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Context

My talks apply (particularly) to acoustic waves.

My talks concern new numerical-asymptotic methods for high

frequency wave scattering based on boundary integral equations, that

combine numerical analysis with high frequency asymptotics, see

C-W, Graham, Langdon, Spence Acta Numerica 21 (2012), 89–305.

The first talk was largely HF asymptotics – in this talk we come to

numerical methods and their analysis!
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Overview

1. Green’s Representation Theorem and boundary integral equations

(for Helmholtz)

2. A Case study for numerical-asymptotic methods: the thin screen

Step A. Represent the unknown as sum of products of known oscillatory

and unknown non-oscillatory functions using GO/GTD.

Step B. Decide on the approximation space - combine HF asymptotics

with hp-approximation theory

Step C. Implement it and see that (we hope) the cost is O(1) as k →∞!

Step D. Try to prove this by theorems about the k-dependence of

everything!

3. Other geometries and 3D
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1. GREEN’S REPRESENTATION THEOREM AND INTEGRAL

EQUATIONS FOR HELMHOLTZ
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Green’s Representation Theorem: slide from Talk 1

uinc

Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.

Theorem

u(x) = uinc(x) +

∫
Γ

(
∂u

∂n
(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂n(y)

)
ds(y), x ∈ D,

where

Φ(x, y) =


i
4H

(1)
0 (k|x− y|) (2D),

1

4π

eik|x−y|

|x− y|
, (3D).
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Green’s Representation Theorem

uinc

u = 0 on Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.

Theorem

u(x) = uinc(x) +

∫
Γ

(
∂u

∂n
(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂n(y)

)
ds(y), x ∈ D.

.
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Green’s Representation Theorem

uinc

u = 0 on Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.

Theorem

u(x) = uinc(x) +

∫
Γ

∂u

∂n
(y)Φ(x, y) ds(y), x ∈ D.

.
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Green’s Representation Theorem for a Thin Screen

uinc

u = 0 on Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.

Theorem

u(x) = uinc(x) +

∫
Γ

[
∂u

∂n

]
︸ ︷︷ ︸
jump

(y)Φ(x, y) ds(y), x ∈ D.

.
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Green’s Representation Theorem and BIE for a Thin Screen

uinc

u = 0 on Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.

Theorem

u(x) = uinc(x) +

∫
Γ

[
∂u

∂n

]
(y)Φ(x, y) ds(y), x ∈ D.

Further (letting x→ Γ),

0 = uinc(x) +

∫
Γ

[
∂u

∂n

]
(y)Φ(x, y) ds(y), x ∈ Γ.
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Green’s Representation Theorem and BIE for a Thin Screen

uinc

u = 0 on Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.
Theorem

u(x) = uinc(x) +

∫
Γ

[
∂u

∂n

]
(y)Φ(x, y) ds(y), x ∈ D,

and

0 = uinc(x) +

∫
Γ

[
∂u

∂n

]
(y)Φ(x, y) ds(y), x ∈ Γ,

in operator notation

Sk

[
∂u

∂n

]
= −uinc|Γ (BIE)
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2. A CASE STUDY FOR NUMERICAL-ASYMPTOTIC

METHODS: THE THIN SCREEN
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A Case Study for Numerical-Asymptotic Methods

uinc

u = 0 on Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.
Theorem

u(x) = uinc(x) +

∫
Γ

[
∂u

∂n

]
(y)Φ(x, y) ds(y), x ∈ D,

and

0 = uinc(x) +

∫
Γ

[
∂u

∂n

]
(y)Φ(x, y) ds(y), x ∈ Γ,

in operator notation

Sk

[
∂u

∂n

]
= −uinc|Γ (BIE)
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A Case Study for Numerical-Asymptotic Methods

uinc

u = 0 on Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.
We will solve

0 = uinc(x) +

∫
Γ

[
∂u

∂n

]
(y)Φ(x, y) ds(y), x ∈ Γ,

in operator notation

Sk

[
∂u

∂n

]
= −uinc|Γ, (BIE)

by a Galerkin BEM representing
[
∂u
∂n

]
as a sum of products of known

oscillatory functions and unknown non-oscillatory functions.
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A Case Study for Numerical-Asymptotic Methods

uinc

u = 0 on Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.

