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Divide et impera 



around 1990 ……..  basic methods, mesh decomposer technology 

FETI, Primal Schur (Balancing) method 

1990-2001   .……..  improvements 
•! preconditioners, coarse grids 
•! application to Helmholtz, dynamics, non-linear ... 

Center for Aerospace Structures 
CU, Boulder 

When splitting the problem in parts and asking different cpu‘s (or threads) to take 
care of subproblems, will the problem be solved faster ? 

wikipedia 

Here the concepts are outlined using some mechanical interpretation. 
For mathematical details, see lecture of Axel Klawonn. 
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in Variational Methods for the solution of problems of equilibrium and vibrations 
    Bulletin of American Mathematical Society, 49, pp.1-23, 1943 

R. Courant 

Here the concepts are outlined using some mechanical interpretation. 
For mathematical details, see lecture of Axel Klawonn. 



1.! Non-overlapping DD: Primal and Dual approaches 

2.! The FETI saga 

•! FETI-1 (natural coarse grid – lumped preconditioner) 

•! FETI-2 and FETI-DP (auxiliary coarse grids) 
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Domain Decomposition: Primal / Dual Assembly 

signed Boolean matrices 



Domain Decomposition: Primal / Dual Assembly 

Block-diagonal notation 

Iterate on interface dofs  

solve for internal dofs 

end (when interface in equilibrium) 

Iterate on interface forces  

solve for domain dofs 

end (when interface compatible) 
 

FETI  
(Finite Element Tearing and Interconnecting)  

[Farhat- Roux, 91] 

Iterate on interface forces  

solve for domain dofs 

end (when interface compatible) 

Iterative solution of interface problem 

Iterate on interface dofs  

solve for internal dofs 

end (when interface in equilibrium) 

Primal Schur and BDD 
[Letallec et al., 91] 
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Solve for internal dof u i 

Primal Schur: iteration 

Primal Schur: iteration 
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C.G. on u   

Local Neumann   

Preconditioning   

Local Dirichlet   
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Dual Schur (FETI): iteration 
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jump on interface 
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Iterate on interface forces  

solve for domain dofs 

end (when interface compatible) 
 

Dual Schur (FETI): iteration 

!

jump on interface 

u(1) u(2)

!u !u(1) !u(2)

!f (1) !f (2)

              + 
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!f (1) !f (2)
= 

C.G.    Preconditioning   

Local Neumann   Local Dirichlet   



The primal and dual Schur complement approaches are very similar. 
 
Most of the “tricks” used in the one method can be applied for the other.  
So which method to use is nearly a matter of religion … 
 

Here we outline only the dual approach (FETI)  
but one finds many publications on similar developments for the primal approach. 

 
 [ Klawonn 02, Gosselet et al. 03, Gosselet-Rey 06] 

 
There exists some subtle differences such as 
•! treatment of cross-points (interface nodes on more then 2 domains) 
•! determination of an initial estimate 
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Dual Schur (FETI): iteration 

!

jump on interface 

u(1) u(2)

!u !u(1) !u(2)

!f (1) !f (2)

              + 

!"

!f (1) !f (2)
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C.G.    Preconditioning   

Local Neumann   Local Dirichlet   

!

jump on interface 

u(1) u(2)

              + 

!u( ) !u( )

!f!f! (1) !f!f! (2)

Solve   
      

  Compute   
   

jump on interface 
   

Solve   
   

!u(1) !u(2)
   

Compute   
      

Compute   
      

Dual Schur (FETI): iteration 

C.G.    Preconditioning   

Local Neumann   Local Dirichlet   

!

jump on interface 

u(1) u(2)

!u !u(1) !u(2)

!f (1) !f (2)

              + 
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!f (1) !f (2)
= 

jump on interface !u(1) !u(2)

Precondition with 
 
    
   

Iterate on 
 
 
 
 
   
   

or equivalently, considering S!
Schur complement on interface 
 
 

 
 
 
 

„ approximate the sum of the inverse by the inverse of the sum „ 
 

FI interface flexibility 



Dual Schur (FETI): lumped preconditioner 

!

jump on interface 

u(1) u(2)

C.G.    Preconditioning   

Local Neumann   Local lumped Dirichlet   

!u
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!u(1) !u(2)

!f (1) !f (2)

Dual Schur (FETI): lumped preconditioner 

!u(1) !u(2)

!f (1) !f (2)

Local lumped Dirichlet   

!u(1) !u(2)

!f!f! (1) !f!f! (2)

Solve   

Compute   
  

Compute   
      

C.G.    

