Hybrid Numerical-Asymptotic Methods for High Frequency Scattering Problems

 Simon Chandler-Wilde University of Reading, UKWWW.reading. ac.uk/~sms03snc

With: Steve Langdon, Andrea Moiola (Reading), Ivan Graham, Euan Spence (Bath), Dave Hewett (Oxford), Valery Smyshlyaev, Timo Betcke (UCL), Marko Lindner (TU HH), Peter Monk (Delaware)
PhDs Andrew Gibbs, Sam Groth, Charlotta Howarth, Ashley Twigger
Funding: • EPSRC project(s) across Bath/Reading/UCL with BAE Systems, Institute of Cancer Research, Met Office, Schlumberger Cambridge Research as project partners.

- 4 NERC/EPSRC CASE Studentships at Bath \& Reading
- EPSRC/Swiss NSF Fellowships for Andrea, Euan, Timo

Woudschoten, October 2014

Context

My talks apply (particularly) to acoustic waves.
My talks concern new numerical-asymptotic methods for high frequency wave scattering based on boundary integral equations, that combine numerical analysis with high frequency asymptotics, see

C-W, Graham, Langdon, Spence Acta Numerica 21 (2012), 89-305.
The first talk was largely HF asymptotics - in this talk we come to numerical methods and their analysis!

Overview

1. Green's Representation Theorem and boundary integral equations (for Helmholtz)
2. A Case study for numerical-asymptotic methods: the thin screen Step A. Represent the unknown as sum of products of known oscillatory and unknown non-oscillatory functions using GO/GTD.
Step B. Decide on the approximation space - combine HF asymptotics with $h p$-approximation theory

Step C. Implement it and see that (we hope) the cost is $\mathrm{O}(1)$ as $k \rightarrow \infty$!
Step D. Try to prove this by theorems about the k-dependence of everything!
3. Other geometries and 3D

1. GREEN'S REPRESENTATION THEOREM AND INTEGRAL EQUATIONS FOR HELMHOLTZ

Green's Representation Theorem: slide from Talk 1
$V_{\Delta} u_{\text {inc }} \quad \Delta u+k^{2} u=0$

Theorem

$$
u(x)=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left(\frac{\partial u}{\partial n}(y) \Phi(x, y)-u(y) \frac{\partial \Phi(x, y)}{\partial n(y)}\right) d s(y), \quad x \in D
$$

where

$$
\Phi(x, y)=\left\{\begin{array}{l}
\frac{\mathrm{i}}{4} H_{0}^{(1)}(k|x-y|) \\
\frac{1}{4 \pi} \frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{|x-y|},
\end{array}\right.
$$

Green's Representation Theorem

$V_{\nu} u_{\text {inc }} \quad \Delta u+k^{2} u=0$

Theorem

$$
u(x)=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left(\frac{\partial u}{\partial n}(y) \Phi(x, y)-u(y) \frac{\partial \Phi(x, y)}{\partial n(y)}\right) d s(y), \quad x \in D .
$$

Green's Representation Theorem

$V u^{\text {inc }} \quad \Delta u+k^{2} u=0$

Theorem

$$
u(x)=u^{\mathrm{inc}}(x)+\int_{\Gamma} \frac{\partial u}{\partial n}(y) \Phi(x, y) d s(y), \quad x \in D
$$

Green's Representation Theorem for a Thin Screen

$V_{\boldsymbol{u}} u_{\text {inc }} \quad \Delta u+k^{2} u=0$

$$
D \quad \wp^{u=0 \text { on } \Gamma} \begin{aligned}
& u-u^{\text {inc }} \text { satisfies S.R.C. }
\end{aligned}
$$

Theorem

$$
u(x)=u^{\mathrm{inc}}(x)+\int_{\Gamma} \underbrace{\left[\frac{\partial u}{\partial n}\right]}_{\text {jump }}(y) \Phi(x, y) d s(y), \quad x \in D .
$$

Green's Representation Theorem and BIE for a Thin Screen

$$
V_{\triangle} u^{\text {inc }} \quad \Delta u+k^{2} u=0
$$

D

$$
\boldsymbol{f}^{u=0 \text { on } \Gamma} \begin{aligned}
& u-u^{\text {inc }} \text { satisfies S.R.C. }
\end{aligned}
$$