We will solve the BIE by a Galerkin BEM representing
[
∂u
∂n

]
as a sum of

products of known oscillatory functions and unknown non-oscillatory

functions.

The steps are:

A. Work out what this representation for
[
∂u
∂n

]
is - use GTD.

B. Decide on the approximation space - use HF asymptotics and

hp-approximation theory

C. Implement it and see that the cost is O(1) as k →∞!

D. Try to prove this!
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STEP A. REPRESENT THE UNKNOWN AS SUM OF

PRODUCTS OF KNOWN OSCILLATORY AND UNKNOWN

NON-OSCILLATORY FUNCTIONS USING GO/GTD.
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The GTD Approach to Diffraction: Recap from Talk 1

Zone 1Zone 3

uinc(x) = eikx·d

d

z

x

r

α

θ

<u(x)

u(x) ≈

 uinc(x) + uref(x) + ud(x), x in Zone 1

ud(x), x in Zone 3

where ud(x) = uinc(z)D(θ, α)
eikr

√
kr

, D the diffraction coefficient.
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uinc

u = 0 on ΓD

We will solve the BIE by a Galerkin BEM representing
[
∂u
∂n

]
as a sum of

products of known oscillatory functions and unknown non-oscillatory

functions.

Step A. Work out what this representation for
[
∂u
∂n

]
is - use GTD.

Above the screen (see the GO example yesterday)

∂u

∂n
≈ 2

∂uinc

∂n

.
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uinc

x1

x2 u = 0 on ΓD

We will solve the BIE by a Galerkin BEM representing
[
∂u
∂n

]
as a sum of

products of known oscillatory functions and unknown non-oscillatory

functions.

Step A. Work out what this representation for
[
∂u
∂n

]
is - use GTD.

Above the screen ... and adding in the GTD terms ...

∂u

∂n
(x) ≈ 2

∂uinc

∂n
(x) + c+

eikx1

√
kx1

+ ...

.
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uinc

x1

x2

L

u = 0 on ΓD

We will solve the BIE by a Galerkin BEM representing
[
∂u
∂n

]
as a sum of

products of known oscillatory functions and unknown non-oscillatory

functions.

Step A. Work out what this representation for
[
∂u
∂n

]
is - use GTD.

Above the screen ... and adding in the GTD terms ...

∂u

∂n
(x) ≈ 2

∂uinc

∂n
(x) + c+

eikx1

√
kx1

+ c−
e−ikx1√
k(L− x1)

.
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uinc

x1

x2

L

u = 0 on ΓD

We will solve the BIE by a Galerkin BEM representing
[
∂u
∂n

]
as a sum of

products of known oscillatory functions and unknown non-oscillatory

functions.

Step A. Work out what this representation for
[
∂u
∂n

]
is - use GTD.

While below the screen

∂u

∂n
(x) ≈ c′+

eikx1

√
kx1

+ c′−
e−ikx1√
k(L− x1)

.
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uinc

x1

x2

L

u = 0 on ΓD

We will solve the BIE by a Galerkin BEM representing
[
∂u
∂n

]
as a sum of

products of known oscillatory functions and unknown non-oscillatory

functions.

Step A. Work out what this representation for
[
∂u
∂n

]
is - use GTD.

So [
∂u

∂n

]
(x) ≈ 2

∂uinc

∂n
(x) + C+

eikx1

√
kx1

+ C−
e−ikx1√
k(L− x1)

.

.

21



uinc

x1

x2

L

u = 0 on ΓD

We will solve the BIE by a Galerkin BEM representing
[
∂u
∂n

]
as a sum of

products of known oscillatory functions and unknown non-oscillatory

functions.

Step A. Work out what this representation for
[
∂u
∂n

]
is - use GTD.

