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Part 1, Algorithms

From Twitter’s homepage:
Businesses can also use Twitter to listen and gather market
intelligence and insights
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Oreo at Superbowl 2013
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Audi did this slightly earlier
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Influence over time
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Applications

Large-scale, dynamic interaction data arises in, e.g.,
social media
on-line business
text, email, voicemail
epidemiology
neuroscience
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Some Algorithmic Challenges

identify communities
discover other types of structure
categorize the roles of individuals
target key players

numwisc Des Higham Network Dynamics 7 / 45

http://www.mims.manchester.ac.uk/


Matrix Computation for Centrality

Unweighted, with N nodes
Adjacency matrix A(
A2
)

ij :=
∑N

p=1 aipapj counts
paths of length two from
node i to node j

Generally,
(
Ak
)

ij counts the number of walks of length k
from node i to node j . Then(
A + A2/(2!) + A3/(3!) + · · ·

)
ij leads to

(
eA
)

and(
A + α2A2 + α3A3 + · · ·

)
ij leads to (I − αA)−1

to quantify how well information can flow from i to j
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Time Ordered Sequence of Networks
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Lack of symmetry caused by time’s arrow

Aggregation would also overestimate the spread
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Dynamic Walks

Time points t0 < t1 < t2 < · · · < tM

Adjacency matrices A[0], A[1], A[2], . . . , A[M]

Dynamic walk of length w from node i1 to node iw+1:
sequence of times tr1 ≤ tr2 ≤ · · · ≤ trw and a
sequence of edges i1 ↔ i2, i2 ↔ i3, . . . , iw ↔ iw+1,
such that im ↔ im+1 exists at time trm

(Several variations are possible)

Use this to define centrality of a node,
generalizing Katz (1953)
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New Algorithm
Grindrod, Higham, Parsons & Estrada, Phys. Rev. E, 2011

Key observation: the matrix product

A[r1]A[r2] · · ·A[rw ]

has i , j element that counts the number of dynamic walks of
length w from node i to node j , where the mth step takes
place at time trm

Keep track of all such walks and discount by αw

E.g. α2A[0]A[1], α4A[0]A[2]A[3]A[7], α3A[3]A[3]A[9]

This is achieved by

Q :=
(
I − αA[0]

)−1 (I − αA[1]
)−1 · · ·

(
I − αA[M]

)−1

Then Qij is our overall summary of how well information can
be passed from node i to node j
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Dynamic Centrality

We will call the row and column sums

N∑
k=1

Qnk &
N∑

k=1

Qkn

the broadcast and receive communicabilities

generalizes Katz centrality in social networks
involves sparse linear solves
captures the asymmetry through non-commutativity of
matrix multiplication
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Twitter’s Big Hitters
Laflin, Mantzaris, Grindrod, Ainley, Otley, Higham,
Social Network Analysis and Mining, 2013

Listen to tweets containing the phrases
city break, cheap holiday, travel, insurance,
cheap flight plus two brand names
From 17 June 2012 at 14:41 to 18 June at 12:41
0.5 Million Tweeters/Followers
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Dynamic Broadcast Centralities
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Out Degree

Twitter account with fourth highest out degree is a very
poor dynamic broadcaster
Closer inspection⇒ an automated process

Five social media experts were given the Twitter data and
asked to rank the accounts according to importance

We found that dynamic centrality measures are hard to
distinguish from human experts
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Downweighting over time
Grindrod & Higham, SIAM Review (Research Spotlights) 2013

Motivation: News goes stale, messages become irrelevant,
viruses mutate, . . . old information is less important
The algorithm can be generalized naturally to

S [k ] =
(
I + e−b∆tkS [k−1]

) (
I − α A[k ]

)−1 − I

Here,
(
S [k ]
)

ij counts the number of dynamic walks from i to j
up to time tk , scaled by

a factor αw for dynamic walks of length w
a factor e−bt for walks that begin t time units ago

We have a new parameter, b:
b = 0 is the previous algorithm
b =∞ is Katz on the current network
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Continuous Time
Grindrod & Higham, Proc. Roy. Soc. A, 2014

Discretizing in time and binarizing is convenient, but
∆t too large can overlook or smear events
∆t too small may introduce redundant computations
and give a false impression of accuracy

So use A(t) over continuous time

Define communicability by taking ∆t → 0 limit

Key idea: use the scaling (I − αA(k∆t))−∆t

Justification: A constant⇒ correct behaviour

(I − αA)−
1
2 ∆t (I − αA)−

1
2 ∆t = (I − αA)−∆t
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Continuous Time

7→ Matrix ODE for the evolution of pairwise communicability

U ′(t) = −b(U(t)− I)− U(t) log
(

I − αA(t)
)

Here:
U(t)ij is the communicability between nodes i and j
log is the matrix logarithm
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IEEE VAST 2008 Challenge (ficticious data)

Voice calls from a controversial socio-political movement
400 IDs
10 days
each call: time stamp (hour/minute) plus duration (sec)
a key inner circle exists with a single ringleader

Based on published challenge entries
inner circle of five and ringleader have been identified
these five people change IDs at end of day 6

