Non-polynomial discretizations: coping with redundancy and ill-conditioning

Daan Huybrechs

University of Leuven

9 October 2014, Woudschoten

Joint w. Sam Groth, Nele Lejon, Roel Matthysen, Peter Opsomer

æ

Outline

イロト イヨト イヨト イヨト

Э

Outline

Fourier extensions

イロン 不同と 不同と 不同と

Introduction

Many schemes are being developed for numerical wave simulations that are not based on (piecewise) polynomial approximations. A few are:

- UWVF: the Ultraweak Variational Formulation
 - Cessenat and Deprés, 1994, 1998
 - Monk, Huttunen, Hiptmair
- PUFEM: partition of unity finite element method
 - Babuška and Melenk, 1997
- Plane wave basis in integral equations
 - de La Bourdonnaye 1994, Abboud, Perrey-Debain, Trevelyan
- Method of fundamental solutions
 - Barnett and Betcke, 2008, 2010
- WBM: the Wave Based Method (Desmet, 1998)

▲ □ ► ▲ □ ►

Some observations

These schemes have several things in common:

- oscillatory basis functions: plane waves, Bessel functions, fundamental solutions
- Trefftz-type methods: approximate PDE solution using basic solutions of the same PDE¹
- high-order convergence
- small number of degrees of freedom
- they often exhibit (extreme) **ill-conditioning**, yet **high** accuracy
- (they often involve having to evaluate highly oscillatory integrals)

¹ Trefftz, 1926: Ein Gegenstück zum Ritzschen Verfahren. Internat. congress on Applied Mechanics; Zürich: 🔊 🤉 🖓

Why are oscillatory problems hard?

Three things make life difficult when oscillations increase:

- Many degrees of freedom (dof) are required just to be able to represent the solution
 - 'resolving the oscillations'
- 2 Quite often, even more dof's are needed to solve a problem
 - due to pollution or dispersion errors²
- Sast solvers for low-frequency problems typically fail (or need significant adjustments) for high-frequency problems
 - e.g. multigrid

equation considering high wave numbers?

²Babuska and Sauter, SIAM Review, 2000: Is the pollution effect of the FEM avoidable for the Helmholtz

These methods exhibit ill-conditioning

Ill-conditioning is usually problematic.

What does it mean for Ax = B?

- no iterative solvers
- A is singular. Hopefully B lies in the range of A!
- If so, there is no uniqueness: many solution vectors x.
- For each possible solution vector, the residual Ax B is small.

Can we exploit the redundancy and cope with the ill-conditioning?

- 4 同 6 4 日 6 4 日 6

The Wave Based Method (WBM)

Consider the Helmholtz equation

 $\Delta u + k^2 u = 0$

- Discretize on a **convex** and bounded domain Ω
- using a set of solutions on a bigger **bounding box** S
- If the desired domain is not convex: subdivide into (few) convex subdomains

A WBM simulation of a vibro-acoustic problem

The full method is more capable:

WBM: basis functions

Using a bounding box with lengths L_x and L_y , we write the pressure as

$$p(x,y) = \sum_{l=0}^{\infty} a_l \cos(k_{xl1}x) e^{-ik_{yl1}y} + \sum_{l=0}^{\infty} b_l e^{-ik_{xl2}} \cos(k_{yl2}y)$$

with

$$(k_{x/1}, k_{y/1}) = \left(\frac{l\pi}{L_x}, \pm \sqrt{k^2 - \left(\frac{l\pi}{L_x}\right)^2}\right)$$
$$(k_{x/2}, k_{y/2}) = \left(\pm \sqrt{k^2 - \left(\frac{l\pi}{L_y}\right)^2}, \frac{l\pi}{L_y}\right)$$

Note that $k_x^2 + k_y^2 = k^2$.

(4回) (1日) (日)

WBM: discretization

A weighted residual formulation (Galerkin) leads to:

$$Ax = B$$

with a highly ill-conditioned matrix A and where B corresponds to the boundary condition.

- entries of A are computed accurately (quadrature)
- a direct solver is used...
- ... and the solution satisfies Helmholtz and very accurately matches the boundary condition.

Why?

- 4 同 6 4 日 6 4 日 6

Preliminary analysis

Can one approximate solutions of Lu = 0 on Ω by solutions of Lu = 0 on $S \supset \Omega$?

- For a second-order elliptic operators L: yes.
 P. Lax, 1956, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations.
- Yes in more general settings too:
 F. Browder, 1962, Approximation by solutions of partial differential equations.
- No convexity requirement

周▶ 《 ≧ ▶

Convexity: why

What is the extension of u on Ω to \tilde{u} on S?

