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Kolda and Bader, Tensor 
Decompositions and 

Applications, SIAM Review, 
2009 

Tensor Toolbox for MATLAB 
Bader, Kolda, Acar, Dunlavy, 

and others 
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http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1137/07070111X
http://www.sandia.gov/~tgkolda/TensorToolbox/


A Tensor is an d-Way Array 
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Vector 
d = 1 

Matrix 
d = 2 

3rd-Order Tensor 
d = 3 

4th-Order Tensor 
d = 4 

5th-Order Tensor 
d = 5 



Tensor Decompositions are the 
New Matrix Decompositions 
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Singular value decomposition (SVD), 
eigendecomposition (EVD), 

nonnegative matrix factorization 
(NMF), sparse SVD, etc.  

Viewpoint 1: Sum of outer products,  
useful for interpretation 

Viewpoint 2: High-variance subspaces,  
useful for compression 

CP Model: Sum of d-way outer products, 
useful for interpretation 

Tucker Model: Project onto high-variance 
subspaces to reduce dimensionality 

CANDECOMP, PARAFAC, Canonical Polyadic, CP 

HO-SVD, Best Rank-(R1,R2,…,RN) decomposition 

Other models for compression include 
hierarchical Tucker and tensor train. 



CP: Sum of Outer Products 
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Data 
Model:  

CANDECOMP/PARAFAC or canonical polyadic (CP) Model 

Key references: Hitchcock, 1927; Harshman, 1970; Carroll and Chang, 1970 

Factor Matrices 

Optional  
Weights 

Component R 



Acar, Bingol, Bingol, Bro and Yener, 
Bioinformatics, 2007 

Tensor Factorization “Sorts Out” 
Comingled Data  

Frequency 

Ti
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Data measurements are recorded at 
multiple sites (channels) over time. 
The data is transformed via a 
continuous wavelet transform. 

Time Frequency Channel 

Eye Artifact 

Time Frequency Channel 

Seizure 
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Temporal Networks & Analysis 


 


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Conference 

DBLP has data from 1936-2007 
(used only “inproceedings” from 1991-2000) 

Nonzeros defined by: 

Data 10 Years: 1991-2000 

# Authors (min 10 papers) 7108 

# Conferences 1103 

Links 113k (0.14% dense) 
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Let’s look at some components sorted by size  from a 50-component (R=50) factorization… 

Tasks: Principal Components, Multidimensional Scaling, Clustering, 
Classification, Temporal Link Prediction 

# papers by author i at conference j in year k 

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010 



DBLP Component #30 (of 50) 
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Cryptography 

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010 



DBLP Component #19 (of 50) 
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Parallel Computing 

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010 



DBLP Component #43 (of 50) 
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Artificial Intelligence 

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010 



Tensor Factorizations have 
 Numerous Applications 

 Modeling fluorescence 
excitation-emission data 
(chemometrics) 

 Signal processing 

 Brain imaging  
(e.g., fMRI) data 

 Network analysis and link 
prediction  

 Image compression and 
classification; texture 
analysis 

 Text analysis, e.g.,  
multi-way LSI 

 Approximating Newton 
potentials, stochastic  
PDEs, etc. 

 Collaborative filtering 

 Higher-order graph/image 
matching 

Sidiropoulos, Giannakis, 
Bro, IEEE Trans. Signal 

Processing, 2000  

Hazan, Polak, and Shashua, 
ICCV 2005 

Andersen and Bro,  
J. Chemometrics, 2003  

ERPWAVELAB  
by Morten Mørup 
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Furukawa, Kawasaki, 
Ikeuchi, and Sakauchi, 

EGRW '02  

Duchenne, Bach, Kweon, 
Ponce, TPAMI 2011 

Doostan, Iaccarino, and Etemadi,  
J. Computational Physics, 2009 



CP-ALS: Fitting CP via Alternating 
Least Squares 
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Repeat until convergence: 

Step 1: 

Step 2: 

Step 3: 

Convex (linear least squares) 
subproblems can be solved exactly 

+ 
Structure makes easy inversion 

Harshman, 1970; Carroll & Chang, 1970 



CP-OPT: Fitting CP via  
“All-at-once” Optimization 
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 Paatero 1997; Tomasi & Bro 2005, 2006; Acar, Dunlavy, & Kolda 2011; Phan, Tichavský, & Cichocki 2013 

Structured Hessian can be written as  
block diagonal plus low-rank correction 

Acar et al.: Applying first-order methods is faster than NLS and more accurate than ALS. 

