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Definition

What is a highly oscillatory problem?

a problem that involves highly oscillatory functions

could be an ODE, PDE, integral equation, . . . or just an
integral

When is a problem highly oscillatory?

Say there is a typical wavelength λ and a typical size D in a
problem

then one looks at the ratio D/λ: how many wavelengths fit
into the problem
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Why are oscillatory problems hard?

Three things make life difficult when oscillations increase:

1 Many degrees of freedom (dof) are required just to be able to
represent the solution

‘resolving the oscillations’

2 Quite often, even more dof’s are needed to solve a problem

due to pollution or dispersion errors1

3 Fast solvers for low-frequency problems typically fail (or need
significant adjustments) for high-frequency problems

e.g. multigrid

1
Babuska and Sauter, SIAM Review, 2000: Is the pollution effect of the FEM avoidable for the Helmholtz

equation considering high wave numbers?
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Sampling requirements

Use sufficiently many points, or this may happen:
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Pollution errors

Use sufficiently many dof’s, or this may happen:
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A crude computation

What is the computational cost of solving a highly oscillatory
problem with frequency k?

1 Many degrees of freedom (dof) are required just to be able to
represent the solution

fixed ndof’s per wavelength and per dimension: N = O(kd)

2 Quite often, even more dof’s are needed to solve a problem

pollution error: keep k2h constant: N = O(k2d)

3 Fast solvers for low-frequency problems typically fail for
high-frequency problems

direct solver: cost is O(N3) = O(k6d)
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A crude computation: example

What is the computational cost of solving a highly oscillatory
problem with frequency k?

O(k6d)

When d = 3: cost scales as k18.

Clearly, we need to be more clever.
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What can be done?

Reduce pollution errors by using high-order methods:2

keep kp+1hp constant: N = O(k2d)→ N = O(kd(1+1/p))
in other words: the number of points per wavelength does not
have to grow like k
it is sufficient if it grows like k1/p

Remove pollution errors altogether by using integral equations

Decrease dimension by using boundary integral equations:
N = O(kd−1)

use fast solvers: Fast Multipole Methods are O(N log N)

Can we achieve a cost that is O(1)?

2
Bayliss, A., Goldstein, C.I., Turkel, E.: On accuracy conditions for the numerical computation of waves. J

Comput Phys 1985

Daan Huybrechs Asymptotic expansions



An introduction to highly oscillatory problems The wonderful world of asymptotic expansions Oscillatory integrals

What can be done?

Reduce pollution errors by using high-order methods:2

keep kp+1hp constant: N = O(k2d)→ N = O(kd(1+1/p))
in other words: the number of points per wavelength does not
have to grow like k
it is sufficient if it grows like k1/p

Remove pollution errors altogether by using integral equations

Decrease dimension by using boundary integral equations:
N = O(kd−1)

use fast solvers: Fast Multipole Methods are O(N log N)

Can we achieve a cost that is O(1)?

2
Bayliss, A., Goldstein, C.I., Turkel, E.: On accuracy conditions for the numerical computation of waves. J

Comput Phys 1985

Daan Huybrechs Asymptotic expansions



An introduction to highly oscillatory problems The wonderful world of asymptotic expansions Oscillatory integrals

Boundary integral equations

Where does the reduction in dimension come from:

Γ

We solve a problem defined on the boundary Γ of the
scattering obstacle.
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An example
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Another example
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Should we solve highly oscillatory problems accurately?

Frequency response at driver’s ear of 99 identical Isuzu
Rodeo cars

Higher frequencies have larger variance in outcome.
Daan Huybrechs Asymptotic expansions
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We are off to a bad start . . .

There is a famous quote by Niels Henrik Abel (1802-1829):

“The divergent series are the invention of the devil, and
it is a shame to base on them any demonstration
whatsoever.”