!

jump on interface 

u(1) u(2)

Preconditioning   

Local Neumann   

!u

!"



The basic FETI and its natural coarse grid 

!

u(2)
? 

Not enough constraints 
Badly defined local problems 
Singular K 

!

u(2)
? 

Force the inner problem to have a bit of 
compatibility to make it regular: at every 
iteration enforce a weak compatibility  

The basic FETI and its natural coarse grid 

T such that local problems are well posed 
!!weak coupling of domains  
!!small coarse grid 

This interpretation of FETI explained in [Rixen et al. 01] 



!

? 

The basic FETI and its natural coarse grid 

How to choose T such that the inner problem is well-posed?  

If T=0, the problem is singular: nullspace = Rigid Body Modes of the floating domains 

So if there exists a nullspace for the inner problem, it must have the form: 

 = Rigid Body Modes of the floating domains 

problem, it must 

How to choose T  ? such that  
imposing   
implies    

 
must be full column rank 

!

? 

The basic FETI and its natural coarse grid 

A „natural“ choice for a minimum weak compatibilty is 

Note: BR is full column rank  
(otherwise singular global problem) 
[Rixen 98] 

 
must be full column rank 



!
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The FETI and its natural coarse grid 

One requires at each iteration on the interface forces ! that the compatibility  
is satisfied on average (trace of the rigid-body modes) – „Natural coarse grid“ 
 
The average compatibility is enforced by determining the interface forces in Image(BR) 
such that the interface forces are orhtogonal to null(K) – „self-equilibrated“ 

enforced by projecting the iterates such that  

FETI-1 [Farhat-Roux 91] 

The compatibility must be satisfied in the subspace BR at every iteration 
!! „coarse grid“ 
!!ensures that convergence does not deteriorate when nbr. of subdomains increases   

FETI: iteration with floating domains 

C.G.    Preconditioning   

Local Neumann   Local Dirichlet   

!
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!u !u(1) !u(2)

!f (1) !f (2)
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!f (1) !f (2)
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add some BR to ! (self-equil.)  
  

add some R  to u  : RTBu=0    
 



FETI: iteration with floating domains 

C.G.    Preconditioning   

Local Neumann   Local Dirichlet   

!

jump on interface 

u(1) u(2)

!u !u(1) !u(2)

!f (1) !f (2)

              + 
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!f (1) !f (2)
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jump on interface 

u u

Project   
                 +               + 
Project   
   

such that   
      

Compute and project   
   

such that   
      

   

Find „a“ solution 
   

u(1) u(2)
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•! FETI-1 (natural coarse grid – lumped preconditioner) 

•! FETI-2 and FETI-DP (auxiliary coarse grids) 

3.! FETI for heterogeneous problems 

•! Scaled preconditioners 

•! FETI-Geneo (bad modes) 
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Sometimes, more compatibility constraints  
need to be satisfied exactly at every iteration  
to ensure good convergence on interface 
 
(e.g. corners for bi-harmonic problems: plates, shells) 

C is a Boolean matrix  
„picking out“ the compatibility 
conditions at corners 
 
µ : interface forces at corners 

from FETI-1 to FETI-2  

28 

 
It defines an auxilary („non-natural“) coarse grid : Deflation 

FETI-2 (two-level FETI) 
[Farhat-Mandel 98] 

 
 
The local problems with weak compatibility can be seen as an inner FETI problem 

from FETI-1 to FETI-2  
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FETI-2 
If there are enough corner links to fix the subdomains 
the �average� compatibility is not required for the regularity of the inner problem:  

from FETI-1 to FETI-2 ... to FETI-DP 

30 

This partial compatibility can be enforced by assembly on the corners,  
and iterating only for the interface forces  for the remaining interface nodes: 

partially assembled 
and regular  

interface forces for 
non-assembled interface  [Farhat et al. 00] 

[Farhat et. al 01] 