... and our representation is ...[
∂u

∂n

]
(x) = 2

∂uinc

∂n
(x) + eikx1 F+(x1)︸ ︷︷ ︸

unknown

+e−ikx1 F−(L− x1)︸ ︷︷ ︸
unknown

.

22



uinc

x1

x2

L

u = 0 on ΓD

We will represent
[
∂u
∂n

]
as a sum of products of known oscillatory

functions and unknown non-oscillatory functions.

Step A. Work out what this representation for
[
∂u
∂n

]
is - use GTD.

... and our representation is ...[
∂u

∂n

]
(x) = 2

∂uinc

∂n
(x) + eikx1 F+(x1)︸ ︷︷ ︸

unknown

+e−ikx1 F−(L− x1)︸ ︷︷ ︸
unknown

Step B. Show that F± are non-oscillatory and choose piecewise

polynomial approximation spaces for them.
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STEP B. RECAP – A PIECEWISE POLYNOMIAL QUIZ
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How best to approximate F (t) = t1/2 on [0, L] with smallest

L∞(0, L) error using piecewise polynomials of degree p?

L0

.
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How best to approximate F (t) = t1/2 on [0, L] with smallest

L∞(0, L) error using piecewise polynomials of degree p?

L0 Case p = 2

ANSWER! Grid-points 0 and Lαj, j = 0, ..., p, with α ≈ 0.2, and

polynomial of degree p on each subinterval.

.
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How best to approximate F (t) = t1/2 on [0, L] with smallest

L∞(0, L) error using piecewise polynomials of degree p?

L0 Case p = 2

ANSWER! Grid-points 0 and Lαj, j = 0, ..., p, with α ≈ 0.2, and

polynomial of degree p on each subinterval.

This is standard hp-approximation on a geometrically graded mesh.

.
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How best to approximate F (t) = t−1/2 on [0, L] with smallest

Lq(0, L) error (1 ≤ q < 2) using piecewise polynomials of degree p?

L0

.
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How best to approximate F (t) = t−1/2 on [0, L] with smallest

Lq(0, L) error (1 ≤ q < 2) using piecewise polynomials of degree p?

L0 Case p = 2

ANSWER! Grid-points 0 and Lαj, j = 0, ..., p, with α ≈ 0.2, and

polynomial of degree p on each subinterval.

This is standard hp-approximation on a geometrically graded mesh

and

minimum error ≤ C exp(−cp) = C exp(−c
√
N),

where N = D.O.F.

.
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Suppose that F (z) is analytic in < z > 0 and

|F (z)| ≤ |z|−1/2, < z > 0.

How best to approximate F on [0, L] with smallest Lq(0, L) error

(1 ≤ q < 2) using piecewise polynomials of degree p?

L0

.
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Suppose that F (z) is analytic in < z > 0 and

|F (z)| ≤ |z|−1/2, < z > 0.

How best to approximate F on [0, L] with smallest Lq(0, L) error

(1 ≤ q < 2) using piecewise polynomials of degree p?

L0 Case p = 2

ANSWER! Grid-points 0 and Lαj, j = 0, ..., p, with α ≈ 0.2, and

polynomial of degree p on each subinterval.

This is standard hp-approximation on a geometrically graded mesh

and

minimum error ≤ C exp(−cp) = C exp(−c
√
N),

where N = D.O.F..
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Suppose that F (z) is analytic in < z > 0 and

|F (z)| ≤ |z|−1/2, < z > 0.

How best to approximate F on [0, L] with smallest H̃−1/2(Γ) error

using piecewise polynomials of degree p?

L0 Case p = 2

ANSWER! Grid-points 0 and Lαj, j = 0, ..., p, with α ≈ 0.2, and

polynomial of degree p on each subinterval.

