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Introduction

Many schemes are being developed for numerical wave
simulations that are not based on (piecewise) polynomial
approximations. A few are:

o UWVF: the Ultraweak Variational Formulation

o Cessenat and Deprés, 1994, 1998
e Monk, Huttunen, Hiptmair

e PUFEM: partition of unity finite element method

o Babuska and Melenk, 1997
@ Plane wave basis in integral equations

o de La Bourdonnaye 1994, Abboud, Perrey-Debain, Trevelyan
@ Method of fundamental solutions

e Barnett and Betcke, 2008, 2010

e WBM: the Wave Based Method (Desmet, 1998)
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Some observations

These schemes have several things in common:
@ oscillatory basis functions: plane waves, Bessel functions,
fundamental solutions

o Trefftz-type methods: approximate PDE solution using basic
solutions of the same PDE!

@ high-order convergence
@ small number of degrees of freedom

e they often exhibit (extreme) ill-conditioning, yet high
accuracy

@ (they often involve having to evaluate highly oscillatory
integrals)

! Trefftz, 1926: Ein Gegenstiick zum Ritzschen Verfahren. Internat. congress on Applied Mechanics, Ziirich:
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Why are oscillatory problems hard?

Three things make life difficult when oscillations increase:

@ Many degrees of freedom (dof) are required just to be able to
represent the solution
e ‘resolving the oscillations’
@ Quite often, even more dof's are needed to solve a problem

o due to pollution or dispersion errors®

© Fast solvers for low-frequency problems typically fail (or need
significant adjustments) for high-frequency problems

e e.g. multigrid

2Babuska and Sauter, SIAM Review, 2000: Is the pollution effect of the FEM avoidable for the Helmholtz

equation considering high wave numbers?

[DEET N [TV Il Non-polynomial discretizations



Non-polynomial discretizations

These methods exhibit ill-conditioning

lll-conditioning is usually problematic.

What does it mean for Ax = B?
@ no iterative solvers
@ A is singular. Hopefully B lies in the range of Al
@ If so, there is no uniqueness: many solution vectors x.

@ For each possible solution vector, the residual Ax — B is small.

Can we exploit the redundancy and cope with the
ill-conditioning?
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The Wave Based Method (WBM)

Consider the Helmholtz equation

Au+Ku=0

@ Discretize on a convex and bounded domain Q
@ using a set of solutions on a bigger bounding box S

e If the desired domain is not convex: subdivide into (few)
convex subdomains
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A WBM simulation of a vibro-acoustic problem

The full method is more capable:
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WBM: basis functions

Using a bounding box with lengths L, and L,, we write the
pressure as

o0 oo
p(x,y) = Z a COS(kxllx)e*"ky’ly + Z b/e*"kX’2 cos(kyiny)
=0 =0

with

2
ket k) = | ooy k2= (=
( /1, yll) Lx, (Lx)

It\? Ir
(ksi2, kyr2) = ==y k2 — <> T
g Ly) Ly

Note that k7 + k2 = k2.
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WBM: discretization

A weighted residual formulation (Galerkin) leads to:

Ax =B
with a highly ill-conditioned matrix A and where B corresponds to
the boundary condition.

@ entries of A are computed accurately (quadrature)
@ a direct solver is used. ..

@ ...and the solution satisfies Helmholtz and very accurately
matches the boundary condition.

Why?
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Preliminary analysis

Can one approximate solutions of Lu = 0 on Q by solutions of
Lu=0o0on $D>07

@ For a second-order elliptic operators L: yes.
P. Lax, 1956, A stability theorem for solutions of abstract
differential equations, and its application to the study of the
local behavior of solutions of elliptic equations.

@ Yes in more general settings too:
F. Browder, 1962, Approximation by solutions of partial
differential equations.

@ No convexity requirement . ..
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Convexity: why

What is the extension of u on Q
to ol on S7?

The continuation of v outside Q (for analytic ) may develop
singularities for two reasons:3

@ singularities due to the analytic continuation of the boundary
data f

@ singularities due to the shape of 0%

Avoid 2 by using a convex domain. If not: slow convergence.

3R. F. Millar, 1980, The analytic continuation of solutions to elliptic boundary value problems in two

independent variables
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More questions

To which extent can solutions be
concentrated in Q or in S\ Q7

Are there solutions to Lu =0 on S that are small(ish) on Q
but large on S\ Q7

@ How small can they possibly be?