Theorem

$$
u(x)=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left[\frac{\partial u}{\partial n}\right](y) \Phi(x, y) d s(y), \quad x \in D .
$$

Further (letting $x \rightarrow \Gamma$),

$$
0=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left[\frac{\partial u}{\partial n}\right](y) \Phi(x, y) d s(y), \quad x \in \Gamma .
$$

Green's Representation Theorem and BIE for a Thin Screen

$$
V_{ \pm} u^{\text {inc }} \quad \Delta u+k^{2} u=0
$$

Theorem
D

$$
\wp^{u=0 \text { on } \Gamma} \begin{aligned}
& u-u^{\text {inc }} \text { satisfies S.R.C. }
\end{aligned}
$$

$$
u(x)=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left[\frac{\partial u}{\partial n}\right](y) \Phi(x, y) d s(y), \quad x \in D
$$

and

$$
0=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left[\frac{\partial u}{\partial n}\right](y) \Phi(x, y) d s(y), \quad x \in \Gamma
$$

in operator notation

$$
\begin{equation*}
S_{k}\left[\frac{\partial u}{\partial n}\right]=-\left.u^{\mathrm{inc}}\right|_{\Gamma} \tag{BIE}
\end{equation*}
$$

2. A CASE STUDY FOR NUMERICAL-ASYMPTOTIC METHODS: THE THIN SCREEN

A Case Study for Numerical-Asymptotic Methods

$$
\mathscr{V}_{\star} u^{\text {inc }} \quad \Delta u+k^{2} u=0
$$

$$
\wp^{u=0 \text { on } \Gamma} \begin{align*}
& u-u^{\text {inc }} \text { satisfies S.R.C. }
\end{align*}
$$

Theorem

$$
u(x)=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left[\frac{\partial u}{\partial n}\right](y) \Phi(x, y) d s(y), \quad x \in D
$$

and

$$
0=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left[\frac{\partial u}{\partial n}\right](y) \Phi(x, y) d s(y), \quad x \in \Gamma
$$

in operator notation

$$
S_{k}\left[\frac{\partial u}{\partial n}\right]=-\left.u^{\mathrm{inc}}\right|_{\Gamma}
$$

A Case Study for Numerical-Asymptotic Methods

$$
W_{\Delta} u_{\mathrm{inc}} \quad \Delta u+k^{2} u=0
$$

D

$$
\underline{f}^{u=0 \text { on } \Gamma} \begin{aligned}
& u-u^{\text {inc }} \text { satisfies S.R.C. }
\end{aligned}
$$

We will solve

$$
0=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left[\frac{\partial u}{\partial n}\right](y) \Phi(x, y) d s(y), \quad x \in \Gamma
$$

in operator notation

$$
\begin{equation*}
S_{k}\left[\frac{\partial u}{\partial n}\right]=-\left.u^{\mathrm{inc}}\right|_{\Gamma} \tag{BIE}
\end{equation*}
$$

by a Galerkin BEM representing $\left[\frac{\partial u}{\partial n}\right]$ as a sum of products of known oscillatory functions and unknown non-oscillatory functions.

A Case Study for Numerical-Asymptotic Methods

$$
\mathscr{V}_{\boldsymbol{x}} u_{\text {inc }} \quad \Delta u+k^{2} u=0
$$

D

$$
\underline{f}^{u=0 \text { on } \Gamma} \begin{aligned}
& u-u^{\text {inc }} \text { satisfies S.R.C. }
\end{aligned}
$$

We will solve the BIE by a Galerkin BEM representing $\left[\frac{\partial u}{\partial n}\right]$ as a sum of products of known oscillatory functions and unknown non-oscillatory functions.

The steps are:
A. Work out what this representation for $\left[\frac{\partial u}{\partial n}\right]$ is - use GTD.
B. Decide on the approximation space - use HF asymptotics and $h p$-approximation theory
C. Implement it and see that the cost is $O(1)$ as $k \rightarrow \infty$!
D. Try to prove this!

STEP A. REPRESENT THE UNKNOWN AS SUM OF PRODUCTS OF KNOWN OSCILLATORY AND UNKNOWN NON-OSCILLATORY FUNCTIONS USING GO/GTD.