FETI-DP 

from FETI-1 to FETI-2 ... to FETI-DP 
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3
1

smaller coarse grid 

Smaller cost per iteration 

Slower convergence 

•! No need to find local nullspace   
•! Less connecting variables at corners 

FETI-2 FETI-DP 
•!  �average� compatibility not enforced 

+ 

•!  only point-wise compatibility enforced in inner poblem  

“non-smooth� coarse grid 

- 

Advantage of FETI-DP vs. FETI-2 

FETI-DP scalable in 2D 
       NOT scalable in 3D 

32 

FETI-DP not scalable in 3D                     

Episode 4: yet another coarse grid to FETI-DP 

add an auxiliary coarse grid  

scalable for several  
“smooth” choices of G  

(see e.g. [Farhat et. al 01] 
               [Klawonn-Widlund 2006] 
               [Klawonn-Rheinbach 2007] ) 

•! If G=BR , FETI-DP mathematically equivalent to FETI-2 
•! avoids having to deal with floating domains  

+ no numerical issue when detecting singularity 
-  no profit from a „natural“ coarse grid  



The FETI family saga - Summary 

33 

FETI-1 :  
. Dual assembly,  
. CG on interface forces,  
. natural coarse grid  
  of rigid body modes 

    
 
 
FETI-2 :  
. additional auxiliary  
. coarse grid (Deflation) 

     
 
 
 
 
FETI-DP : 
. enough compatibility enforced  
in a primal way so that local  
problems are regular 
. additional smooth coarse 
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From previous slides, 
 
FETI-1  
solves iteratively for the interface forces  
while satisfying a weak “natural” compatibility at each iteration 

Bloc diagonal of local  
non-assembled operators  

signed Boolean  
(interface compatibility)  

interface forces 
(Lagrange multipliers) 

rigid body modes  
of floating domains 
(nullspace) 

inner problem  
with weak campatibility  

Dual Schur (FETI): iteration 

!

u(1) u(2)

!u !u(1) !u(2)

!f (1) !f (2)

              + 

!"

!f (1) !f (2)
= 

C.G.    Preconditioning   

Local Neumann   Local Dirichlet   

add some R  to u  : RTBu=0    
 

add some BR to ! (self-equil.)  
  



! u 
( 1 ) 

! u 
( 2 ) 

! f 
( 1 ) 

! f 
( 2 ) 

! u 

! ! 

Preconditioning   

rubber Steel 

!u

!"

!u(1) !u(2)

!f (1) !f (2)

Preconditioning for heterogeneous Problems 

When the problem is heterogeneous, modify the preconditioner:   

assume the exact displacement  
is closer to the stiff part 

assume interface force on the stiff side  
is closer to the exact interface forces 

“lumped-scaling” scaling according to local stiffness 
[Rixen-Farhat 99] [Klawon at al. 02] 

38 

8 X 8 subdomains 

2 materials: 
       E  /E  = 4096 1 2 

80 X 80 plane stress elements 

Convergence:  
10     on primal residual -8 

Checkerboard problem 

20 iterations if k-scaling 

FETI works for heterogeneous problems ... 
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Reentry vehicle (SANDIA) 
[Bhardwaj, Day, Farhat,  
  Lesoinne, Pierson, Rixen], 2000 

FETI with scaling: 
 

  250 CPU:  370 sec 
 

 500 CPU:  160 sec  

1 000 000 d.o.f 
Highly heterogeneous 

Needed to partition according to the materials ! 

FETI works for heterogeneous problems ... 
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Steel cables, rubber, thin structures ..... 

Collaboration with U.Paris VI / Michelin : N. Spilane, F. Nataf, V. Dolean, P. Hauret 

But then .... the really hard problems: 
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When decomposed into slices,  
 we have the classical „Schwarz 

High heterogeneties ALONG the interface ! (scaling does not help) 

-Wälder kirsch“ problem  
 

But then .... the really hard problems: 
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Tire simple test case 

All the known tools of FETI are of no help .... 

20 40 60 80 100 120 140 160 180 200 0 10 -12 

10 -10 

10 -8 

10 -6 

10 -4 

10 -2 

10 0 

10 2 

FETI iterations 

R
el

at
iv

e 
eq

ui
lib

riu
m
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rr

or
 all different options in FETI ... 

bad !! 