• CP-OPT (Acar et al.): 1st-order method, better accuracy than ALS when R is too big 
• CP-NLS (Paatero, Tomasi & Bro): Damped Gauss-Newton, accurate but slow 
• CP-Newton (Phan et al.): Newton method, superior to CP-OPT for high order 

Structured 
Jacobian 



Challenges for CP Optimization 
Problem 

 Nonconvex: Polynomial optimization problem ) Initialization matters 

 Permutation  and scaling ambiguities: Can reorder the r’s and arbitrarily 
scale vectors within each component so long as the product of the scaling 
is 1 ) May need regularization, # independent vars = R(N+P+Q-2) 

 Rank unknown: Determining the “rank” R that yields exact fit is NP-hard 
(Håstad 1990, Hillar & Lim 2009) ) No easy solution, need to try many  

 Low-rank? Best “low-rank” factorization may not exist (Silva & Lim 2006) 
) Need bounds on components 

 Not nested: Best rank-(R-1) factorization  may not be part of best rank-R 
factorization (Kolda 2001) ) Cannot use greedy algorithm 
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# variables = R(N + P + Q) 
# data points = NPQ 

Rank = minimal R to exactly 
reproduce  tensor 



Opportunities for the CP 
Optimization Problem 

 Factorization is essentially unique (i.e., up to permutation and 
scaling) under the condition the the sum of the factor matrix 
k-rank values is ¸ 2R + d – 1 (Kruskal 1977) 

 

 

 If R ¿ N,P,Q, then can use compression to reduce 
dimensionality before solving CP model (CANDELINC: Carroll, 
Pruzansky, and Kruskal 1980) 

 Efficient sparse kernels exist (Bader & Kolda, SISC 2007) 
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k-rank(X) = maximum value k such 
that any k columns of X are linearly 
independent 



Recommend: CP Factorization as 
Optimization Test Problem 

 Optimization test problems with tunable difficulty 
 Vary order (illustration for order d=3) – higher order is more difficult 

 Vary dimension – larger is generally more difficult 

 Vary collinearity (i.e., overlap) in the factors 

 Tensor can be sparse, dense, nonnegative, etc. 

 Factors can be sparse, dense, nonnegative, etc. 

 Can vary the amount of noise 

 And more…missing data, different statistical models, symmetry 
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Collinear 

See function 
create_problem in 

Tensor Toolbox for 
MATLAB 

Noise 



Tensor Factorizations with 
Missing Data? 
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http://www.madehow.com/  c
h

an
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el
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time-frequency channel time-freq experiments 

+  = + 

Can we still do this calculation if 
data are missing? 

Biomedical signal processing 

• EEG (electroencephalogram) signals can be 
recorded using electrodes placed on the 
scalp 

• Missing data problem occurs when…   

• Electrodes get loose or disconnected, 
causing the signal to be unusable 

• Different experiments have over-
lapping but not identical channels 

 Acar, Dunlavy, Kolda, Mørup,  Scalable Tensor Factorizations with Missing Data, SDM’10 



The Missing Data Problem 
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subset of missing entries (white) 

subset of known entries (blue) 

Approaches 
1. Guess reasonable values for the missing elements (e.g., mean) 
2. Expectation maximization: Use current model to generate missing 

data elements, update model, repeat 
3. Ignore missing data in fitting  the model, add regularization if the 

model is underspecified 

Acar, Dunlavy, Kolda, Mørup, SDM’10 and Chemometrics and Intelligent Laboratory Systems 2011 



Brain dynamics can be captured  
even extensive missing channels 
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19 

http://www.madehow.com/ 6
4
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4392 time-freq. 

