Non-polynomial discretizations: coping with redundancy and ill-conditioning

Daan Huybrechs
University of Leuven
9 October 2014, Woudschoten

Joint w. Sam Groth, Nele Lejon, Roel Matthysen, Peter Opsomer

Outline

(1) Non-polynomial discretizations
(2) Fourier extensions

Outline

(1) Non-polynomial discretizations
(2) Fourier extensions

Introduction

Many schemes are being developed for numerical wave simulations that are not based on (piecewise) polynomial approximations. A few are:

- UWVF: the Ultraweak Variational Formulation
- Cessenat and Deprés, 1994, 1998
- Monk, Huttunen, Hiptmair
- PUFEM: partition of unity finite element method
- Babuška and Melenk, 1997
- Plane wave basis in integral equations
- de La Bourdonnaye 1994, Abboud, Perrey-Debain, Trevelyan
- Method of fundamental solutions
- Barnett and Betcke, 2008, 2010
- WBM: the Wave Based Method (Desmet, 1998)

Some observations

These schemes have several things in common:

- oscillatory basis functions: plane waves, Bessel functions, fundamental solutions
- Trefftz-type methods: approximate PDE solution using basic solutions of the same PDE^{1}
- high-order convergence
- small number of degrees of freedom
- they often exhibit (extreme) ill-conditioning, yet high accuracy
- (they often involve having to evaluate highly oscillatory integrals)

Why are oscillatory problems hard?

Three things make life difficult when oscillations increase:
(1) Many degrees of freedom (dof) are required just to be able to represent the solution

- 'resolving the oscillations'
(2) Quite often, even more dof's are needed to solve a problem
- due to pollution or dispersion errors ${ }^{2}$
(3) Fast solvers for low-frequency problems typically fail (or need significant adjustments) for high-frequency problems
- e.g. multigrid

[^0]
These methods exhibit ill-conditioning

III-conditioning is usually problematic.

What does it mean for $A x=B$?

- no iterative solvers
- A is singular. Hopefully B lies in the range of A !
- If so, there is no uniqueness: many solution vectors x.
- For each possible solution vector, the residual $A x-B$ is small.

Can we exploit the redundancy and cope with the ill-conditioning?

The Wave Based Method (WBM)

Consider the Helmholtz equation

$$
\Delta u+k^{2} u=0
$$

- Discretize on a convex and bounded domain Ω
- using a set of solutions on a bigger bounding box S
- If the desired domain is not convex: subdivide into (few) convex subdomains

A WBM simulation of a vibro-acoustic problem

The full method is more capable:

WBM: basis functions

Using a bounding box with lengths L_{x} and L_{y}, we write the pressure as

$$
p(x, y)=\sum_{l=0}^{\infty} a_{l} \cos \left(k_{x / 1} x\right) e^{-i k_{y / 1} y}+\sum_{l=0}^{\infty} b_{l} e^{-i k_{x / 2}} \cos \left(k_{y / 2} y\right)
$$

with

$$
\begin{aligned}
& \left(k_{x / 1}, k_{y / 1}\right)=\left(\frac{I \pi}{L_{x}}, \pm \sqrt{k^{2}-\left(\frac{I \pi}{L_{x}}\right)^{2}}\right) \\
& \left(k_{x / 2}, k_{y / 2}\right)=\left(\pm \sqrt{k^{2}-\left(\frac{I \pi}{L_{y}}\right)^{2}}, \frac{I \pi}{L_{y}}\right)
\end{aligned}
$$

Note that $k_{x}^{2}+k_{y}^{2}=k^{2}$.

WBM: discretization

A weighted residual formulation (Galerkin) leads to:

$$
A x=B
$$

with a highly ill-conditioned matrix A and where B corresponds to the boundary condition.

- entries of A are computed accurately (quadrature)
- a direct solver is used. . .
- ... and the solution satisfies Helmholtz and very accurately matches the boundary condition.

Why?

Preliminary analysis

Can one approximate solutions of $L u=0$ on Ω by solutions of $L u=0$ on $S \supset \Omega$?

- For a second-order elliptic operators L : yes.
P. Lax, 1956, A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations.
- Yes in more general settings too:
F. Browder, 1962, Approximation by solutions of partial differential equations.
- No convexity requirement ...

Convexity: why

What is the extension of u on Ω to u on S ?

The continuation of u outside Ω (for analytic Ω) may develop singularities for two reasons: ${ }^{3}$
(1) singularities due to the analytic continuation of the boundary data f
(2) singularities due to the shape of $\partial \Omega$

Avoid 2 by using a convex domain. If not: slow convergence.