Why does the scaled Dirichlet preconditioner not work  
for heterogeneities ALONG the interfaces ? 
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! u 
( 1 ) 

! u 
( 2 ) 

! f 
( 1 ) 

! f 
( 2 ) 

! u 

! ! 

Preconditioning   

rubber Steel 

!u

!"

!u(1) !u(2)

!f (1) !f (2)

Scaling does not help since it looks only at heterogeneities ACROSS the interface 

!u(1) !u(2)

!f (1) !f (2)

! ! 

!u

The Dirichlet preconditioner, by construction,  
does not know anything about the ASSEMBLED interface !! 

Finding the bad modes on the interface 

a=1 

„bad modes“ 
= 

behavior of the assembly  
that is important for the solution 

but cannot be seen by an isolated subdomain  

www.imdb.com 

? 

interface stiffness for 
an isolated subdomain 

~ assembled interface stiffness  
   seen by one subdomain 

Dirichlet preconditioner 
~„assembled“ interface stiffness 



Finding the bad modes on the interface 
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? 

Build the GenEO eigenvalue problem  
(called Geneo because the idea originates from the Generalized Eigenvalues in the Overlap 
developped for Schwarz [Nataf et al. 11], [Spillane et al. 13], [Dolean et. al 12]) 

The bad modes are those with low eigenvalue. [Spillane-Rixen 13] 

FETI-GenEO 

 
The related interface force                   are treated in auxiliary coarse grid (FETI-2)                     

Bad modes: example 

First modes : 

3 rigid body modes (already in coarse grid of FETI, so not in Geneo coarse grid) 

1. 2. 3. 



First modes : 

... represent quasi-rigid motion of hard layers ! coarse grid is a model of total „skeleton“  

... 

Bad modes: example 

4. 5. 6. 7. 

modes important  
for global response 

do not play an important  
role in global response 

Only first 6 modes are really bad! 

Bad modes: example 



FETI-Geneo: results 

E 2 E 1 

a=1 

b 

E1/E2=1e-5 

Condition # of prec.deflat. operator 
# of modes in coarse grid 

More results and mathematical analysis in [Spillane-Rixen 13] 
 

The Geneo coarse grid guarantees robustness ! 

FETI-Geneo 
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•! The Geneo coarse grid allows robust convergence for hard problems: 

o! heterogeneity along the interface 
o! bad aspect ratios 
o! jagged interface decompositions (observed) 

•! Not easy to know a priori what the optimum size of the Geneo coarse grid is 

•! Computing the bad modes (e.g. by a Krylov-based method) requires solving 
many Dirichlet problems 

•! The bad modes can be computed in parallel (one e.v.p per domain) 
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Heterogeneities along interface: 
What is wrong with FETI ?? 

!

jump on interface 

u(1) u(2)

C.G.    Preconditioning   

Local Neumann   Local Dirichlet   

!u !u(1) !u(2)

!f (1) !f (2)

              + 

!"

!f (1) !f (2)
= 

the best combination of the 
interface forces is only a 

wilde guess based on 
unassembled interface info 

wouldn‘t it be better to 
let the CG decide how 

each individual force 
contributes? 



!

jump on interface 

u(1) u(2)

C.G.  Preconditioning   

Local Neumann   Local Dirichlet   

!u !u(1) !u(2)

!f (1) !f (2)

IDEA: Recycle the maximum information 
computed in the preconditioner 

!f (1)
!f (2)

!

!f!f! (2)

u

!

!f!f!

u(2)

!f!f! (1)FETI-S !
(Simultaneous search directions)!

•! first idea in [Rixen 97] for 2 domains!
•! generalization and e"cient 

implementation in [Gosselet et al. 14 ] !

!! BLOCK C.G. 
  

The „Schwarz – wälder kirsch“ problem  
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N domains = 8,  
E1/E2 = 1e-5 
FETI 
FETI-S 
Preconditioner: Dirichlet 

E 2 E 1 

a=1 

b 



Convergence of FETI and FETI-S 
! "! #! $! %! &! '!

"!−"!

"!−&

"!!

"!&

! "! #! $! %! &! '!
"!−"!

"!−&

"!!

"!&
co

m
pa

tib
ili

ty
 e

rr
or

  

FETI 

! " # $ % & ' ( )
!*−"

!**

!*"

!*$

! " # $ % & ' ( )
!*−&

!*−$

!*−"

!**

FETI-S 

Magic? but local direction of descent  
 ! only ~ 3X9 Neumann Problem /domain (Block solves) 
 ! only 9 Dirichlet Problems / domain 

9 X 8 = 72 directions of descent 

Magic ! 