- 4 同 6 4 日 6 4 日 6

The continuation of u outside Ω (for analytic Ω) may develop singularities for two reasons:³

- singularities due to the analytic continuation of the boundary data f
- 2 singularities due to the shape of $\partial \Omega$

Avoid 2 by using a convex domain. If not: slow convergence.

independent variables

 $^{^3}$ R. F. Millar, 1980, The analytic continuation of solutions to elliptic boundary value problems in two

More questions

To which extent can solutions be concentrated in Ω or in $S \setminus \Omega$?

Are there solutions to Lu = 0 on S that are small(ish) on Ω but large on $S \setminus \Omega$?

- How small can they possibly be?
- What is their discrete norm in the representation in our basis on *S*?
- compactly supported solutions are impossible
- Questions relate to singular values and vectors of the discretization matrix *A*.

æ

Outline

・ロト ・回ト ・ヨト ・ヨト

Approximation by Fourier series

Example:

For $\Omega \subset S := [0,1]^n$:

- approximate f on Ω by Fourier series f_S on S
- find best approximation in $L^2(\Omega)$ norm:

 $\min \|f - f_S\|_{\Omega}$

・ロト ・日本 ・モート ・モート

- Does extension of f from Ω to S always exist? Yes. Whitney extension problem.
- Is it unique? No. Restriction of Fourier series on S to Ω constitutes a frame for L²(Ω).

Approximation by Fourier series

Example:

For $\Omega \subset S := [0,1]^n$:

- approximate f on Ω by Fourier series f_S on S
- find best approximation in $L^2(\Omega)$ norm:

 $\min \|f - f_S\|_{\Omega}$

イロト イヨト イヨト イヨト

- Does extension of f from Ω to S always exist? Yes. Whitney extension problem.
- Is it unique? No. Restriction of Fourier series on S to Ω constitutes a frame for L²(Ω).

Approximation by Fourier series

Example:

For $\Omega \subset S := [0,1]^n$:

- approximate f on Ω by Fourier series f_S on S
- find best approximation in $L^2(\Omega)$ norm:

 $\min \|f - f_S\|_{\Omega}$

イロト イヨト イヨト イヨト

- Does extension of f from Ω to S always exist? Yes. Whitney extension problem.
- Is it unique? No. Restriction of Fourier series on S to Ω constitutes a frame for L²(Ω).

Recent results

Fourier extension/Fourier continuation

- origin in Fictitious Domain methods or Embedded Domain techniques for PDEs
- Boyd 2002, Bruno 2004: the Fourier extension problem
- H. 2009: analysis of exact solution in 1D
- Adcock, H. 2014: Fourier extensions are optimal for representing oscillatory functions
- Adcock, H., Martin-Vacquero, FoCM, 2014: proof of numerical stability
- Matthysen, H.: Fast construction of Fourier extension in 1D
- Lyon and Bruno, Lyon: time-steppers for PDEs, fast routine for special case

・ロト ・回ト ・ヨト ・ヨト

On the representation of domains

Approximating functions on a general domain Ω is hard:

- Is the domain connected? Punctured? Open, closed or both?
- The boundary $\partial \Omega$ may have corners, cusps, \ldots
- What is the dimension of Ω?
- Efficient spectral approximation schemes known only for tensor-product domains
 - squares and rectangles, cubes, torus, ...

Representing a domain by approximating its boundary is very restrictive.

イロト イヨト イヨト イヨト

On the representation of domains

Approximating functions on a general domain Ω is hard:

- Is the domain connected? Punctured? Open, closed or both?
- The boundary $\partial \Omega$ may have corners, cusps, ...
- What is the dimension of Ω?
- Efficient spectral approximation schemes known only for tensor-product domains
 - squares and rectangles, cubes, torus, ...

Representing a domain by approximating its boundary is very restrictive.

イロン イヨン イヨン イヨン

The characteristic function

The characteristic function $C(\Omega)$ turns out to be useful:

$$C(x,y) = \left\{ egin{array}{cc} 1, & ext{if} & (x,y) \in \Omega, \\ 0, & ext{otherwise.} \end{array}
ight.$$

Examples

- open circle: $C(x, y) \equiv x^2 + y^2 R^2 < 0$
- Mandelbrot set:
 - $C(x, y) \equiv \text{iteration } z_{n+1} = z_n^2 + (x + iy) \text{ remains bounded}$

We represent Ω by implementing $C(\Omega)$.

イロン イヨン イヨン イヨン

The characteristic function

The characteristic function $C(\Omega)$ turns out to be useful:

$$C(x,y) = \left\{ egin{array}{cc} 1, & ext{if} & (x,y) \in \Omega, \ 0, & ext{otherwise}. \end{array}
ight.$$

Examples

- open circle: $C(x, y) \equiv x^2 + y^2 R^2 < 0$
- Mandelbrot set:

 $C(x, y) \equiv$ iteration $z_{n+1} = z_n^2 + (x + iy)$ remains bounded

We represent Ω by implementing $C(\Omega)$.

