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High freq. problem for the Helmholtz equation

Given an object Q ¢ R?, with boundary I" and exterior ',
Incident plane wave, e.g. : u;(z) = exp(ikx - Q)

(94

Total wave u = uy + ug, where Scattered wave ug satisfies:
Aug + k:zuS =0 in¢

plus boundary condition (Mostly u; +ug =00onT) and

radiation condition: 22 — ikuS = o(r~(="1/2) as r oo



Numerical-asymptotic methods
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Constant wavenumber £ - asymptotic information (mostly BEM)
Computing in “time independent of frequency”.

Links to Daan and Simon’s talks
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Computing in “time independent of frequency”.
Links to Daan and Simon’s talks

Geometry dependent methods



Numerical-asymptotic methods
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Still a role for conventional BEM



Second Talk: Truncated problems

Au+ku = 0 inQ'NBg
u = —uy on T
ou .
— —tku = 0 on Bg
on
for large R

Model “cavity” problem

Au+k*v = f in boundeddomain Q
— —tku = g on I':=90



Heterogeneity

Seismic inversion problem:

wL \ 2
—Auy — () u=f, w = frequency
c(x)

solve for u with approximate c.

Numerical solution

Marmousi wave speed
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Second talk: Conventional discretisation and fast solvers
Key reference: Erlangga, Osterlee, Vuik, 2004...
Link to Martin’s talks and Domain Decomposition



Outline of my talks:

Two problems on conventional methods.

1. When is the error in the h— version BEM bounded
independently of £7?

2. Give an analysis of preconditioning methods for standard
h— version FEM

Both have solutions which use high-frequency analysis.
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First problem

When is the error in the 2— version boundary
element method bounded independently of £?



Fundamental solution for the Helmholtz equation

Au+ku =0

i (klz —y|) 2D

Grly) = explikle —y|)

D
Arlz — y| °

Phase: k|z — y]
single layer potential : (Sy¢)(z) = [ Gr(z,y)¢(y)dS(y),
double layer: (Dro)(x) = [p0n@y)Gr(z,y)]o(y)dS(y),

adjoint double layer: D) (switch roles of = and y).



Combined potential boundary integral formulations

Exterior scattering problem with incident field u;:
Green’s identity for ug in Q':

Sk(anus >_ Dk(us ) = (_US ) in ¢ (1)



Combined potential boundary integral formulations

Exterior scattering problem with incident field u;:
Green’s identity for uy in Q:
Sk(3n7L5 + Onul) — Dk(uS + ul) = (*U/S + 0) in @ (1)



Combined potential boundary integral formulations

Exterior scattering problem with incident field u;:

Green’s identity for uy in Q:

Sk(anu,g + Onul) — Dk(us + UI) = (—uS + 0) in @ (1)
N N—— N——

Onu =0 uy



Combined potential boundary integral formulations

Exterior scattering problem with incident field u;:

Green’s identity for uy in Q:

Sk(anu,g + Onul) — Dk(us + uI) = (—uS + 0) in (1)
T’_/ T N —
nU = ur

Limit to boundary I': Equation for unknown v := 0,,u
but with spurious frequencies.



Combined potential boundary integral formulations

Exterior scattering problem with incident field u;:
Green’s identity for uy in Q:
Sk(anu,g + Onul) — Dk(us + UI) = (—uS + 0) in @ (1)
T T N——
nU = ur
Limit to boundary I': Equation for unknown v := 0,,u
but with spurious frequencies.
Take normal derivative in (1) and combine with —ikx (1):
“direct” combined potential formulation

1
WU = <2I+D;€>v—ik8kv = Opur —ikuy, Ork—mn



Combined potential boundary integral formulations

Exterior scattering problem with incident field u;:

Green’s identity for uy in Q:

Sk(anu,g + Onul) — Dk(us + UI) = (—uS + 0) in @ (1)
N N—— N——

Onu =0 uy

Limit to boundary I': Equation for unknown v := 0,,u
but with spurious frequencies.