We take A(t) to be symmetric and use MATLAB’s ode23
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Unsupervised Analysis: up to Day 7
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Arsenal 5 - 2 Spurs, Nov. 2012, kick off 12:45
850,000 tweets in 4 hours. Up to 24,000 tweets per minute
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Adebayor: volume of tweets

0

2000

4000

6000

8000

10000

12000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0
1

1
0
5

1
0
9

1
1
3

1
1
7

1
2
1

1
2
5

1
2
9

1
3
3

1
3
7

1
4
1

1
4
5

1
4
9

1
5
3

1
5
7

1
6
1

1
6
5

1
6
9

1
7
3

1
7
7

1
8
1

1
8
5

1
8
9

1
9
3

1
9
7

2
0
1

2
0
5

2
0
9

2
1
3

2
1
7

2
2
1

T
w

e
e
ts

 p
e

r 
m

in
u

te

Minutes after 1200 GMT

North London Derby: 17 November 2012 - Adebayor Tweets
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Adebayor: sentiment across time
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Adebayor: sentiment weighted by influence
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Current Challenge: Spikes in activity

Estimate who will be busy during a spike
Explain the 10-20 minute half-life
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Current Challenge: Discovering Hierarchy
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Part 2, Modelling: Next Time . . .

Part 2 will look at mathematical models for dynamic
networks
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Part 2: Network Models

First: static network models

Model: typically a probabilistic rule for joining pairs of
nodes.

Useful if we want to know whether a given network has
some unusual structure
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Influential Random Network Models
Erdös-Rényi, 1959, ER(p) Watts-Strogatz, 1998

Barabási-Albert, 1999
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Geometric, e.g,. Penrose 2003
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Range-Dependent, Grindrod 2002

0 1 2 i j

Prob. f(|i−j|)
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Models as Test Matrices

Taylor & Higham, ACM Trans. Math. Software, 2009
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Dynamic Network Models

Some modelling challenges. . .

understand mechanisms
calibrate parameters and compare models
characterize business as usual
forecast future behaviour
simulate what-if scenarios
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Models for Dynamic Networks

Motivated by digital human interaction,

fixed set of nodes
edges that may appear and disappear over time

Further, assume that over discrete time points
dynamics are Markovian
each edge can be treated independently
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Triadic Closure
Grindrod, Higham & Parsons, Internet Mathematics, 2012

Friends of friends become friends

Given N people, “friending” and “unfriending”
Let A[k ] be the adjacency matrix at time k

Edge death probability is a constant ω ∈ (0,1)
Edge birth probability between nodes i and j given by

δ + ε
((

A[k ]
)2
)

ij

where 0 < δ � 1 and 0 < ε(N − 2) < 1− δ

Consider N = 100, ω = 0.01, ε = 5× 10−4, δ = 4× 10−4
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Triadic closure: start with ER(0.3)
time=0 time=50 time=100 time=150

time=200 time=250 time=300 time=350

time=400 time=450 time=500 time=550

time=600 time=650 time=700 time=750

Edge density at time 750 is 0.712
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Triadic closure: start with ER(0.15)
time=0 time=50 time=100 time=150

time=200 time=250 time=300 time=350

time=400 time=450 time=500 time=550

time=600 time=650 time=700 time=750

Edge density at time 750 is 0.051
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Mean field analysis for δ + ε
((

A[k ]
)2
)

ij

Ergodicity and symmetry⇒ Erdös-Rényi limit: every edge
present with probablity p?

Heuristic mean field approach: insert the ansatz
“A[k ] = ER(pk )” into the model to obtain

pk+1 = (1− ω)pk + (1− pk )(δ + ε(N − 2)p2
k )

Generically: three real roots

Two are stable, one is unstable

N = 100, ω = 0.01, ε = 5× 10−4, δ = 4× 10−4
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N = 100, ω = 0.01, ε = 5×10−4, δ = 4×10−4

Stable fixed points at p? = 0.049 and p? = 0.721
Unstable fixed point at p? = 0.229
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Mean-field vs. simulation from ER(0.4)
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Four simulations from ER(0.23)
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Stable fixed points 0.049 & 0.721 Unstable 0.229
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Calibration/Inference

Mantzaris & Higham, in Temporal Networks, Springer, 2013, edited by
P. Holme and J. Saramäki

Given model parameters, we can compute the probability of
observing the data: likelihood

Tests on synthetic data show that we can correctly infer the
triadic closure effect

Wealink data from Hu and Wang, Phys. Lett. A, 2009.
26 Million time stamps, over 841 days
0.25 Million nodes
No edge death
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Growth of Edges
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Evidence for ε > 0 in this dynamic network
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Other Edge Dynamics?

higher order motifs
centrality (rich get richer)
hierarchy (chain of command)
gravity models (relative location)

Could also couple topology with state of node
homophily (like-minded nodes associate)
heterophily (opposite of homophily)
social balance (my enemy’s enemy is my friend)

In principle, model comparison can be used to determine
which one best fits the data
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What’s Next?
Algorithms

efficient communicability computation
detection of communities over time

Modelling/Calibration/Prediction
explain 20 minute half-life for Twitter spike-decay
compare social science hypotheses (triadic closure,
homophily, heterophily, hierarchy)
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