The GTD Approach to Diffraction: Recap from Talk 1

where $u^{\mathrm{d}}(x)=u^{\mathrm{inc}}(z) \mathcal{D}(\theta, \alpha) \frac{\mathrm{e}^{\mathrm{i} k r}}{\sqrt{k r}}, \mathcal{D}$ the diffraction coefficient.

$$
\begin{aligned}
& W_{\infty} u^{\text {inc }} \\
& D \\
& \quad f^{u=0} \text { on } \Gamma
\end{aligned}
$$

We will solve the BIE by a Galerkin BEM representing $\left[\frac{\partial u}{\partial n}\right]$ as a sum of products of known oscillatory functions and unknown non-oscillatory functions.

Step A. Work out what this representation for $\left[\frac{\partial u}{\partial n}\right]$ is - use GTD.
Above the screen (see the GO example yesterday)

$$
\frac{\partial u}{\partial n} \approx 2 \frac{\partial u^{\mathrm{inc}}}{\partial n}
$$

$W_{*} u^{\text {inc }}$

$$
D_{\underbrace{x_{2}} x_{1}}^{x_{1}} \quad r^{u=0 \text { on } \Gamma}
$$

We will solve the BIE by a Galerkin BEM representing $\left[\frac{\partial u}{\partial n}\right]$ as a sum of products of known oscillatory functions and unknown non-oscillatory functions.

Step A. Work out what this representation for $\left[\frac{\partial u}{\partial n}\right]$ is - use GTD.
Above the screen ... and adding in the GTD terms ...

$$
\frac{\partial u}{\partial n}(x) \approx 2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)+c_{+} \frac{\mathrm{e}^{\mathrm{i} k x_{1}}}{\sqrt{k x_{1}}}+\ldots
$$

$\prod_{u^{\text {inc }}}$

$$
{\underset{\sim}{\uparrow}}_{\stackrel{x_{2}}{x_{1}}}^{\longleftrightarrow} f^{u}{ }^{u=0 \text { on } \Gamma}
$$

We will solve the BIE by a Galerkin BEM representing $\left[\frac{\partial u}{\partial n}\right]$ as a sum of products of known oscillatory functions and unknown non-oscillatory functions.

Step A. Work out what this representation for $\left[\frac{\partial u}{\partial n}\right]$ is - use GTD.
Above the screen ... and adding in the GTD terms ...

$$
\frac{\partial u}{\partial n}(x) \approx 2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)+c_{+} \frac{\mathrm{e}^{\mathrm{i} k x_{1}}}{\sqrt{k x_{1}}}+c_{-} \frac{\mathrm{e}^{-\mathrm{i} k x_{1}}}{\sqrt{k\left(L-x_{1}\right)}}
$$

$$
\begin{aligned}
& \mathcal{V}_{\star} u^{\text {inc }} \\
& \quad \underbrace{\stackrel{1}{x}_{x_{2}}^{x_{1}} \quad f^{2}}_{L}
\end{aligned}
$$

We will solve the BIE by a Galerkin BEM representing [$\frac{\partial u}{\partial n}$] as a sum of products of known oscillatory functions and unknown non-oscillatory functions.

Step A. Work out what this representation for $\left[\frac{\partial u}{\partial n}\right]$ is - use GTD. While below the screen

$$
\frac{\partial u}{\partial n}(x) \approx c_{+}^{\prime} \frac{\mathrm{e}^{\mathrm{i} k x_{1}}}{\sqrt{k x_{1}}}+c_{-}^{\prime} \frac{\mathrm{e}^{-\mathrm{i} k x_{1}}}{\sqrt{k\left(L-x_{1}\right)}}
$$

$W_{u^{\text {inc }}}$

$$
D_{\uparrow}^{\stackrel{x_{2}}{x_{1}}} \underset{L}{\longleftrightarrow} f^{u=0} \text { on } \Gamma
$$

We will solve the BIE by a Galerkin BEM representing $\left[\frac{\partial u}{\partial n}\right]$ as a sum of products of known oscillatory functions and unknown non-oscillatory functions.