This explains other statements, such as:

J. P. Boyd, The Devil’s Invention: Asymptotic,
Superasymptotic and Hyperasymptotic Series, Acta Appl
Math, 1999.

2 + 2 = 5, for sufficiently large values of 2
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The sentence that follows changes the picture

What Abel really said was:

“The divergent series are the invention of the devil, and
it is a shame to base on them any demonstration
whatsoever. . . Yet for the most part, the results are valid,
it is true, but it is a curious thing. I am looking for the
reason, a most interesting problem.”

Abel went on to describe Abel summation, a way of summing
divergent series.
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Two examples

Asymptotics of orthogonal polynomials3

Asymptotics of oscillatory integrals

3
Opsomer et al, Construction and implementation of asymptotic expansions of Jacobi-type orthogonal

polynomials, in preparation
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The devil’s invention

For large degree Legendre polynomials, we have (DLMF, 18.15.12)

Pn(cos θ) ∼
(

2

sin θ

)1/2 ∞∑
m=0

(
−1

2

m

)(
m − 1

2

n

)
cosαn,m

(2 sin θ)m

but we also have4(
2

sin θ

)1/2 ∞∑
m=0

(
−1

2

m

)(
m − 1

2

n

)
cosαn,m

(2 sin θ)m
= 2Pn(cos θ)

So, what is the meaning of the first statement?

4
FWJ Olver, A paradox in Asymptotics, SIAM J Math Anal 1(4), 1970
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Accuracy of asymptotic expansions

If f (n) has a Poincaré-type asymptotic expansion

f (n) ∼
∞∑
k=1

akn−k , n� 1

this means that

f (n)−
K∑

k=1

akn−k = O(n−K−1)

There is no convergence for fixed n, only convergence for
increasing n.
Asymptotic expansions typically diverge.
There is no error control.
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Accuracy of asymptotic expansions (2)

f (n) ∼
∞∑
k=1

akn−k , n� 1

Observations:

The optimal truncation point is typically linear in n

The best achievable error is typically exponentially small in n

!Numerical computation of ak is often numerically unstable!

There are still no guarantees for any fixed n. Clearly, we have to be
more clever.
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Design goal of hybrid numerical-asymptotic methods

Say f (n) is the solution to Lf = 0. Say Q[f ] is the numerical
solution to the approximate equation Lhf = 0. Then if

f (n) ∼
∞∑
k=1

akn−k , n� 1

and

g(n) ∼
∞∑
k=1

bkn−k , n� 1

we want to make sure that ak = bk , k = 1, . . . ,K . In that case:

f (n)− g(n) = O(n−K−1)
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A model integral

A Fourier-type oscillatory integral has the form

I [f ] =

∫ b

a
f (x)e iωg(x)dx

with

f a non-oscillatory envelope or amplitude function

g a non-oscillatory phase function

ω ∈ R a frequency parameter, potentially large

There are many variants. The case g(x) = x is special.
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How to derive an asymptotic expansion, part I

If all else fails, integrate by parts
Assume g(x) = x . Then

I [f ] =

∫ b

a
f (x)e iωxdx

=

∫ b

a
f (x)

1

iω

(
e iωx

)′
dx

=
1

iω
f (x)e iωx

∣∣∣∣b
a

− 1

iω

∫ b

a
f ′(x)e iωxdx

=
1

iω

[
f (b)e iωb − f (a)e iωa

]
− 1

iω

∫ b

a
f ′(x)e iωxdx

How large is I [f ] for large ω? It is O(ω−1).
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How to derive an asymptotic expansion, part I

Rinse, repeat:

I [f ] =
1

iω

[
f (b)e iωb − f (a)e iωa

]
− 1

iω

∫ b

a
f ′(x)e iωxdx

=
1

iω

[
f (b)e iωb − f (a)e iωa

]
− 1

(iω)2

[
f ′(b)e iωb − f ′(a)e iωa

]
+

1

(iω)2

∫ b

a
f ′′(x)e iωxdx

∼
∞∑
k=0

1

(iω)k+1

[
f (k)(b)e iωb − f (k)(a)e iωa

]
.
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A simple numerical scheme: Filon quadrature