(ロ) (同) (E) (E) (E)

The characteristic function

The characteristic function $C(\Omega)$ turns out to be useful:

$$C(x,y) = \left\{ egin{array}{cc} 1, & ext{if} & (x,y) \in \Omega, \ 0, & ext{otherwise}. \end{array}
ight.$$

Examples

- open circle: $C(x, y) \equiv x^2 + y^2 R^2 < 0$
- Mandelbrot set:

 $C(x, y) \equiv \text{iteration } z_{n+1} = z_n^2 + (x + iy) \text{ remains bounded}$

We represent Ω by implementing $C(\Omega)$.

(ロ) (同) (E) (E) (E)

Advantages

Implementing the characteristic function has many advantages:

- **1** Very flexible, very **general**. No domain is a priori excluded.
- Boundary can be anything, no need to represent it.
- **3** Simple **arithmetic**, e.g:

$$\Omega = A \cap B \quad \Rightarrow \quad C(x,y) = C_A(x,y) \text{ and } C_B(x,y)$$

Implicit definitions of domains can be used, e.g.

$$C(x,y) \equiv f(x,y) \geq c.$$

(a) It is easy to **generate points** that belong to Ω .

- 4 同 6 4 日 6 4 日 6

Advantages

Implementing the characteristic function has many advantages:

- **1** Very flexible, very **general**. No domain is a priori excluded.
- Boundary can be anything, no need to represent it.
- 3 Simple arithmetic, e.g:

$$\Omega = A \cap B \quad \Rightarrow \quad C(x, y) = C_A(x, y) \text{ and } C_B(x, y)$$

Implicit definitions of domains can be used, e.g.

$$C(x,y) \equiv f(x,y) \geq c.$$

() It is easy to **generate points** that belong to Ω .

- 4 同 6 4 日 6 4 日 6

Advantages

Implementing the characteristic function has many advantages:

- Very flexible, very general. No domain is a priori excluded.
- Ø Boundary can be anything, no need to represent it.
- 3 Simple arithmetic, e.g:

$$\Omega = A \cap B \quad \Rightarrow \quad C(x, y) = C_A(x, y) \text{ and } C_B(x, y)$$

Implicit definitions of domains can be used, e.g.

$$C(x,y) \equiv f(x,y) \geq c.$$

() It is easy to **generate points** that belong to Ω .

(4 同) (4 回) (4 回)

Least squares approximation

What does least squares approximation require? Find

$$f(x,y) \approx \sum_{i=1}^{N} c_i \phi_i(x,y)$$

which minimizes

$$\sum_{j=1}^{M} \left(\sum_{i=1}^{N} c_i \phi_i(x_j, y_j) - f(x_j, y_j) \right)^2$$

a set of points: sample the characteristic function C(Ω)
a set of functions

- 17

(4) (3) (4) (3) (4)

Fourier extension

The Fourier extension scheme in 1D

 \bullet represent a function on [-1,1] by a Fourier series on [-2,2]

$$f(x) \approx \sum_{k=-N}^{N} c_k e^{\frac{\pi}{2}ikx}, \qquad x \in [-1,1],$$

rather than

$$f(x) \approx \sum_{k=-N}^{N} c_k e^{\pi i k x}, \qquad x \in [-1,1].$$

- $\bullet\,$ no periodicity on [-1,1] is required: no Gibbs phenomenon
- proposed (independently) by Oscar Bruno and John Boyd

- 4 同 6 4 日 6 4 日 6

An example: f(x) = x

The function f(x) = x is not periodic on [-1, 1], but smooth extensions periodic on [-2, 2] exist.

< 🗗 >

∢ ≣⇒

Convergence behaviour

Least squares approximation on [-1,1] using functions $e^{rac{\pi}{2}ikx}$

Stable, spectral convergence to machine precision.

Why is ill-conditioning natural?