Iteration number 
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E 2 E 1 

a=1 

b 

Ndomains  = 4 X 8 = 32,  
E1/E2 = 1e-5 
FETI 
FETI-S 
Prec: Dirichlet 
  

The „Schwarz – wälder kirsch“ problem 
No piece of cake ....  
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Convergence of interface problem 

Relative compatibility error (Dual residual) 

Iteration number 

FETI 

FETI-S 

More results and discussion on implementation in [Gosselet et al. 14] 

Convergence of interface problem 

More results and discussion on implementation in [Gosselet et al. 14] 

1.(25 Domains, 2e6 dofs) 

1. 

2. 

3. 

2.(25 Domains, 2e6 dofs) 3.(50 Domains, 10e6 dofs) 
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homogen.
Layer

Band
homogen.

Crack
homogen.

Standard
FE2

Momentum balance

Displacement compatibility

!!! � """ �

L2 � � l2
L1 � l1

Global-
Local

Coarse-
graining
of cracks

HIERARCHICAL CONCURRENT

Micro

Macro L1

L2

l1

l2

Continualization

Homogenization

UpscalingDownscaling

Strong coupling

Variational

Domain decomposition

STRONG COUPLING

L � � l L � l

volume
Coupled

DECOUPLED WEAK COUPLING

Structure of computation

Scale separation

Figure 1: Classification of multiscale strategies based on the scale separation concept and structure of computation.
Lengths L and l refer to macro and microscales, respectively.

and lower scales are completely separated (L � � l) whilst in the latter they remain coupled (L � l). In addition, the

structure of computation, as suggested by Belytschko and Song [3], is considered as a secondary criterion to make a

subdivision of techniques. Consequently, one can distinguish between decoupled (or sequential), weak coupling, and

strong coupling multiscale techniques. The following overview is based on this secondary criteria since it allows to

distinguish more accurately between up-to-date established and emerging techniques.

2.1 Decoupled (or sequential) techniques

In these approaches, information is passed in one direction from the microscopic (or mesoscopic) to the macroscopic

level. This information exchange is performed as a preprocessing step before the macroscopic analysis is initiated.

Since the flow of information is performed only once at the beginning of the analysis, these techniques extract a

3

Overview of multliscale approaches 

[Lloberas-Valls 12] 



Work from Oriol Lloberas-Valls (now Cimne, UPC, Barcelona) 
supervised by L.Sluijs, A.Simone (TU Deflt) & D. Rixen (TU München) 
[Lloberas-Valls et al., 11-12-12]    

FETI in multiscale computation 

Advantage of FETI over BDD:  
can handle non-matching meshes  

fine/detailed 

coarse/homog. 

non-Boolean for non-conforming interface 
(Mortar, collocation ...) 

FETI in multiscale computation 

Coarse resolution with effective 
 (homogenized) elastic properties 

When stresses are low  
(no damage likely to occur) 

Refine ONLY critical domains 
(become non-linear due to material) 

When the stress level indicates  
that damage could occur, refine!  

Adaptive multiscale strategy for increasing load 



FETI in multiscale computation 

Reequilibrate after refinment 

FETI in multiscale computation FETI in multiscale computation 

due to interface high heterogeneity,  
weak compatibility condition with special stiffness weihgting  
[Lloberas-Valls et al., 12]    
 

Example 1 – Fibers in matrix 



FETI in multiscale computation 

Example 1 

FETI in multiscale computation FETI in multiscale computation 

Example 2: concrete-like specimen  



FETI in multiscale computation 

Example 2 

FETI in multiscale computation 

Example 2 

If increasing the number of domains 
 ! the solution is (nearly) not changing (objectivity) 
 ! the effectivness increases (even less non-linear and fine domains)   



FETI in multiscale computation 

•  Efficient concurrent multiscale method  
    (non-linear only where needed, linear domains reused) 
 
•  good  accuracy compared to fully refined models 

•  more research needed to improve effectiveness  
•  reuse of search directions for different load steps when domains change 
•  preconditioners and coarse grids  
•  ... 
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