Approximate I [f ] by the exact integral I [p] where p is a
polynomial

Classical: If p ≈ f then I [f ]− I [p] = I [f − p] is probably small
Asymptotic: What if just p(a) = f (a) and p(b) = f (b)?
In that case:

I [f ]− I [p] = O(ω−2)

f (x) = 5x3 − x2 − 5x + 2 p(x) = 1
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Filon quadrature

Higher asymptotic convergence:5

p(k)(a) = f (k)(a) and p(k)(a) = f (k)(a), k = 0, . . . ,K−1

There are two driving forces for convergence

Classical: making p approximate f better

Asymptotic: making p agree with (derivatives of) f at the
endpoints

How to combine the two optimally is an open problem!

Optimal points lie almost certainly in the complex plane.6

5
Iserles and Norsett, 2005

6
Asheim, Deano, H., Wang, 2013
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How to derive an asymptotic expansion, part II

Let us deform the path of integration into the complex plane

ha hb

��
��
��
��

�
�
�
�

ba

C
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I [f ] =

∫ b

a
f (x)e iωxdx

= (?)

∫
ha

f (z)e iωzdz −
∫
hb

f (z)e iωzdz

= e iωa
∫ ∞

0
f (a + ip)e−ωpdp − e iωb

∫ ∞
0

f (b + ip)e−ωpdp
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How to derive an asymptotic expansion, part II

We have ourselves a Laplace-type integral:

L[f ] =

∫ ∞
0

f (p)e−ωpdp

localization near p = 0 from exponential decay of the
integrand, more pronounced for large ω

idea: replace f by its Taylor series at p = 0:

L[f ] ∼
∫ ∞

0

∞∑
k=0

f (k)(0)
pk

k!
e−ωpdp ∼

∞∑
k=0

1

ωk+1
f (k)(0)

Watson’s Lemma: an asymptotic crime!
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The root cause of divergence

We integrate the Taylor series of f outside its radius of
convergence:

annoying
singularity

hb

ha

a b
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A second numerical method

Replacing f by a Taylor series is a bad idea. Let’s use a
different polynomial:

L[f ] =

∫ ∞
0

f (p)e−ωpdp =
1

ω

∫ ∞
0

f (q/ω)e−qdq

Use Gauss-Laguerre quadrature, with weight function e−q. 7

Error behaves as ω−2K−1 using just K points

Under certain conditions, convergence to L[f ]

7
H. and Vandewalle, On the efficient numerical evaluation of oscillatory integrals by analytic continuation,

SIAM J Numer Anal, 2006.
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A small comparison

Typical convergence characteristics
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numerical steepest descent
Filon−type 5 weights

Comparison of some methods that use between 3 and 5
evaluations of f .
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Did we fix divergence? No!

hb

ha

singularity
very annoying

singularity
not so annoying

a b

The numerical method of steepest descent may in some cases not
converge to I [f ]. Also, the limit ω → 0 is not stable.
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Further observations

Issue with stationary points: g ′(ξ) = 0 for g in e iωg(x)

integration by parts: division by zero
path deformation: ha and hb do not connect at infinity

Multiple coalescing stationary points: Nele Lejon

Why points of reflection of rays scattered by obstacles
correspond to stationary points of oscillatory integrals: Sam
Groth
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Example: a three-dimensional integral

An ellipsoid

I3 :=

∫
E

1

4π
k2(n(x)2 − 1)e iω a·x dx3 dx2 dx1.

length scales R1, R2, R3 along X , Y and Z axis

oscillator: a · x = a1x1 + a2x2 + a3x3

two resonance points

application: scattering of light due to propagation in an object
with refractive index n(x) (S Trattner)
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The end

Thanks!
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