+  = + 

Number of Missing 
Channels 

Replace Missing 
Entries with Mean 

More Sensible 
Approach 

1 0.98 1.00 

10 0.82 0.98 

20 0.67 0.95 

30 0.45 0.89 

40 0.24 0.65 

19 

Acar, Dunlavy, Kolda, Mørup, SDM’10 and Chemometrics and Intelligent Laboratory Systems 2011 



Brain dynamics can be captured  
even extensive missing channels 
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20 

http://www.madehow.com/ 6
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 c
h

an
n

el
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4392 time-freq. 

+  = + 

Number of Missing 
Channels 

Replace Missing 
Entries with Mean 

Ignore Missing 
Entries 

1 0.98 1.00 

10 0.82 0.98 

20 0.67 0.95 

30 0.45 0.89 

40 0.24 0.65 

20 

Acar, Dunlavy, Kolda, Mørup, SDM’10 and Chemometrics and Intelligent Laboratory Systems 2011 



Brain dynamics can be captured  
even extensive missing channels 
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http://www.madehow.com/ 

channel time-freq experiments channel time-freq experiments 

No Missing Data 30 Chan./Exp. Missing 

6
4
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4392 time-freq. 

+  = + 
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Acar, Dunlavy, Kolda, Mørup, SDM’10 and Chemometrics and Intelligent Laboratory Systems 2011 



Cross-Validation to Determine 
the Number of Components 
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Create H holdout sets: 1,…, H. For each rank r and holdout set h… 
 

Train model: 

Each color 
corresponds to a 

holdout set. 
White is no data. 

Evaluate model  
on holdout data: 

For each rank r, compute average holdout error (or other statistics): 

Problem: Model error always reduces as rank increases, due to more parameters. 
Solution: Hide some data from the model, for independent check. 

Austin and Kolda,  Statistical Rank Determination for Tensor Factorizations, in progress 



Cross-Validation to Determine 
the Number of Components 
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 Create H holdout sets: 1,…, H 

 For r=1,2,… 
 Train model for h =1,…,H 

 

 

 

 Compute error for h =1,…,H 

 

 

 

 Consider mean error 
 

 

 

Example: 10 x 10 x 10 
tensor of rank-2 with 
component sizes of 1 and 
0.1,  with 25% noise. Can 
we tell the difference 
between the second small 
component and noise? 

Austin and Kolda,  Statistical Rank Determination for Tensor Factorizations, in progress 



New “Stable” Approach: Poisson 
Tensor Factorization (PTF)  
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Maximize this: 

By monotonicity of log,  
same as maximizing this: 

This objective function is also known as Kullback-Liebler (KL) divergence. 
The factorization is automatically nonnegative.  



Solving the Poisson Regression 
Problem 

 Highly nonconvex problem! 
 Assume R is given 

 Alternating Poisson regression  
 Assume (d-1) factor matrices are known and solve for the remaining one 
 Multiplicative updates like Lee & Seung (2000) for NMF, but improved 
 Typically assume data tensor A is sparse and have special methods for this 
 Newton or Quasi-Newton method  
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Chi & Kolda, SIMAX 2012; Hansen, Plantenga, & Kolda OMS 2015 



PTF for Time-Evolving 
Social Network 
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recipient 

Data 8540 Email Messages 

# Months 28 (Dec’99 – Mar’02) 

# Senders/Recipients 108 (>10 messages each) 

Links 8500 (3% dense) 

Enron email data from FERC investigation. 

aijk = # emails from sender i to recipient j in month k 

Let’s look at some components from a 10-component (R=10) factorization, sorted 
by size… 

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012 
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Enron Email Data (Component 1) 

Legal Dept; 
Mostly Female 

se
n

d
er

 

recipient 

Each person labeled by  
Zhou et al. (2007) 