This follows since H̃−1/2(Γ) is continuously embedded in

Lq(Γ) = Lq(0, L) for q > 1, and hence

minimum error ≤ C exp(−cp) = C exp(−c
√
N),

where N = D.O.F.
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uinc

x1

x2

L

u = 0 on ΓD

Non-Oscillatorariness Theorem. For some F±(z), analytic in < z > 0

with

|F±(z)| ≤ Ck3/2|z|−1/2, < z > 0,

it holds that[
∂u

∂n

]
(x) = 2

∂uinc

∂n
(x) + eikx1F+(x1) + e−ikx1F−(L− x1), x ∈ Γ.

Proof. Hewett, Langdon, C-W, to appear IMA J. Numer. Anal..
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For x ∈ Γ,[
∂u

∂n

]
(x) = 2

∂uinc

∂n
(x) + eikx1F+(x1) + e−ikx1F−(L− x1)

≈ 2
∂uinc

∂n
(x) + eikx1f+(x1) + e−ikx1f−(x1),

where f+ and f− are piecewise polynomials of degree p on geometrically

graded meshes, each with p intervals: i.e., hp-approximation.

L0 Grid for f+ L0

Grid for f−

This is our Galerkin approximation space.
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A Case Study for Numerical-Asymptotic Methods

uinc

u = 0 on Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.
We will solve

0 = uinc(x) +

∫
Γ

[
∂u

∂n

]
(y)Φ(x, y) ds(y), x ∈ Γ,

in operator notation

Sk

[
∂u

∂n

]
= −uinc|Γ, (BIE)

by a Galerkin BEM using this ansatz.
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STEP C. IMPLEMENT IT AND SEE THAT THE COST

IS O(1) AS k →∞!
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Difficulty (and main cost) is assembly of the matrix [amn] which requires

2D highly oscillatory integrals:

amn =

∫
Γm

∫
Γn

H
(1)
0 (k|x1−y1|) exp(±ikx1±iky1)pm(x1)pn(y1) dx1 dy1,

where pm and pn are polynomials supported on elements Γm and Γn.

For details of our Filon quadrature see Hewett, Langdon, C-W (2014).
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Plots of the amplitude of the diffracted component, i.e.∣∣∣∣[∂u∂n
]

(x)− 2
∂uinc

∂n
(x)

∣∣∣∣ against
x1

L
,

for
L

λ
= 20 (left),

L

λ
= 10240 (right).
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<u in D for
L

λ
= 20.
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Relative L1(Γ) errors in Galerkin approximation to

[
∂u

∂n

]
.
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L

λ
λN/L

‖[∂u/∂n]− φ64‖L1(Γ)

‖[∂u/∂n]‖L1(Γ)

cpu time (secs)

10 6.40× 100 1.38× 10−2 47

40 1.60× 100 1.40× 10−2 42

160 4.00× 10−1 1.40× 10−2 47

640 1.00× 10−1 1.39× 10−2 42

2560 2.50× 10−2 1.38× 10−2 42

10240 6.25× 10−3 1.37× 10−2 40

Relative L1(Γ) error in computing [∂u/∂n]:

64 degrees of freedom, grazing incidence.
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STEP D. TRY TO PROVE THAT THE METHOD IS O(1) BY

THEOREMS ABOUT THE k-DEPENDENCE OF EVERYTHING!
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Error Analysis

We are solving by a Galerkin BEM

0 = uinc(x) +

∫
Γ

[
∂u

∂n

]
(y)Φ(x, y) ds(y), x ∈ Γ,

in operator notation

Sk

[
∂u

∂n

]
= −uinc|Γ.

By explicit Fourier analysis we can show, for a general planar screen (in

2D or 3D), k-explicit coercivity and continuity of Sk: for some

C,α > 0 independent of k and L,

‖Sk‖ ≤ C(kL)1/2, |〈Skφ, φ〉| ≥ α‖φ‖2H̃−1/2(Γ)
,

where ‖Sk‖ is the norm of Sk : H̃−1/2(Γ)→ H1/2(Γ) and 〈·, ·〉 is the

L2(Γ) inner product.
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Error Analysis

We are solving by a Galerkin BEM

0 = uinc(x) +

∫
Γ

[
∂u

∂n

]
(y)Φ(x, y) ds(y), x ∈ Γ,

in operator notation

Sk

[
∂u

∂n

]
= −uinc|Γ.