[^1]
More questions

To which extent can solutions be concentrated in Ω or in $S \backslash \Omega$?

Are there solutions to $L u=0$ on S that are small(ish) on Ω but large on $S \backslash \Omega$?

- How small can they possibly be?
- What is their discrete norm in the representation in our basis on S ?
- compactly supported solutions are impossible
- Questions relate to singular values and vectors of the discretization matrix A.

Outline

(1) Non-polynomial discretizations

(2) Fourier extensions

Approximation by Fourier series

Example:

For $\Omega \subset S:=[0,1]^{n}$:

- approximate f on Ω by Fourier series f_{S} on S
- find best approximation in $L^{2}(\Omega)$ norm:

$$
\min \left\|f-f_{S}\right\|_{\Omega}
$$

- Does extension of f from Ω to S always exist? Yes. Whitney extension problem

Approximation by Fourier series

Example:

For $\Omega \subset S:=[0,1]^{n}$:

- approximate f on Ω by Fourier series f_{S} on S
- find best approximation in $L^{2}(\Omega)$ norm:

$$
\min \left\|f-f_{S}\right\|_{\Omega}
$$

- Does extension of f from Ω to S always exist? Yes. Whitney extension problem.
- Is it unique? No. Restriction of Fourier series on S to Ω constitutes a frame for $L^{2}(\Omega)$

Approximation by Fourier series

Example:

For $\Omega \subset S:=[0,1]^{n}$:

- approximate f on Ω by Fourier series f_{S} on S
- find best approximation in $L^{2}(\Omega)$ norm:

$$
\min \left\|f-f_{S}\right\|_{\Omega}
$$

- Does extension of f from Ω to S always exist? Yes. Whitney extension problem.
- Is it unique? No. Restriction of Fourier series on S to Ω constitutes a frame for $L^{2}(\Omega)$.

Recent results

Fourier extension/Fourier continuation

- origin in Fictitious Domain methods or Embedded Domain techniques for PDEs
- Boyd 2002, Bruno 2004: the Fourier extension problem
- H. 2009: analysis of exact solution in 1D
- Adcock, H. 2014: Fourier extensions are optimal for representing oscillatory functions
- Adcock, H., Martin-Vacquero, FoCM, 2014: proof of numerical stability
- Matthysen, H.: Fast construction of Fourier extension in 1D
- Lyon and Bruno, Lyon: time-steppers for PDEs, fast routine for special case

On the representation of domains

Approximating functions on a general domain Ω is hard:

- Is the domain connected? Punctured? Open, closed or both?
- The boundary $\partial \Omega$ may have corners, cusps, ...
- What is the dimension of Ω ?
- Efficient spectral approximation schemes known only for tensor-product domains
- squares and rectangles, cubes, torus, ...

Representing a domain by approximating its boundary is very restrictive.

On the representation of domains

Approximating functions on a general domain Ω is hard:

- Is the domain connected? Punctured? Open, closed or both?
- The boundary $\partial \Omega$ may have corners, cusps, ...
- What is the dimension of Ω ?
- Efficient spectral approximation schemes known only for tensor-product domains
- squares and rectangles, cubes, torus, ...

Representing a domain by approximating its boundary is very restrictive.

The characteristic function

The characteristic function $C(\Omega)$ turns out to be useful:

$$
C(x, y)=\left\{\begin{array}{lc}
1, & \text { if }(x, y) \in \Omega \\
0, & \text { otherwise }
\end{array}\right.
$$

Examples

- onen circle: $C(x, y) \equiv x^{2}+y^{2}-R^{2}<0$
- Mandelbrot set:
$C(x, y) \equiv$ iteration $z_{n+1}=z_{n}^{2}+(x+i y)$ remains bounded

We represent Ω by implementing $C(\Omega)$.

The characteristic function

The characteristic function $C(\Omega)$ turns out to be useful:

$$
C(x, y)=\left\{\begin{array}{lc}
1, & \text { if }(x, y) \in \Omega \\
0, & \text { otherwise }
\end{array}\right.
$$

Examples

- open circle: $\quad C(x, y) \equiv x^{2}+y^{2}-R^{2}<0$
- Mandelbrot set: $C(x, y) \equiv$ iteration $z_{n+1}=z_{n}^{2}+(x+i y)$ remains bounded

We represent Ω by implementing $C(\Omega)$.