Step A. Work out what this representation for $\left[\frac{\partial u}{\partial n}\right]$ is - use GTD. So

$$
\left[\frac{\partial u}{\partial n}\right](x) \approx 2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)+C_{+} \frac{\mathrm{e}^{\mathrm{i} k x_{1}}}{\sqrt{k x_{1}}}+C_{-} \frac{\mathrm{e}^{-\mathrm{i} k x_{1}}}{\sqrt{k\left(L-x_{1}\right)}}
$$

$\psi_{u_{i} \text { inc }}$

$$
D_{\uparrow}^{\stackrel{x_{2}}{x_{1}}} f_{L}^{\longleftrightarrow} f^{u=0 \text { on } \Gamma}
$$

We will solve the BIE by a Galerkin BEM representing $\left[\frac{\partial u}{\partial n}\right]$ as a sum of products of known oscillatory functions and unknown non-oscillatory functions.

Step A. Work out what this representation for $\left[\frac{\partial u}{\partial n}\right]$ is - use GTD.
... and our representation is ...

$$
\left[\frac{\partial u}{\partial n}\right](x)=2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)+\mathrm{e}^{\mathrm{i} k x_{1}} \underbrace{F_{+}\left(x_{1}\right)}_{\text {unknown }}+\mathrm{e}^{-\mathrm{i} k x_{1}} \underbrace{F_{-}\left(L-x_{1}\right)}_{\text {unknown }}
$$

$\prod_{1} u^{\text {inc }}$

$$
D_{\uparrow}^{\stackrel{x_{2}}{x_{1}}} \mathfrak{f}_{L}^{\longleftrightarrow} \quad u=0 \text { on } \Gamma
$$

We will represent $\left[\frac{\partial u}{\partial n}\right]$ as a sum of products of known oscillatory functions and unknown non-oscillatory functions.

Step A. Work out what this representation for $\left[\frac{\partial u}{\partial n}\right]$ is - use GTD.
... and our representation is ...

$$
\left[\frac{\partial u}{\partial n}\right](x)=2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)+\mathrm{e}^{\mathrm{i} k x_{1}} \underbrace{F_{+}\left(x_{1}\right)}_{\text {unknown }}+\mathrm{e}^{-\mathrm{i} k x_{1}} \underbrace{F_{-}\left(L-x_{1}\right)}_{\text {unknown }}
$$

Step B. Show that $F_{ \pm}$are non-oscillatory and choose piecewise polynomial approximation spaces for them.

STEP B. RECAP - A PIECEWISE POLYNOMIAL QUIZ

How best to approximate $F(t)=t^{1 / 2}$ on $[0, L]$ with smallest $L^{\infty}(0, L)$ error using piecewise polynomials of degree p ?

How best to approximate $F(t)=t^{1 / 2}$ on $[0, L]$ with smallest $L^{\infty}(0, L)$ error using piecewise polynomials of degree p ?

ANSWER! Grid-points 0 and $L \alpha^{j}, j=0, \ldots, p$, with $\alpha \approx 0.2$, and polynomial of degree p on each subinterval.

How best to approximate $F(t)=t^{1 / 2}$ on $[0, L]$ with smallest $L^{\infty}(0, L)$ error using piecewise polynomials of degree p ?

ANSWER! Grid-points 0 and $L \alpha^{j}, j=0, \ldots, p$, with $\alpha \approx 0.2$, and polynomial of degree p on each subinterval.

This is standard $h p$-approximation on a geometrically graded mesh.

How best to approximate $F(t)=t^{-1 / 2}$ on $[0, L]$ with smallest $L^{q}(0, L)$ error ($1 \leq q<2$) using piecewise polynomials of degree p ?

0

How best to approximate $F(t)=t^{-1 / 2}$ on $[0, L]$ with smallest $L^{q}(0, L)$ error ($1 \leq q<2$) using piecewise polynomials of degree p ?

ANSWER! Grid-points 0 and $L \alpha^{j}, j=0, \ldots, p$, with $\alpha \approx 0.2$, and polynomial of degree p on each subinterval.

This is standard $h p$-approximation on a geometrically graded mesh and
minimum error $\leq C \exp (-c p)=C \exp (-c \sqrt{N})$,
where $N=$ D.O.F.

Suppose that $F(z)$ is analytic in $\Re z>0$ and

$$
|F(z)| \leq|z|^{-1 / 2}, \quad \Re z>0
$$

How best to approximate F on $[0, L]$ with smallest $L^{q}(0, L)$ error ($1 \leq q<2$) using piecewise polynomials of degree p ?

