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High freq. problem for the Helmholtz equation

Given an object Ω ⊂ Rd, with boundary Γ and exterior Ω′,
Incident plane wave, e.g. : uI(x) = exp(ikx · â)

Γ

Ω

â

Ω′

Total wave u = uI + uS , where Scattered wave uS satisfies:

∆uS + k2uS = 0 in Ω′

plus boundary condition (Mostly uI + uS = 0 on Γ) and

radiation condition: ∂uS

∂r − ikuS = o(r−(d−1)/2) as r →∞



Numerical-asymptotic methods

Constant wavenumber k - asymptotic information (mostly BEM)

Computing in “time independent of frequency”.

Links to Daan and Simon’s talks

Geometry dependent methods
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Numerical-asymptotic methods

Still a role for conventional BEM



Second Talk: Truncated problems

∆u+ k2u = 0 in Ω′ ∩BR
u = −uI on Γ

∂u

∂n
− iku = 0 on BR

for large R

Γ

Ω
Ω′

BR

Model “cavity” problem

∆u+ k2u = f in bounded domain Ω

∂u

∂n
− iku = g on Γ := ∂Ω



Heterogeneity

Seismic inversion problem:

−∆u−
(
ωL

c(x)

)2

u = f, ω = frequency

solve for u with approximate c.

Second talk: Conventional discretisation and fast solvers

Key reference: Erlangga, Osterlee, Vuik, 2004...

Link to Martin’s talks and Domain Decomposition



Outline of my talks:

Two problems on conventional methods.

1. When is the error in the h− version BEM bounded
independently of k?

2. Give an analysis of preconditioning methods for standard
h− version FEM

Both have solutions which use high-frequency analysis.
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First problem

When is the error in the h− version boundary
element method bounded independently of k?



Fundamental solution for the Helmholtz equation

∆u+ k2u = 0

Gk(x, y) =


i
4H

(1)
0 (k|x− y|) 2D

exp(ik|x− y|)
4π|x− y| 3D

Phase: k|x− y|

single layer potential : (Skφ)(x) =
∫

ΓGk(x, y)φ(y)dS(y),

double layer: (Dkφ)(x) =
∫

Γ[∂n(y)Gk(x, y)]φ(y)dS(y),

adjoint double layer: D′k (switch roles of x and y).



Combined potential boundary integral formulations

Exterior scattering problem with incident field uI :

Green’s identity for uS in Ω′:

Sk(∂nuS + ∂nuI)−Dk(uS + uI) = (−uS + 0) in Ω′ (1)

Limit to boundary Γ: Equation for unknown v := ∂nu
but with spurious frequencies.

Take normal derivative in (1) and combine with (1):
combined potential formulation

R′kv :=

(
1

2
I +D′k

)
v − ikSkv = ∂nuI − ikuI , or k → η

Alternative “indirect” method:

Rkφ :=

(
1

2
I +Dk

)
φ− ikSkφ = uI ,
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BEM analysis - Classical setting

“Fredholm integral equations of the Second kind”

R′kv = (λI + L′k)v = fk

Rkφ = (λI + Lk)φ = gk (λ = 1/2)

Galerkin method in approximating space VN (or Vh).

e.g. piecewise polynomials of fixed degree p.

Solution vN or φN , e.g.

(λI + PNL′k)vN = PNfk
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R′kv = (λI + L′k)v = fk

Rkφ = (λI + Lk)φ = gk (λ = 1/2)

Galerkin method in approximating space VN (or Vh).

e.g. piecewise polynomials of fixed degree p.

Solution vN or φN , e.g.

(λI + PNL′k)vN = PNfk

v − vN = λ (λI − PNL′k)−1︸ ︷︷ ︸
stability

(v − PNv)︸ ︷︷ ︸
best approx



Question 1 (best approximation error)

When are
infwN∈VN ‖v − wN‖L2(Γ)

‖v‖L2(Γ)

and
infwN∈VN ‖φ− wN‖L2(Γ)

‖φ‖L2(Γ)

bounded independently of k?



Question 2 (quasioptimality)

When are
‖v − vN‖L2(Γ)

infwN∈VN ‖v − wN‖L2(Γ)

and
‖φ− φN‖L2(Γ)

infwN∈VN ‖φ− wN‖L2(Γ)

bounded independently of k?



If both hold...(bound on relative errors)

‖v − vN‖L2(Γ)

‖v‖L2(Γ)

and
‖φ− φN‖L2(Γ)

‖φ‖L2(Γ)

bounded indpendently of k.



Answers: Question 1 (“direct” version v = ∂nu)

When is
infwN∈VN ‖v − wN‖L2(Γ)

‖v‖L2(Γ)

bounded independently of k?

Theorem If Ω is C∞ and convex then for h−BEM,

inf
wh∈Vh

‖v − wh‖L2(Γ) . (hk)p‖v‖L2(Γ)

so hk . 1 is sufficient for Question 1.



Proof uses

v(x) := ∂u/∂n(x) = kV (x, k) exp(ikx · â) , x ∈ Γ,

Theorem Dominguez, IGG, Smyshlyaev, 2007

|DnV (x, k)| ≤
{
Cn, n = 0, 1,

Cn k
−1 (k−1/3 + dist(x, SB))−(n+2) n ≥ 2,

where SB = {x ∈ Γ : n(x).â = 0} shadow boundary.

â

SB

Proves, e.g. ‖v‖H1(Γ) . k‖v‖L2(Γ)



Answers: Question 1 (“direct” version v = ∂nu)

When is
infwN∈VN ‖v − wN‖L2(Γ)

‖v‖L2(Γ)

bounded independently of k?