Take normal derivative in (1) and combine with —ikx (1):
“direct” combined potential formulation

1
WU = <2I+D;€>v—ik8kv = Opur —ikuy, Ork—mn

Alternative “indirect” method:

1
Ry = <2I+Dk> b — ikSpd = ug,



BEM analysis - Classical setting

“Fredholm integral equations of the Second kind”
W=+ L)v = fi
Rrkp =M +Lp)o =g  (A=1/2)

Galerkin method in approximating space Vy (or V).
e.g. piecewise polynomials of fixed degree p.

Solution vy or ¢y, €.9.

(M + PnLi)vn = Pn fu



BEM analysis - Classical setting

“Fredholm integral equations of the second kind”

W =M +L)v = fi
Rep =M +Lr)p =g (A=1/2)

Galerkin method in approximating space Vy (or V).
e.g. piecewise polynomials of fixed degree p.

Solution vy or ¢y, €.g.

(M +PnLy)on = Pn f

v—vy =AM —PyLY) ! (v —Pyv)

stability best approx




Question 1 (best approximation error)

When are )
infyyevy [0 = wnll 2

loll L2 (r)

and )
infyyevy ¢ — wNHLZ(F)

el L2(r
bounded independently of £?



Question 2 (quasioptimality)

When are
[v =Nl L2

infyyevy lv —wnll 2

and
¢ — onll2(ry

inwaGVN ”d’ - wNHL2(F)

bounded independently of k?



If both hold...(bound on relative errors)

v — UN||L2(F)
HUHL?(F)

and

16— onll 2
161l £2(r)
bounded indpendently of k.



Answers: Question 1 (“direct” version v = 9,,u)

When is )
infuyevy 10— wnll 2

”UHL?(F)

bounded independently of £?
Theorem If 2 is C*° and convex then for h—BEM,
A e P (O P

so hk < 1 is sufficient for Question 1.



Proof uses

v(x) := Ju/On(x) = kV(x,k)exp(ikx-a), x€T,
Theorem Dominguez, IGG, Smyshlyaev, 2007

Cnv n = 071,

D"V (z,k)| <
[PV (e, k) {Cn/-fl(k—1/3+dist(x,SB))—<n+2>

where SB = {x € I" : n(x).a = 0} shadow boundary.

Proves, e.g. ||v]|g1 ) < Kllvll 2



Answers: Question 1 (“direct” version v = 9,,u)

When is '
infyyevy (v — wNHLQ(F)

Tl

bounded independently of k£?

Theorem If Q is a convex polygon then there is a mesh with
O(N) points so that ,

) k
wzllrgih lv — 'thHLQ(F) S NHUHI}(F)

so k/N < 1 is sufficient for Question 1.

(Requires supycq [u(x)].)



Proof uses:

Theorem Chandler-Wilde and Langdon (2007)

-

au o au 1ks —iks
5 (5) = 25(s) TP u(s) + e 0 (s)
where s is distance along ~, and
n Cp(ks)~ V2, ks> 1,
vy (s)] < { Cp(ks)= @™ 0< ks <1,

where a < 1/2 depends on the corner angle.



Answers: Question 1: Indirect method

Ap = Ly¢ = ikSkp + Do

To estimate the derivatives of ¢:

ISellper, S E@=D/2 (T Lipschitz)
1Dillrr, < K9D/2 (T smooth enough)

These imply ||l g1y <

~

E@TD2)| 6| L2y

Andso  hk(@D/2 < 1 s sufficient for Question 1.



