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Introduction

Many schemes are being developed for numerical wave
simulations that are not based on (piecewise) polynomial
approximations. A few are:

UWVF: the Ultraweak Variational Formulation

Cessenat and Deprés, 1994, 1998
Monk, Huttunen, Hiptmair

PUFEM: partition of unity finite element method

Babuška and Melenk, 1997

Plane wave basis in integral equations

de La Bourdonnaye 1994, Abboud, Perrey-Debain, Trevelyan

Method of fundamental solutions

Barnett and Betcke, 2008, 2010

WBM: the Wave Based Method (Desmet, 1998)
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Some observations

These schemes have several things in common:

oscillatory basis functions: plane waves, Bessel functions,
fundamental solutions

Trefftz-type methods: approximate PDE solution using basic
solutions of the same PDE1

high-order convergence

small number of degrees of freedom

they often exhibit (extreme) ill-conditioning, yet high
accuracy

(they often involve having to evaluate highly oscillatory
integrals)

1
Trefftz, 1926: Ein Gegenstück zum Ritzschen Verfahren. Internat. congress on Applied Mechanics, Zürich.
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Why are oscillatory problems hard?

Three things make life difficult when oscillations increase:

1 Many degrees of freedom (dof) are required just to be able to
represent the solution

‘resolving the oscillations’

2 Quite often, even more dof’s are needed to solve a problem

due to pollution or dispersion errors2

3 Fast solvers for low-frequency problems typically fail (or need
significant adjustments) for high-frequency problems

e.g. multigrid

2
Babuska and Sauter, SIAM Review, 2000: Is the pollution effect of the FEM avoidable for the Helmholtz

equation considering high wave numbers?
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These methods exhibit ill-conditioning

Ill-conditioning is usually problematic.

What does it mean for Ax = B?

no iterative solvers

A is singular. Hopefully B lies in the range of A!

If so, there is no uniqueness: many solution vectors x .

For each possible solution vector, the residual Ax −B is small.

Can we exploit the redundancy and cope with the
ill-conditioning?
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The Wave Based Method (WBM)

Consider the Helmholtz equation

∆u + k2u = 0

Ω

S

Discretize on a convex and bounded domain Ω

using a set of solutions on a bigger bounding box S

If the desired domain is not convex: subdivide into (few)
convex subdomains
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A WBM simulation of a vibro-acoustic problem

The full method is more capable:
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WBM: basis functions

Using a bounding box with lengths Lx and Ly , we write the
pressure as

p(x , y) =
∞∑
l=0

al cos(kxl1x)e−ikyl1y +
∞∑
l=0

ble
−ikxl2 cos(kyl2y)

with

(kxl1, kyl1) =

 lπ

Lx
,±

√
k2 −

(
lπ

Lx

)2


(kxl2, kyl2) =

±
√

k2 −
(

lπ

Ly

)2

,
lπ

Ly


Note that k2

x + k2
y = k2.
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WBM: discretization

A weighted residual formulation (Galerkin) leads to:

Ax = B

with a highly ill-conditioned matrix A and where B corresponds to
the boundary condition.

entries of A are computed accurately (quadrature)

a direct solver is used. . .

. . . and the solution satisfies Helmholtz and very accurately
matches the boundary condition.

Why?
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Preliminary analysis

Can one approximate solutions of Lu = 0 on Ω by solutions of
Lu = 0 on S ⊃ Ω?

For a second-order elliptic operators L: yes.
P. Lax, 1956, A stability theorem for solutions of abstract
differential equations, and its application to the study of the
local behavior of solutions of elliptic equations.

Yes in more general settings too:
F. Browder, 1962, Approximation by solutions of partial
differential equations.

No convexity requirement . . .
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Convexity: why

What is the extension of u on Ω
to ũ on S?

Ω

S

The continuation of u outside Ω (for analytic Ω) may develop
singularities for two reasons:3

1 singularities due to the analytic continuation of the boundary
data f

2 singularities due to the shape of ∂Ω

Avoid 2 by using a convex domain. If not: slow convergence.