Theorem If Ω is a convex polygon then there is a mesh with
O(N) points so that ,

inf
wh∈Vh

‖v − wh‖L2(Γ) .
k

N
‖v‖L2(Γ)

so k/N . 1 is sufficient for Question 1.

(Requires supx∈Ω′ |u(x)|.)



Proof uses:

Theorem Chandler-Wilde and Langdon (2007)

γ

∂u

∂n
(s) = 2

∂uI

∂n
(s) + eiksv+(s) + e−iksv−(s)

where s is distance along γ, and

k−n|v(n)
+ (s)| ≤

{
Cn(ks)−1/2−n, ks ≥ 1,
Cn(ks)−α−n, 0 < ks ≤ 1,

where α < 1/2 depends on the corner angle.



Answers: Question 1: Indirect method

λφ = Lkφ = ikSkφ+Dkφ

To estimate the derivatives of φ:

‖Sk‖H1←L2
. k(d−1)/2 (Γ Lipschitz)

‖Dk‖H1←L2
. k(d+1)/2 (Γ smooth enough)

These imply ‖φ‖H1(Γ) . k(d+1)/2‖φ‖L2(Γ)

And so hk(d+1)/2 . 1 is sufficient for Question 1.



Answers: Question 2 (classical approach)

R′kv := (λI + L′k)v = fk compact perturbation
(λI + PhL′k)vh = Phfk Galerkin method

Lemma [Atkinson, Anselone, 1960’s ....]

If ‖(I − Ph)L′k‖‖(λI + L′k)−1‖ << 1,

then ‖v − vh‖ . ‖(λI + L′k)−1‖ inf
wh∈Vh

‖v − wh‖

Application:

‖(I − Ph)L′k‖ . h‖L′k‖L2→H1 . hk(d+1)/2

and in addition:

‖(λI + L′k)−1‖ . 1 [Chandler-Wilde & Monk, 2008]

Lipschitz star-shaped
Theorem Hence quasioptimality if hk(d+1)/2 ≤ C



Tools

We used in this talk

• k− explicit bounds on norms of Lk, L′k
(where R′k = 1

2I + L′k), etc.
needed smooth enough domains

• k− explicit bounds on inverses (Rk)−1, (R′k)−1

needed Lipschitz star-shaped

We will need in the next talk

• Bound on the solution operator for the Helmhotz BP PDE
itself.

• connection between the two illustrates the role of
star-shaped.



The Subtlety of Behaviour of ‖Lk‖ and ‖R−1
k ‖

Equivalently ‖L′k‖ and ‖(R′k)−1‖

‖Lk‖, ‖R−1
k ‖

∼ k1/3, ∼ 1

∼ k1/2, ∼ 1

∼ k1/2
m , ∼ k7/5

m ∼ k1/2
m , ∼ eγkm

Chandler-Wilde, IGG et al (2009),
Betcke, Chandler-Wilde, IGG et al (2011).



Numerical Experiments: domain [0, 0.5]× [0, 5]

√
1 + γ2

p ≈
‖v − vN‖L2(Γ)

infwN∈VN ‖v − wN‖L2(Γ)

degree p = 0, 1
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n
o
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s
ti
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a
te

rectangle

 

 

||A||

||A
−1

||

O(k
1/2

)

N k γ0 γ1

22 2 0.368234 0.136623
66 6 0.334368 0.121106

198 18 0.337487 0.120028
594 54 0.335113 0.120023

1782 162 0.333687 0.12
5346 486 0.333559 0.119998

hk ∼ 1



Numerical Experiments: trapping domain
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||A||

||A
−1

||

O(k
1/2

)

O(k
0.9

)

m k N γ0 γ1

3 56.5 120 0.480033 0.174585
6 113.1 240 0.487655 0.174454

12 226.2 480 0.51861 0.174301
24 452.4 960 0.527743 0.174264
48 904.8 1920 0.549879 0.174278
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“Trapping domains”

Can things get bad in the non-star-shaped case?

Theorem

If the exterior domain Ω′ contains a square Q of side length a
and the boundary Γ coincides with two parallel sides of Q, then
if 2ak = mπ for any positive integer m,

‖R−1
k ‖ & (ak)9/10 .

Ω

Ω′

Q

1



“Quasimodes”

(family of) sources g and solutions v of Helmholtz problem

∆v + k2v = g in Ω′ v = 0 on Γ

+ Sommerfeld condition, where

‖v‖L2(Ω′) ≥ Mk‖g‖L2(Ω′), with Mk “large”

. This could contradict the bound

‖v‖L2(Ω′) .
1

k
‖f‖L2(Ω′)

which holds in star-shaped case (see next lecture).

In fact
R′k (∂nv) = (∂nv

I − ikvI)

where vI is the Newtonian potential generated by g

implies growth of ‖(R′k)−1‖
More generally ...



‖(R′k)−1‖ & k−(d−2)Mk −O(k(d−1)/2)

With elliptic cavity Mk can increase exponentially.

[Betcke, Chandler-Wilde, IGG, Langdon, Lindner, 2011]



Final theorem for today...

Model interior impedance problem:

−∆u− k2u = f in bounded domain Ω

∂u

∂n
− iku = g on Γ := ∂Ω

....Also truncated sound-soft scattering problems in Ω′

Theorem (Stability) Assume Ω is Lipschitz and star-shaped.
Then,

‖∇u‖2L2(Ω) + k2‖u‖2L2(Ω)︸ ︷︷ ︸
=:‖u‖21,k

. ‖f‖2L2(Ω) + ‖g‖2L2(Γ) , k →∞

[Melenk 95, Cummings & Feng 06]
Central result in next lecture