Suppose that $F(z)$ is analytic in $\Re z>0$ and

$$
|F(z)| \leq|z|^{-1 / 2}, \quad \Re z>0
$$

How best to approximate F on $[0, L]$ with smallest $L^{q}(0, L)$ error ($1 \leq q<2$) using piecewise polynomials of degree p ?

ANSWER! Grid-points 0 and $L \alpha^{j}, j=0, \ldots, p$, with $\alpha \approx 0.2$, and polynomial of degree p on each subinterval.

This is standard $h p$-approximation on a geometrically graded mesh and
minimum error $\leq C \exp (-c p)=C \exp (-c \sqrt{N})$,
where $N=$ D.O.F..

Suppose that $F(z)$ is analytic in $\Re z>0$ and

$$
|F(z)| \leq|z|^{-1 / 2}, \quad \Re z>0
$$

How best to approximate F on $[0, L]$ with smallest $\widetilde{H}^{-1 / 2}(\Gamma)$ error using piecewise polynomials of degree p ?

ANSWER! Grid-points 0 and $L \alpha^{j}, j=0, \ldots, p$, with $\alpha \approx 0.2$, and polynomial of degree p on each subinterval.

This follows since $\widetilde{H}^{-1 / 2}(\Gamma)$ is continuously embedded in $L^{q}(\Gamma)=L^{q}(0, L)$ for $q>1$, and hence minimum error $\leq C \exp (-c p)=C \exp (-c \sqrt{N})$, where $N=$ D.O.F.
$\psi_{u^{\text {inc }}}$

Non-Oscillatorariness Theorem. For some $F_{ \pm}(z)$, analytic in $\Re z>0$ with

$$
\left|F_{ \pm}(z)\right| \leq C k^{3 / 2}|z|^{-1 / 2}, \quad \Re z>0
$$

it holds that

$$
\left[\frac{\partial u}{\partial n}\right](x)=2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)+\mathrm{e}^{\mathrm{i} k x_{1}} F_{+}\left(x_{1}\right)+\mathrm{e}^{-\mathrm{i} k x_{1}} F_{-}\left(L-x_{1}\right), \quad x \in \Gamma .
$$

Proof. Hewett, Langdon, C-W, to appear IMA J. Numer. Anal..

For $x \in \Gamma$,

$$
\begin{aligned}
{\left[\frac{\partial u}{\partial n}\right](x) } & =2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)+\mathrm{e}^{\mathrm{i} k x_{1}} F_{+}\left(x_{1}\right)+\mathrm{e}^{-\mathrm{i} k x_{1}} F_{-}\left(L-x_{1}\right) \\
& \approx 2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)+\mathrm{e}^{\mathrm{i} k x_{1}} f_{+}\left(x_{1}\right)+\mathrm{e}^{-\mathrm{i} k x_{1}} f_{-}\left(x_{1}\right)
\end{aligned}
$$

where f_{+}and f_{-}are piecewise polynomials of degree p on geometrically graded meshes, each with p intervals: i.e., $h p$-approximation.

This is our Galerkin approximation space.

A Case Study for Numerical-Asymptotic Methods

$$
\mathcal{V}_{\triangle} u_{\mathrm{inc}} \quad \Delta u+k^{2} u=0
$$

D

$$
\boldsymbol{f}^{u=0 \text { on } \Gamma} \begin{aligned}
& u-u^{\text {inc }} \text { satisfies S.R.C. }
\end{aligned}
$$

We will solve

$$
0=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left[\frac{\partial u}{\partial n}\right](y) \Phi(x, y) d s(y), \quad x \in \Gamma
$$

in operator notation

$$
\begin{equation*}
S_{k}\left[\frac{\partial u}{\partial n}\right]=-\left.u^{\mathrm{inc}}\right|_{\Gamma} \tag{BIE}
\end{equation*}
$$

by a Galerkin BEM using this ansatz.

STEP C. IMPLEMENT IT AND SEE THAT THE COST IS $O(1)$ AS $k \rightarrow \infty$!

Difficulty (and main cost) is assembly of the matrix $\left[a_{m n}\right]$ which requires 2D highly oscillatory integrals:
$a_{m n}=\int_{\Gamma_{m}} \int_{\Gamma_{n}} H_{0}^{(1)}\left(k\left|x_{1}-y_{1}\right|\right) \exp \left(\pm \mathrm{i} k x_{1} \pm \mathrm{i} k y_{1}\right) p_{m}\left(x_{1}\right) p_{n}\left(y_{1}\right) d x_{1} d y_{1}$,
where p_{m} and p_{n} are polynomials supported on elements Γ_{m} and Γ_{n}.
For details of our Filon quadrature see Hewett, Langdon, C-W (2014).