3
R. F. Millar, 1980, The analytic continuation of solutions to elliptic boundary value problems in two

independent variables
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More questions

To which extent can solutions be
concentrated in Ω or in S \ Ω?

Ω

S

Are there solutions to Lu = 0 on S that are small(ish) on Ω
but large on S \ Ω?

How small can they possibly be?

What is their discrete norm in the representation in our basis
on S?

compactly supported solutions are impossible

Questions relate to singular values and vectors of the
discretization matrix A.
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Approximation by Fourier series

Example:

Ω

S

For Ω ⊂ S := [0, 1]n:

approximate f on Ω by
Fourier series fS on S

find best approximation in
L2(Ω) norm:

min ‖f − fS‖Ω

Does extension of f from Ω to S always exist? Yes. Whitney
extension problem.

Is it unique? No. Restriction of Fourier series on S to Ω
constitutes a frame for L2(Ω).
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Recent results

Fourier extension/Fourier continuation

origin in Fictitious Domain methods or Embedded Domain
techniques for PDEs

Boyd 2002, Bruno 2004: the Fourier extension problem

H. 2009: analysis of exact solution in 1D

Adcock, H. 2014: Fourier extensions are optimal for
representing oscillatory functions

Adcock, H., Martin-Vacquero, FoCM, 2014: proof of
numerical stability

Matthysen, H.: Fast construction of Fourier extension in 1D

Lyon and Bruno, Lyon: time-steppers for PDEs, fast routine
for special case
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On the representation of domains

Approximating functions on a general domain Ω is hard:

Is the domain connected? Punctured? Open, closed or both?

The boundary ∂Ω may have corners, cusps, . . .

What is the dimension of Ω?

Efficient spectral approximation schemes known only for
tensor-product domains

squares and rectangles, cubes, torus, . . .

Representing a domain by approximating its boundary is very
restrictive.
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The characteristic function

The characteristic function C (Ω) turns out to be useful:

C (x , y) =

{
1, if (x , y) ∈ Ω,
0, otherwise.

Examples

open circle: C (x , y) ≡ x2 + y 2 − R2 < 0

Mandelbrot set:
C (x , y) ≡ iteration zn+1 = z2

n + (x + iy) remains bounded

We represent Ω by implementing C (Ω).
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Advantages

Implementing the characteristic function has many advantages:

1 Very flexible, very general. No domain is a priori excluded.

2 Boundary can be anything, no need to represent it.

3 Simple arithmetic, e.g:

Ω = A ∩ B ⇒ C (x , y) = CA(x , y) and CB(x , y)

4 Implicit definitions of domains can be used, e.g.

C (x , y) ≡ f (x , y) ≥ c .

5 It is easy to generate points that belong to Ω.
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Least squares approximation

What does least squares approximation require?
Find

f (x , y) ≈
N∑
i=1

ciφi (x , y)

which minimizes

M∑
j=1

(
N∑
i=1

ciφi (xj , yj)− f (xj , yj)

)2

1 a set of points: sample the characteristic function C (Ω)

2 a set of functions
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Fourier extension

The Fourier extension scheme in 1D

represent a function on [−1, 1] by a Fourier series on [−2, 2]

f (x) ≈
N∑

k=−N
cke

π
2
ikx , x ∈ [−1, 1],

rather than

f (x) ≈
N∑

k=−N
ckeπikx , x ∈ [−1, 1].

no periodicity on [−1, 1] is required: no Gibbs phenomenon

proposed (independently) by Oscar Bruno and John Boyd
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An example: f (x) = x

−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

The function f (x) = x is not periodic on [−1, 1], but smooth
extensions periodic on [−2, 2] exist.
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Convergence behaviour

Least squares approximation on [−1, 1] using functions e
π
2
ikx
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n

||f
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g n||

Stable, spectral convergence to machine precision.
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Why is ill-conditioning natural?