@ What is their discrete norm in the representation in our basis
on 57

@ compactly supported solutions are impossible

@ Questions relate to singular values and vectors of the
discretization matrix A.
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Approximation by Fourier series

Example: For Q C §:=[0,1]™
@ approximate f on Q by
Fourier series fs on S

o find best approximation in
L2(Q) norm:

min || — fs||q
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Approximation by Fourier series

Example: For Q C §:=[0,1]™
@ approximate f on Q by
Fourier series fs on S

o find best approximation in
L2(Q) norm:

min || — fs||q

@ Does extension of f from Q to S always exist? Yes. Whitney
extension problem.
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Approximation by Fourier series

Example: For Q C §:=[0,1]™
@ approximate f on Q by
S Fourier series fs on S

o find best approximation in
L2(Q) norm:

min || — fs||q

@ Does extension of f from Q to S always exist? Yes. Whitney
extension problem.

@ Is it unique? No. Restriction of Fourier series on S to Q
constitutes a frame for L2().
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Recent results

Fourier extension/Fourier continuation
@ origin in Fictitious Domain methods or Embedded Domain
techniques for PDEs
o Boyd 2002, Bruno 2004: the Fourier extension problem
@ H. 2009: analysis of exact solution in 1D

@ Adcock, H. 2014: Fourier extensions are optimal for
representing oscillatory functions

@ Adcock, H., Martin-Vacquero, FoCM, 2014: proof of
numerical stability

@ Matthysen, H.: Fast construction of Fourier extension in 1D

@ Lyon and Bruno, Lyon: time-steppers for PDEs, fast routine
for special case
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On the representation of domains

Approximating functions on a general domain (2 is hard:

@ Is the domain connected? Punctured? Open, closed or both?
@ The boundary 02 may have corners, cusps, ...

@ What is the dimension of Q7

o Efficient spectral approximation schemes known only for
tensor-product domains
e squares and rectangles, cubes, torus, ...
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On the representation of domains

Approximating functions on a general domain (2 is hard:

@ Is the domain connected? Punctured? Open, closed or both?
@ The boundary 02 may have corners, cusps, ...

@ What is the dimension of Q7

o Efficient spectral approximation schemes known only for
tensor-product domains
e squares and rectangles, cubes, torus, ...

Representing a domain by approximating its boundary is very
restrictive.
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The characteristic function

The characteristic function C(Q2) turns out to be useful:

1, if (x,y)€eQ,
0, otherwise.

C(X,y)Z{
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The characteristic function

The characteristic function C(Q2) turns out to be useful:

10 (x,y) €Q,
Clxy) = { 0, otherwise.

Examples
@ opencircle: C(x,y)=x>+y>-R2<0
@ Mandelbrot set:
C(x,y) = iteration z,1 = z2 + (x + iy) remains bounded
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The characteristic function

The characteristic function C(Q2) turns out to be useful:

10 (x,y) €Q,
Clxy) = { 0, otherwise.

Examples
@ opencircle: C(x,y)=x>+y>-R2<0
@ Mandelbrot set:
C(x,y) = iteration z,1 = z2 + (x + iy) remains bounded

We represent 2 by implementing C(Q2).
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Advantages

Implementing the characteristic function has many advantages:
@ Very flexible, very general. No domain is a priori excluded.
@ Boundary can be anything, no need to represent it.

© Simple arithmetic, e.g:

Q=ANB = C(Xay):CA(va) and CB(va)
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Implementing the characteristic function has many advantages:
@ Very flexible, very general. No domain is a priori excluded.
@ Boundary can be anything, no need to represent it.

© Simple arithmetic, e.g:
Q=ANB = C(Xay):CA(va) and CB(va)
@ Implicit definitions of domains can be used, e.g.

C(x,y)=f(x,y) >c.
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Advantages

Implementing the characteristic function has many advantages:
@ Very flexible, very general. No domain is a priori excluded.
@ Boundary can be anything, no need to represent it.
© Simple arithmetic, e.g:

Q=ANB = C(Xay):CA(va) and CB(va)
@ Implicit definitions of domains can be used, e.g.
C(x,y)=f(x,y) >c.

O It is easy to generate points that belong to Q.
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Least squares approximation

What does least squares approximation require?

