 9 x 9 Tensor of **Unknown Rank**

- Specific 9 x 9 x 9 tensor factorization problem
- Corresponds to being able to do fast matrix multiplication of two 3x3 matrices
- Rank is between 19 and 23 $\Rightarrow \leq$ 621 variables