Plots of the amplitude of the diffracted component, i.e.

$$
\left|\left[\frac{\partial u}{\partial n}\right](x)-2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)\right| \quad \text { against } \frac{x_{1}}{L}
$$

for $\frac{L}{\lambda}=20$ (left), $\frac{L}{\lambda}=10240$ (right).

$\Re u$ in D for $\frac{L}{\lambda}=20$.

$\frac{L}{\lambda}$	$\lambda N / L$	$\frac{\left\\|[\partial u / \partial n]-\phi_{64}\right\\|_{L^{1}(\Gamma)}}{\\|[\partial u / \partial n]\\|_{L^{1}(\Gamma)}}$	cpu time (secs)
10	6.40×10^{0}	1.38×10^{-2}	47
40	1.60×10^{0}	1.40×10^{-2}	42
160	4.00×10^{-1}	1.40×10^{-2}	47
640	1.00×10^{-1}	1.39×10^{-2}	42
2560	2.50×10^{-2}	1.38×10^{-2}	42
10240	6.25×10^{-3}	1.37×10^{-2}	40

Relative $L^{1}(\Gamma)$ error in computing $[\partial u / \partial n]$:
64 degrees of freedom, grazing incidence.

STEP D. TRY TO PROVE THAT THE METHOD IS $O(1)$ BY THEOREMS ABOUT THE k-DEPENDENCE OF EVERYTHING!

Error Analysis

We are solving by a Galerkin BEM

$$
0=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left[\frac{\partial u}{\partial n}\right](y) \Phi(x, y) d s(y), \quad x \in \Gamma
$$

in operator notation

$$
S_{k}\left[\frac{\partial u}{\partial n}\right]=-\left.u^{\mathrm{inc}}\right|_{\Gamma}
$$

By explicit Fourier analysis we can show, for a general planar screen (in 2D or 3D), k-explicit coercivity and continuity of S_{k} : for some $C, \alpha>0$ independent of k and L,

$$
\left\|S_{k}\right\| \leq C(k L)^{1 / 2}, \quad\left|\left\langle S_{k} \phi, \phi\right\rangle\right| \geq \alpha\|\phi\|_{\widetilde{H}^{-1 / 2}(\Gamma)}^{2}
$$

where $\left\|S_{k}\right\|$ is the norm of $S_{k}: \widetilde{H}^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma)$ and $\langle\cdot, \cdot\rangle$ is the $L^{2}(\Gamma)$ inner product.

Error Analysis

We are solving by a Galerkin BEM

$$
0=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left[\frac{\partial u}{\partial n}\right](y) \Phi(x, y) d s(y), \quad x \in \Gamma
$$

in operator notation

$$
S_{k}\left[\frac{\partial u}{\partial n}\right]=-\left.u^{\mathrm{inc}}\right|_{\Gamma} .
$$

By explicit Fourier analysis we can show, for a general planar screen (in 2D or 3D), k-explicit coercivity and continuity of S_{k} : for some $C, \alpha>0$ independent of k and L,

$$
\left\|S_{k}\right\| \leq C(k L)^{1 / 2}, \quad\left|\left\langle S_{k} \phi, \phi\right\rangle\right| \geq \alpha\|\phi\|_{\widetilde{H}^{-1 / 2}(\Gamma)}^{2}
$$

where $\left\|S_{k}\right\|$ is the norm of $S_{k}: \widetilde{H}^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma)$ and $\langle\cdot, \cdot\rangle$ is the $L^{2}(\Gamma)$ inner product. Surprisingly definite for Helmholtz!