The characteristic function

The characteristic function $C(\Omega)$ turns out to be useful:

$$
C(x, y)=\left\{\begin{array}{lc}
1, & \text { if }(x, y) \in \Omega \\
0, & \text { otherwise }
\end{array}\right.
$$

Examples

- open circle: $\quad C(x, y) \equiv x^{2}+y^{2}-R^{2}<0$
- Mandelbrot set: $C(x, y) \equiv$ iteration $z_{n+1}=z_{n}^{2}+(x+i y)$ remains bounded

We represent Ω by implementing $C(\Omega)$.

Advantages

Implementing the characteristic function has many advantages:
(1) Very flexible, very general. No domain is a priori excluded.
(2) Boundary can be anything, no need to represent it.
(3) Simple arithmetic, e.g:

$$
\Omega=A \cap B \Rightarrow C(x, y)=C_{A}(x, y) \text { and } C_{B}(x, y)
$$

(9) Implicit definitions of domains can be used, e.g.

Advantages

Implementing the characteristic function has many advantages:
(1) Very flexible, very general. No domain is a priori excluded.
(2) Boundary can be anything, no need to represent it.
(3) Simple arithmetic, e.g:

$$
\Omega=A \cap B \Rightarrow C(x, y)=C_{A}(x, y) \text { and } C_{B}(x, y)
$$

(9) Implicit definitions of domains can be used, e.g.

$$
C(x, y) \equiv f(x, y) \geq c
$$

(3) It is easy to generate points that belong to Ω.

Advantages

Implementing the characteristic function has many advantages:
(1) Very flexible, very general. No domain is a priori excluded.
(2) Boundary can be anything, no need to represent it.
(3) Simple arithmetic, e.g:

$$
\Omega=A \cap B \Rightarrow C(x, y)=C_{A}(x, y) \text { and } C_{B}(x, y)
$$

(9) Implicit definitions of domains can be used, e.g.

$$
C(x, y) \equiv f(x, y) \geq c
$$

(3) It is easy to generate points that belong to Ω.

Least squares approximation

What does least squares approximation require?
Find

$$
f(x, y) \approx \sum_{i=1}^{N} c_{i} \phi_{i}(x, y)
$$

which minimizes

$$
\sum_{j=1}^{M}\left(\sum_{i=1}^{N} c_{i} \phi_{i}\left(x_{j}, y_{j}\right)-f\left(x_{j}, y_{j}\right)\right)^{2}
$$

(1) a set of points: sample the characteristic function $C(\Omega)$
(2) a set of functions

Fourier extension

The Fourier extension scheme in 1D

- represent a function on $[-1,1]$ by a Fourier series on $[-2,2]$

$$
f(x) \approx \sum_{k=-N}^{N} c_{k} e^{\frac{\pi}{2} i k x}, \quad x \in[-1,1]
$$

rather than

$$
f(x) \approx \sum_{k=-N}^{N} c_{k} e^{\pi i k x}, \quad x \in[-1,1]
$$

- no periodicity on $[-1,1]$ is required: no Gibbs phenomenon
- proposed (independently) by Oscar Bruno and John Boyd

An example: $f(x)=x$

The function $f(x)=x$ is not periodic on $[-1,1]$, but smooth extensions periodic on $[-2,2]$ exist.

Convergence behaviour

Least squares approximation on $[-1,1]$ using functions $e^{\frac{\pi}{2} i k x}$

Stable, spectral convergence to machine precision.

Why is ill-conditioning natural?

The least squares problem leads to a linear system

$$
A x=B
$$

- $A \in \mathbb{C}^{M \times N}$ is rectangular: overdetermined least squares
- elements are evaluations $\phi_{i}\left(x_{j}, y_{j}\right)$ (collocation)
- alternative: $A_{m, n}=\left\langle\phi_{m}, \phi_{n}\right\rangle$ (projection)
- if the set $\left\{\phi_{i}\right\}$ is complete and redundant, columns are nearly linearly dependent
- hence A is extremely ill-conditioned

More on the matrix A

The singular values of the rectangular matrix A :

$$
A_{m, n}=e^{\frac{\pi}{2} i\left(n-\frac{N}{2}-1\right) x_{m}}
$$

What is the matrix A

A is a rectangular subblock of the DFT matrix D

$$
\begin{aligned}
& X_{k}=\sum_{n=0}^{N-1} x_{k} e^{-i \pi k n / N} \\
& A_{m, n}=e^{\frac{\pi}{2} i\left(n-\frac{N}{2}-1\right) x_{m}}
\end{aligned}
$$

- subblocks of the DFT matrix have approximately low rank
- there is a fast matrix-vector product for $A x$
- (at least with proper choices of parameters)

The DFT matrix

Subblocks have low-rank
(Edelman et al, The future Fast Fourier Transform?, SISC, 1999)