The least squares problem leads to a linear system

Ax = B

A ∈ CM×N is rectangular: overdetermined least squares

elements are evaluations φi (xj , yj) (collocation)
alternative: Am,n = 〈φm, φn〉 (projection)

if the set {φi} is complete and redundant, columns are
nearly linearly dependent

hence A is extremely ill-conditioned
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More on the matrix A

The singular values of the rectangular matrix A:

Am,n = e
π
2
i(n−N

2
−1)xm
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What is the matrix A

A is a rectangular subblock of the DFT matrix D

Xk =
N−1∑
n=0

xke−iπkn/N

Am,n = e
π
2
i(n−N

2
−1)xm

subblocks of the DFT matrix have approximately low rank

there is a fast matrix-vector product for Ax

(at least with proper choices of parameters)
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The DFT matrix

Subblocks have low-rank
(Edelman et al, The future Fast Fourier Transform?, SISC, 1999)
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Singular values of A

A lot can be said about the singular value decomposition

A = UΣV ∗

Columns of U and V are Periodic Discrete Prolate
Spheroidal Sequences (P-DPSS)

related to discrete prolate spheroidal sequences (DPSS)

related to prolate spheroidal wave functions

popularized by Slepian in a series of papers I-V in the 60’s and
70’s
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Discrete prolate spheroidal sequences (1)

(Slepian, Prolate spheroidal wave functions, Fourier analysis, and

uncertainty - V: the discrete case, 1978)

Question: which compactly supported sequence (in time) has
maximally concentrated frequency spectrum?

{
u

(k)
n (N,W )

}N−1

n=0
↔ Uk(f ; N,W ) =

N−1∑
n=0

u
(k)
n (N,W )e−iπ(N−1−2n)f

Find the sequence u
(1)
n that maximizes∫W
−W |U1(f ; N,W )|2df∫ 1

2

− 1
2

|U1(f ; N,W )|2df
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Discrete prolate spheroidal sequences (2)

We have∫ W

−W
|U1(f ; N,W )|2df = λ1

∫ 1
2

− 1
2

|U1(f ; N,W )|2df

with λ1 close to 1.

Then, find the sequence u
(2)
n that maximizes concentration of U2

and that is orthogonal to u
(1)
n :∫ W

−W
|U2(f ; N,W )|2df = λ2

∫ 1
2

− 1
2

|U2(f ; N,W )|2df

And so on.
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Some interesting properties

The values λk and sequences u(k) are eigenvalues and eigenvectors
of the prolate matrix ρ(N,W ):

ρ(N,W )mn =
sin 2πW (m − n)

π(m − n)
.

This matrix commutes with a tridiagonal matrix.
The discrete prolate spheroidal wave functions satisfy an ODE and
are eigenfunctions of an integral operator∫ W

−W

sin Nπ(f − f ′)

sinπ(f − f ′)
U(f ′)df ′ = λU(f )

They are doubly orthogonal: on [−1/2, 1/2] and on [−W ,W ].

If Amn = 〈φm, φn〉 (projection) we have A = ρ(N, 1
2T )!
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An example

Set W = 1/2, N = 11.

(a) λ1 ≈ 0.9999999 (b) λ11 ≈ 0.00000001
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How to use all this (1)

Let us precondition our system using an (appropriately sized) DFT
matrix:

DAx = DB.

Then

DAx =

[
D1A
D2A

]
x =

[
D1B
D2B

]

D1A is well-conditioned, D2A is ill-conditioned

because large eigenvalues have (nearly) bandlimited
eigenvectors

and small eigenvalues have high-frequency eigenvectors

rank of D2A is approximately log(N)
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How to use all this (2)

[
D1A
D2A

]
x =

[
D1B
D2B

]
We have a fast matrix-vector product, so we:

Solve D1Ax1 = D1B with an iterative solver

Construct log N random vectors in the null-space of D1A

Using randomized linear algebra, use these to solve
D2Ax2 = D2B − D2Ax1

And add the two results together: x = x1 + x2

This is an O(N log N) algorithm. (With a fairly big constant).
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