Find
N

f(Xv.y) ~ Zci¢i(xay)

i=1

which minimizes

Z (Z cigi(xj,yj) — f(><j7yj)>

i=1

© a set of points: sample the characteristic function C(Q)
@ a set of functions
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Fourier extension

The Fourier extension scheme in 1D

@ represent a function on [—1, 1] by a Fourier series on [—2,2]

N
f(x) =~ Z crez x € [-1,1],
k=—N

rather than
N .
f(x) =~ Z cre™kx, x € [-1,1].
k=—N

@ no periodicity on [—1,1] is required: no Gibbs phenomenon

@ proposed (independently) by Oscar Bruno and John Boyd
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An example: f(x) = x

The function f(x) = x is not periodic on [—1,1], but smooth
extensions periodic on [—2, 2] exist.
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Convergence behaviour

Zikx

Least squares approximation on [—1, 1] using functions e2
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Stable, spectral convergence to machine precision.
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Why is ill-conditioning natural?

The least squares problem leads to a linear system

Ax =B

o A e CM*N is rectangular: overdetermined least squares

o elements are evaluations ¢;(x;, y;) (collocation)
o alternative: Apm , = (dm, dn) (projection)

e if the set {¢;} is complete and redundant, columns are
nearly linearly dependent

@ hence A is extremely ill-conditioned
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More on the matrix A

The singular values of the rectangular matrix A:

N
_ i(n—%5—1)xm
Am,n =e:2 2
15
10-
5
0 ‘
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What is the matrix A

A is a rectangular subblock of the DFT matrix D

N-1

Xy = § :Xke—nrkn/N
n=0

p — e%i(nfgfl)xm

)

@ subblocks of the DFT matrix have approximately low rank
@ there is a fast matrix-vector product for Ax

o (at least with proper choices of parameters)
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The DFT matrix

20 40 &0 80 100 120

Subblocks have low-rank
(Edelman et al, The future Fast Fourier Transform?, SISC, 1999)
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Singular values of A

A lot can be said about the singular value decomposition

A= UxV*

Columns of U and V are Periodic Discrete Prolate
Spheroidal Sequences (P-DPSS)

o related to discrete prolate spheroidal sequences (DPSS)
@ related to prolate spheroidal wave functions

@ popularized by Slepian in a series of papers |-V in the 60's and
70's
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Discrete prolate spheroidal sequences (1)

(Slepian, Prolate spheroidal wave functions, Fourier analysis, and
uncertainty - V: the discrete case, 1978)

Question: which compactly supported sequence (in time) has
maximally concentrated frequency spectrum?

N-1 .
{9} o UdfiN W) = 3 ufd (v, w)eimNiznr

n=0

2
o

3
Il
o

Find the sequence uS,l) that maximizes

I (UL (F; N, W) 2df

1
[2, 1 (Fs N, W) af
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Discrete prolate spheroidal sequences (2)

We have

w 1
/ \UL(F; N, W)|2df = A1/2 \UL(F; N, W)|2dF
—W _%
with A1 close to 1.
Then, find the sequence u,(,2) that maximizes concentration of U

(1)

and that is orthogonal to vy, ’:

w 1
/ |Us(F; N, W)2df = A2/2 \Us(F; N, W) 2df
-w _

1
2

And so on.
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Some interesting properties

The values A\, and sequences u(k) are eigenvalues and eigenvectors
of the prolate matrix p(N, W):

sin27tW(m —n
P(N» |/V)mn = ( )

w(m — n)

This matrix commutes with a tridiagonal matrix.
The discrete prolate spheroidal wave functions satisfy an ODE and
are eigenfunctions of an integral operator

Y sin () o
/_W inf = JF)AF =AU

They are doubly orthogonal: on [-1/2,1/2] and on [-W, W].
o If Amn = (¢m, &n) (projection) we have A = p(N, 5!
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An example

Set W =1/2, N =11.

25 25
2 2
LS L5
1 1
05 05
o
-04 -02 0 02 04 -04 -02 0 02 04
f f

(a) A1 ~ 0.9999999 (b) Az &~ 0.00000001
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How to use all this (1)

Let us precondition our system using an (appropriately sized) DFT

matrix:
DAx = DB.
Then
| D1A _ | DiB
DAx = [ DgA] - [ DgB}
@ Di1A is well-conditioned, D>A is ill-conditioned

because large eigenvalues have (nearly) bandlimited
eigenvectors

and small eigenvalues have high-frequency eigenvectors

rank of D,A is approximately log(/N)

Daan Huybrechs Non-polynomial discretizations



Fourier extensions

How to use all this (2)

D1 A _ | DiB

DA |* 7 | DB
We have a fast matrix-vector product, so we:
@ Solve D;Ax; = DB with an iterative solver

@ Construct log N random vectors in the null-space of D1 A

@ Using randomized linear algebra, use these to solve
DyAxy = DB — Dy Axq

@ And add the two results together: x = x3 + x»
This is an O(N log N) algorithm. (With a fairly big constant).
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