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012 



Enron Email Data (Component 3) 
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Senior; 
Mostly Male 

se
n

d
er

 

recipient 

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012 



Coupled Factorizations 

 Applications 

 Biology 

 Gene x Expression x Time 

 Gene x Function 

 Consumer information 

 Consumer x Purchase x Season 

 Consumer x Zip Code 

 CMTF Toolbox (uses Tensor Toolbox) 

 Can do ALS or all-at-once optimization 

 Handles missing data 
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Acar, Dunlavy, Kolda, MLG’11; Acar et al., IEEE EMBC, 2013; Acar et al., BMC Bioinformatics, 2014 



Symmetric Tensor Factorization 

 d = number of modes or ways, N = size of each mode 

 symmetric = entries invariant to permutation of indices 
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Symmetry for 
3-way tensor 

(d = 3) 

Applications of symmetric tensors: diffusion tensor imaging (DTI/HARDI), higher-order 
statistics, higher-order derivatives, relativity, signal processing, etc. 

Nd elements but only 
Nd /d! + O(Nd -1) 
distinct elements 

Best rank-1 approximation Rank-R factorization 

) 



Best Symmetric Rank-1 
Approximation 
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Data Model 

Eliminate ¸: 

Nonlinear Program 

FYI: Generalized Eigenpair 
(Chang, Pearson, Zhang 2009) 

“identity” tensor ) Z-eigenproblem 
“diagonal ones” tensor ) H-eigenproblem 

Qi 2005; Lim 2005; Chang, Pearson, & Zhang 2009 



Adaptive Shifted Power Method: 
Special Optimization on a Sphere 
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Regalia & Kofidis 2002 & 2003; Kolda & Mayo 2012 & 2014 
Han (2012): Optimization formulation; Cui, Dai, Nie (2014): SDP formulation 

Theorem 

Simple fixed point iteration is 
monotonically convergent: 

Creating local convexity on a sphere: 

Use Weyl’s inequality to choose ® 

Positive Stable Basins of Attraction  
for 3x3x3x3 Tensors 



Optimization for Symmetric CP 
Tensor Decomposition 
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# variables = R(N + 1) 
# data points = Nd/d! 

Option 1: Standard least squares 

Option 2: Distinct elements only ) Overall best option for time and accuracy 

Option 3: Ignore symmetry ) 2-100 times faster when it works 

Kolda, Math Prog B, 2015; Algebraic geometry: Brachat et al. (2010), Oeding & Ottaviani (2011); Complex: Nie 2015  

Exact penalty to remove scaling ambiguity 

Orthogonal 
symmetric CP is  

equivalent to 
symmetric EVD. 

(Kolda 2015) 
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Takeaways: 
Optimization for 
Tensor Decomposition 

 Applications are ubiquitous in data analysis 

 Many optimization challenges… 
 Nonconvex (but one example of eliminating this) 

 NP-hard to determine complexity (i.e., choice of R) 

 Add complexity for higher order, higher dimension, 
constraints, coupled problems 

 And opportunities…  
 How much and which data do we need? 

 Choice of objective function 

 Structure in derivatives 

 Structure in problems  
(e.g., symmetry) 
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Tamara G. Kolda: http://www.sandia.gov/~tgkolda/  



Enron Email Data (Component 4) 
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Not Legal 

se
n

d
er

 

recipient 

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012 



Enron Email Data (Component 5) 
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Other; 
Mostly Female 

se
n

d
er

 

recipient 

Chi & Kolda, On Tensors, Sparsity, and Nonnegative Factorizations, SIMAX 2012 



Example 9 x 9 x 9 Tensor of 
Unknown Rank 
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Laderman 1976; Bini et al. 1979; Bläser 2003; Benson & Ballard, PPoPP’15 

• Specific 9 x 9 x 9 tensor factorization problem  

• Corresponds to being able to do fast matrix multiplication of two 3x3 matrices 

• Rank is between 19 and 23 ) · 621 variables 