Error Analysis

$$
S_{k}\left[\frac{\partial u}{\partial n}\right]=-\left.u^{\mathrm{inc}}\right|_{\Gamma} .
$$

By explicit Fourier analysis we can show, for a general planar screen (in 2D or 3D), k-explicit coercivity and continuity of S_{k} : for some $C, \alpha>0$ independent of k and L,

$$
\left\|S_{k}\right\| \leq C(k L)^{1 / 2}, \quad\left|\left\langle S_{k} \phi, \phi\right\rangle\right| \geq \alpha\|\phi\|_{\widetilde{H}^{-1 / 2}(\Gamma)}^{2}
$$

where $\left\|S_{k}\right\|$ is the norm of $S_{k}: \widetilde{H}^{-1 / 2}(\Gamma) \rightarrow H^{1 / 2}(\Gamma)$.
By Céa's lemma the Galerkin solution ϕ_{N} is well-defined and

$$
\left\|\left[\frac{\partial u}{\partial n}\right]-\phi_{N}\right\|_{\tilde{H}^{-1 / 2}(\Gamma)} \leq \frac{C}{\alpha}(k L)^{1 / 2} \inf _{\psi_{N}}\left\|\left[\frac{\partial u}{\partial n}\right]-\psi_{N}\right\|_{\tilde{H}^{-1 / 2}(\Gamma)}
$$

where the infimum is taken over all ψ_{N} in the N-dimensional Galerkin subspace.

For $x \in \Gamma$,

$$
\begin{aligned}
{\left[\frac{\partial u}{\partial n}\right](x) } & =2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)+\mathrm{e}^{\mathrm{i} k x_{1}} F_{+}\left(x_{1}\right)+\mathrm{e}^{-\mathrm{i} k x_{1}} F_{-}\left(L-x_{1}\right) \\
& \approx 2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)+\mathrm{e}^{\mathrm{i} k x_{1}} f_{+}\left(x_{1}\right)+\mathrm{e}^{-\mathrm{i} k x_{1}} f_{-}\left(x_{1}\right)
\end{aligned}
$$

where f_{+}and f_{-}are piecewise polynomials of degree p on geometrically graded meshes, each with p intervals: i.e., $h p$-approximation.

This is our Galerkin approximation space.

$$
\left[\frac{\partial u}{\partial n}\right](x) \approx 2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)+\mathrm{e}^{\mathrm{i} k x_{1}} f_{+}\left(x_{1}\right)+\mathrm{e}^{-\mathrm{i} k x_{1}} f_{-}\left(x_{1}\right)
$$

where f_{+}and f_{-}are piecewise polynomials of degree p on geometrically graded meshes, each with p intervals: i.e., $h p$-approximation.
Theorem If ϕ_{N} is the best $\widetilde{H}^{-1 / 2}(\Gamma)$ approximation to $\left[\frac{\partial u}{\partial n}\right]$ of this form, then

$$
\left\|\left[\frac{\partial u}{\partial n}\right]-\phi_{N}\right\|_{\widetilde{H}^{-1 / 2}(\Gamma)} \leq C k^{3 / 2}(\log k)^{1 / 2} \exp (-c \sqrt{N})
$$

where C and c depend (only) on Γ, and $N \propto p^{2}$ is the number of D.O.F.

$$
\left[\frac{\partial u}{\partial n}\right](x) \approx 2 \frac{\partial u^{\mathrm{inc}}}{\partial n}(x)+\mathrm{e}^{\mathrm{i} k x_{1}} f_{+}\left(x_{1}\right)+\mathrm{e}^{-\mathrm{i} k x_{1}} f_{-}\left(x_{1}\right)
$$

where f_{+}and f_{-}are piecewise polynomials of degree p on geometrically graded meshes, each with p intervals: i.e., $h p$-approximation.

Theorem If ϕ_{N} is the Galerkin approximation to $\left[\frac{\partial u}{\partial n}\right]$ of this form, then

$$
\left\|\left[\frac{\partial u}{\partial n}\right]-\phi_{N}\right\|_{\widetilde{H}^{-1 / 2}(\Gamma)} \leq C k^{2}(\log k)^{1 / 2} \exp (-c \sqrt{N})
$$

where C and c depend (only) on Γ, and $N \propto p^{2}$ is the number of D.O.F.
3. EXTENSIONS TO OTHER GEOMETRIES AND 3D

Polygons: Convex and Non-Convex

 C-W, Hewett, Langdon, Twigger, Numer Math (2014)

We can, using GO/GTD, design an approximation space for $\frac{\partial u}{\partial n}$ which provably needs only $O\left(\log ^{2} k\right)$ degrees of freedom as $k \rightarrow \infty$ and in experiments only $O(1)$.