Singular values of A

A lot can be said about the singular value decomposition

$$
A=U \Sigma V^{*}
$$

Columns of U and V are Periodic Discrete Prolate Spheroidal Sequences (P-DPSS)

- related to discrete prolate spheroidal sequences (DPSS)
- related to prolate spheroidal wave functions
- popularized by Slepian in a series of papers I-V in the 60's and 70's

Discrete prolate spheroidal sequences (1)

(Slepian, Prolate spheroidal wave functions, Fourier analysis, and uncertainty - V: the discrete case, 1978)

Question: which compactly supported sequence (in time) has maximally concentrated frequency spectrum?

$$
\left\{u_{n}^{(k)}(N, W)\right\}_{n=0}^{N-1} \quad \leftrightarrow \quad U_{k}(f ; N, W)=\sum_{n=0}^{N-1} u_{n}^{(k)}(N, W) e^{-i \pi(N-1-2 n) f}
$$

Find the sequence $u_{n}^{(1)}$ that maximizes

$$
\frac{\int_{-W}^{W}\left|U_{1}(f ; N, W)\right|^{2} \mathrm{~d} f}{\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|U_{1}(f ; N, W)\right|^{2} \mathrm{~d} f}
$$

Discrete prolate spheroidal sequences (2)

We have

$$
\int_{-W}^{W}\left|U_{1}(f ; N, W)\right|^{2} \mathrm{~d} f=\lambda_{1} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|U_{1}(f ; N, W)\right|^{2} \mathrm{~d} f
$$

with λ_{1} close to 1 .
Then, find the sequence $u_{n}^{(2)}$ that maximizes concentration of U_{2} and that is orthogonal to $u_{n}^{(1)}$:

$$
\int_{-W}^{W}\left|U_{2}(f ; N, W)\right|^{2} \mathrm{~d} f=\lambda_{2} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|U_{2}(f ; N, W)\right|^{2} \mathrm{~d} f
$$

And so on.

Some interesting properties

The values λ_{k} and sequences $u^{(k)}$ are eigenvalues and eigenvectors of the prolate matrix $\rho(N, W)$:

$$
\rho(N, W)_{m n}=\frac{\sin 2 \pi W(m-n)}{\pi(m-n)} .
$$

This matrix commutes with a tridiagonal matrix.
The discrete prolate spheroidal wave functions satisfy an ODE and are eigenfunctions of an integral operator

$$
\int_{-W}^{W} \frac{\sin N \pi\left(f-f^{\prime}\right)}{\sin \pi\left(f-f^{\prime}\right)} U\left(f^{\prime}\right) \mathrm{d} f^{\prime}=\lambda U(f)
$$

They are doubly orthogonal: on $[-1 / 2,1 / 2]$ and on $[-W, W]$.

- If $A_{m n}=\left\langle\phi_{m}, \phi_{n}\right\rangle$ (projection) we have $A=\rho\left(N, \frac{1}{2 T}\right)$!

An example

Set $W=1 / 2, N=11$.

(a) $\lambda_{1} \approx 0.9999999$

(b) $\lambda_{11} \approx 0.00000001$

How to use all this (1)

Let us precondition our system using an (appropriately sized) DFT matrix:

$$
D A x=D B
$$

Then

$$
D A x=\left[\begin{array}{l}
D_{1} A \\
D_{2} A
\end{array}\right] x=\left[\begin{array}{l}
D_{1} B \\
D_{2} B
\end{array}\right]
$$

- $D_{1} A$ is well-conditioned, $D_{2} A$ is ill-conditioned
- because large eigenvalues have (nearly) bandlimited eigenvectors
- and small eigenvalues have high-frequency eigenvectors
- rank of $D_{2} A$ is approximately $\log (N)$

How to use all this (2)

$$
\left[\begin{array}{l}
D_{1} A \\
D_{2} A
\end{array}\right] x=\left[\begin{array}{l}
D_{1} B \\
D_{2} B
\end{array}\right]
$$

We have a fast matrix-vector product, so we:

- Solve $D_{1} A x_{1}=D_{1} B$ with an iterative solver
- Construct $\log N$ random vectors in the null-space of $D_{1} A$
- Using randomized linear algebra, use these to solve

$$
D_{2} A x_{2}=D_{2} B-D_{2} A x_{1}
$$

- And add the two results together: $x=x_{1}+x_{2}$

This is an $O(N \log N)$ algorithm. (With a fairly big constant).

[^0]: ${ }^{2}$ Babuska and Sauter, SIAM Review, 2000: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?

[^1]: ${ }^{3}$ R. F. Millar, 1980, The analytic continuation of solutions to elliptic boundary value problems in two independent variables