The least squares problem leads to a linear system

$$Ax = B$$

• $A \in \mathbb{C}^{M \times N}$ is rectangular: **overdetermined** least squares

- elements are evaluations $\phi_i(x_j, y_j)$ (collocation)
- alternative: $A_{m,n} = \langle \phi_m, \phi_n \rangle$ (projection)
- if the set {φ_i} is complete and redundant, columns are nearly linearly dependent
- hence A is extremely ill-conditioned

(4 同) (4 回) (4 回)

More on the matrix A

The singular values of the rectangular matrix A:

$$A_{m,n}=e^{\frac{\pi}{2}i(n-\frac{N}{2}-1)x_m}$$

What is the matrix A

A is a rectangular subblock of the DFT matrix D

$$X_{k} = \sum_{n=0}^{N-1} x_{k} e^{-i\pi k n/N}$$
$$A_{m,n} = e^{\frac{\pi}{2}i(n-\frac{N}{2}-1)x_{m}}$$

- subblocks of the DFT matrix have approximately low rank
- there is a fast matrix-vector product for Ax
- (at least with proper choices of parameters)

The DFT matrix

Subblocks have low-rank (Edelman et al, *The future Fast Fourier Transform*?, SISC, 1999).

Singular values of A

A lot can be said about the singular value decomposition

$$A = U\Sigma V^*$$

Columns of U and V are Periodic Discrete Prolate Spheroidal Sequences (P-DPSS)

- related to discrete prolate spheroidal sequences (DPSS)
- related to prolate spheroidal wave functions
- popularized by Slepian in a series of papers I-V in the 60's and 70's

Discrete prolate spheroidal sequences (1)

(Slepian, Prolate spheroidal wave functions, Fourier analysis, and uncertainty - V: the discrete case, 1978)

Question: which compactly supported sequence (in time) has maximally concentrated frequency spectrum?

$$\left\{u_n^{(k)}(N,W)\right\}_{n=0}^{N-1} \quad \leftrightarrow \quad U_k(f;N,W) = \sum_{n=0}^{N-1} u_n^{(k)}(N,W) e^{-i\pi(N-1-2n)f}$$

Find the sequence $u_n^{(1)}$ that maximizes

$$\frac{\int_{-W}^{W} |U_1(f; N, W)|^2 \mathrm{d}f}{\int_{-\frac{1}{2}}^{\frac{1}{2}} |U_1(f; N, W)|^2 \mathrm{d}f}$$

Discrete prolate spheroidal sequences (2)

We have

$$\int_{-W}^{W} |U_1(f; N, W)|^2 \mathrm{d}f = \lambda_1 \int_{-\frac{1}{2}}^{\frac{1}{2}} |U_1(f; N, W)|^2 \mathrm{d}f$$

with λ_1 close to 1.

Then, find the sequence $u_n^{(2)}$ that maximizes concentration of U_2 and that is orthogonal to $u_n^{(1)}$:

$$\int_{-W}^{W} |U_2(f; N, W)|^2 \mathrm{d}f = \lambda_2 \int_{-\frac{1}{2}}^{\frac{1}{2}} |U_2(f; N, W)|^2 \mathrm{d}f$$

And so on.

Some interesting properties

The values λ_k and sequences $u^{(k)}$ are eigenvalues and eigenvectors of the **prolate matrix** $\rho(N, W)$:

$$\rho(N,W)_{mn}=\frac{\sin 2\pi W(m-n)}{\pi(m-n)}.$$

This matrix commutes with a tridiagonal matrix.

The discrete prolate spheroidal wave functions satisfy an ODE and are eigenfunctions of an integral operator

$$\int_{-W}^{W} \frac{\sin N\pi(f-f')}{\sin \pi(f-f')} U(f') \mathrm{d}f' = \lambda U(f)$$

They are **doubly orthogonal**: on [-1/2, 1/2] and on [-W, W].

• If
$$A_{mn} = \langle \phi_m, \phi_n \rangle$$
 (projection) we have $A = \rho(N, \frac{1}{2T})!$

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

An example

Set W = 1/2, N = 11.

How to use all this (1)

Let us precondition our system using an (appropriately sized) DFT matrix:

$$DAx = DB.$$

Then

$$DAx = \begin{bmatrix} D_1A \\ D_2A \end{bmatrix} x = \begin{bmatrix} D_1B \\ D_2B \end{bmatrix}$$

- D_1A is well-conditioned, D_2A is ill-conditioned
- because large eigenvalues have (nearly) bandlimited eigenvectors
- and small eigenvalues have high-frequency eigenvectors
- rank of D_2A is approximately $\log(N)$

- 4 同 6 4 日 6 4 日 6

How to use all this (2)

$$\left[\begin{array}{c} D_1 A \\ D_2 A \end{array}\right] x = \left[\begin{array}{c} D_1 B \\ D_2 B \end{array}\right]$$

We have a fast matrix-vector product, so we:

- Solve $D_1Ax_1 = D_1B$ with an iterative solver
- Construct log N random vectors in the null-space of D_1A
- Using randomized linear algebra, use these to solve $D_2Ax_2 = D_2B D_2Ax_1$
- And add the two results together: $x = x_1 + x_2$

This is an $O(N \log N)$ algorithm. (With a fairly big constant).