Solution Behaviour: $\Re u$

Solution Behaviour: $\Re u$

Solution Behaviour on Γ_{2}

On Γ_{2},

$$
\frac{\partial u}{\partial n}=\text { known }+\mathrm{e}^{\mathrm{i} k\left|x-x^{*}\right|} F\left(x_{1}\right)+\mathrm{e}^{\mathrm{i} k x_{1}} \Gamma_{+}\left(x_{1}\right)+\mathrm{e}^{-\mathrm{i} k x_{1}} F_{-}\left(x_{1}\right)
$$

where 'known' $=$ Fresnel integral and F is analytic and bounded in fixed neighbourhood of Γ_{2}, and again $N=O\left(\log ^{2} k\right)$ as $k \rightarrow \infty$ is provably enough.
$h p$-BEM Based on this Ansastz

k	dof	dof per λ	L^{2} error	Relative L^{2} error
5	320	10.7	$2.09 \mathrm{e}-2$	$1.51 \mathrm{e}-2$
10	320	5.3	$1.07 \mathrm{e}-2$	$1.11 \mathrm{e}-2$
20	320	2.7	$4.60 \mathrm{e}-3$	$6.91 \mathrm{e}-3$
40	320	1.3	$3.13 \mathrm{e}-3$	$6.83 \mathrm{e}-3$

C-W, Langdon, Hewett, Twigger, Numer Math (2014).

3D Thin Screen: Square Plate

Hargreaves, Hewett, Langdon, Lam, EPSRC project Reading/Salford
$\operatorname{Re}\left[[d u / d n]_{B E M}-[d u / d n]_{K A}\right], \lambda=0.2, d=(3,1,1)$

Approximation Methodology

- Subtract leading order oscillatory behaviour (incident field).
- Small conventional elements around the rim (to represent singular behaviour at edge).
- Large hybrid elements in the centre; basis functions are plane waves multiplied by polynomial basis functions (order p).
- Phase functions on hybrid elements correspond to first order diffraction directions ("edge plane waves").

Mesh and required number of DOFS, $k=5$

Mesh and required number of DOFS, $k=10$

\#DOF	Constant	Linear	Quadratic	Cubic
Regular	1,024	2,601	5,184	9,025
Hybrid	160	720	1,908	3,976

Mesh and required number of DOFS, $k=20$

\#DOF	Constant	Linear	Quadratic	Cubic
Regular	3,844	9,216	17,424	28,900
Hybrid	280	1,260	3,348	6,976

Mesh and required number of DOFS, $k=40$

\#DOF	Constant	Linear	Quadratic	Cubic
Regular	16,384	38,025	69,696	112,225
Hybrid	544	2,448	6,516	13,576

Degrees of freedom trend

Convergence of hybrid scheme

Other Geometries

- Smooth convex obstacles: see Bruno et al. Phil. Trans R. Soc. (2004), Dominguez, Graham et al Numer. Math. (2007), Huybrechs \& Vandewalle SISC (2007)
- Piecewise smooth convex polygons: see Langdon, Mokgolele, C-W J. Comp. Appl. Math (2010)
- Inhomogeneous impedance plane: outdoor noise propagation: see C-W, Langdon Phil. Trans R. Soc. (2004), Langdon \& C-W SINUM (2006)
- Penetrable scatterers: see Groth, Hewett, Langdon IMA J. AppI. Math. (2014)

Recap

1. Green's Representation Theorem and boundary integral equations (for Helmholtz)
2. A Case study for numerical-asymptotic methods: the thin screen Step A. Represent the unknown as sum of products of known oscillatory and unknown non-oscillatory functions using GO/GTD.

Step B. Decide on the approximation space - combine HF asymptotics with $h p$-approximation theory

Step C. Implement it and see that (we hope) the cost is $\mathrm{O}(1)$ as $k \rightarrow \infty$!
Step D. Try to prove this by theorems about the k-dependence of everything!
3. Other geometries and 3D

References

Two review papers:

- "Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering", C-W, I.G. Graham, S Langdon, \& E.A. Spence, Acta Numerica (2012).
- "Acoustic scattering: high frequency boundary element methods and unified transform methods", C-W \& Langdon, to appear (preprint on Researchgate).

Note Unified transform methods \approx WBM from Daan's talk.