Answers: Question 2 (classical approach)

wi=  (M+L)v = f compactperturbation
(M + PpLy)vn, = Prfr Galerkin method

Lemma [Atkinson, Anselone, 1960’s ....]
It (= Pu)LLlIA + L)~ << 1,

then [lv —wnll < (AL +Lp) [[v = w||

Y| inf
wpEV

Application:
(7 = Pu)Lill S AICE] L2 S REETD

and in addition:
|(AT + £§€)‘1|| <1 [Chandler-Wilde & Monk, 2008]

Lipschitz star-shaped
Theorem Hence quasioptimality if hk(*+1/2 < ¢



Tools

We used in this talk

e k— explicit bounds on norms of £, £}
(where R}, = 11 + £}), etc.
needed smooth enough domains

e k— explicit bounds on inverses (R;) ™!, (R},)~*
needed Lipschitz star-shaped



The Subtlety of Behaviour of ||| and [|R, |

Equivalently 1£]l and [[(R})~"]]
1£klls 1R
~ KB~ Q < >
~ kY2 1

Rectangular cavity Elliptic Cavity

1/2, ~ k7/5 a D ~ k1/2 ~ Ykm

Chandler-Wilde, IGG et al (2009),
Betcke, Chandler-Wilde, IGG et al (2011).



Numerical Experiments: domain [0, 0.5] x [0, 5]

[v—=onllg2m

10"

T
+ AT
- 'O(k"z)

4

¥ .

1492 ~ -
P fuyeny 0= ol |
degree p=10,1
N k| o M
22 2 | 0.368234 | 0.136623
66 6 | 0.334368 | 0.121106
198 18 | 0.337487 | 0.120028
594 | 54 | 0.335113 | 0.120023
1782 | 162 | 0.333687 | 0.12
5346 | 486 | 0.333559 | 0.119998

hk ~ 1



Numerical Experiments: trapping domain

C-shaped domain

“H-I1Al
N
---0('"?) =
% , 73 == 0Kk™9) +
r
m k N | v Y1
3 56.5 | 120 | 0.480033 | 0.174585

6 | 113.1 | 240 | 0.487655 | 0.174454
12 | 226.2 | 480 | 0.51861 | 0.174301
24 | 452.4 | 960 | 0.527743 | 0.174264
48 | 904.8 | 1920 | 0.549879 | 0.174278




Tools

Open question: Prove ik < 1 sufficient for quasioptimality



Tools

Open question: Prove ik < 1 sufficient for quasioptimality
We used in this talk

e k— explicit bounds on norms of £, £}
(where R}, = 11 + £}), etc.
needed smooth enough domains

e k— explicit bounds on inverses (Ry) ™!, (R},)~*
needed Lipschitz star-shaped
We will need in the next talk

e Bound on the solution operator for the Helmholtz BVP PDE
itself.

e connection between the two illustrates the role of
star-shaped.



“Trapping domains”

Can things get bad in the non-star-shaped case?

Theorem

If the exterior domain €’ contains a square Q of side length a
and the boundary I" coincides with two parallel sides of @, then
if 2ak = mz for any positive integer m,

IR Z (ak)?10.

o4

Q




“Quasimodes”

(family of) sources g and solutions v of Helmholtz problem
Av+kv=g in @ v=0 on T
+ Sommerfeld condition, where
[oll2@) = Millgllrzy, with M “large”
. This could contradict the bound

1
lllzzy S 21 2

which holds in star-shaped case (see next lecture).

In fact
RS (8,v) = (v — ikov?)

where v/ is the Newtonian potential generated by ¢
implies growth of ||(R},) ™|

More generally ...



IR 2 k=D My — O(k1=D72)

With elliptic cavity M}, can increase exponentially.
[Betcke, Chandler-Wilde, IGG, Langdon, Lindner, 2011]

k, ,=9.9771201566136298 k, ,=28.807002784875433
ky ,=60.218097688523919 K, 4 0=91.632551202864647



Final theorem for today...

Model interior impedance problem:

—Au—Fk*wu = f in boundeddomain
9u —tku = g on I :=00Q
on

...Also truncated sound-soft scattering problems in Q'

Theorem (Stability) Assume  is Lipschitz and star-shaped.
Then,

IVullai) + KllulZa) S IflZ2@) + l9llZeq) , k= o0

=:[lull?

[Melenk 95, Cummings & Feng 06]
Central result in next lecture