By explicit Fourier analysis we can show, for a general planar screen (in

2D or 3D), k-explicit coercivity and continuity of Sk: for some

C,α > 0 independent of k and L,

‖Sk‖ ≤ C(kL)1/2, |〈Skφ, φ〉| ≥ α‖φ‖2H̃−1/2(Γ)
,

where ‖Sk‖ is the norm of Sk : H̃−1/2(Γ)→ H1/2(Γ) and 〈·, ·〉 is the

L2(Γ) inner product. Surprisingly definite for Helmholtz!
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Error Analysis

Sk

[
∂u

∂n

]
= −uinc|Γ.

By explicit Fourier analysis we can show, for a general planar screen (in

2D or 3D), k-explicit coercivity and continuity of Sk: for some

C,α > 0 independent of k and L,

‖Sk‖ ≤ C(kL)1/2, |〈Skφ, φ〉| ≥ α‖φ‖2H̃−1/2(Γ)
,

where ‖Sk‖ is the norm of Sk : H̃−1/2(Γ)→ H1/2(Γ).

By Céa’s lemma the Galerkin solution φN is well-defined and∥∥∥∥[∂u∂n
]
− φN

∥∥∥∥
H̃−1/2(Γ)

≤ C

α
(kL)1/2 inf

ψN

∥∥∥∥[∂u∂n
]
− ψN

∥∥∥∥
H̃−1/2(Γ)

,

where the infimum is taken over all ψN in the N -dimensional Galerkin

subspace.

45



For x ∈ Γ,[
∂u

∂n

]
(x) = 2

∂uinc

∂n
(x) + eikx1F+(x1) + e−ikx1F−(L− x1)

≈ 2
∂uinc

∂n
(x) + eikx1f+(x1) + e−ikx1f−(x1),

where f+ and f− are piecewise polynomials of degree p on geometrically

graded meshes, each with p intervals: i.e., hp-approximation.

L0 Grid for f+ L0

Grid for f−

This is our Galerkin approximation space.
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[
∂u

∂n

]
(x) ≈ 2

∂uinc

∂n
(x) + eikx1f+(x1) + e−ikx1f−(x1),

where f+ and f− are piecewise polynomials of degree p on geometrically

graded meshes, each with p intervals: i.e., hp-approximation.

Theorem If φN is the best H̃−1/2(Γ) approximation to
[
∂u
∂n

]
of this

form, then∥∥∥∥[∂u∂n
]
− φN

∥∥∥∥
H̃−1/2(Γ)

≤ Ck3/2 (log k)1/2 exp(−c
√
N),

where C and c depend (only) on Γ, and N ∝ p2 is the number of D.O.F.
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[
∂u

∂n

]
(x) ≈ 2

∂uinc

∂n
(x) + eikx1f+(x1) + e−ikx1f−(x1),

where f+ and f− are piecewise polynomials of degree p on geometrically

graded meshes, each with p intervals: i.e., hp-approximation.

Theorem If φN is the Galerkin approximation to
[
∂u
∂n

]
of this form,

then ∥∥∥∥[∂u∂n
]
− φN

∥∥∥∥
H̃−1/2(Γ)

≤ Ck2 (log k)1/2 exp(−c
√
N),

where C and c depend (only) on Γ, and N ∝ p2 is the number of D.O.F.
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3. EXTENSIONS TO OTHER GEOMETRIES AND 3D
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Polygons: Convex and Non-Convex

C-W, Hewett, Langdon, Twigger, Numer Math (2014)

We can, using GO/GTD, design an approximation space for
∂u

∂n
which provably needs only O(log2 k) degrees of freedom as k →∞
and in experiments only O(1).
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Solution Behaviour: <u
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Solution Behaviour: <u
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Solution Behaviour on Γ2

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

@
@
@
@@R

ui, incident wave

u = 0

Γ1

Γ2

@@

@@

x∗

On Γ2,

∂u

∂n
= known + eik|x−x∗|F (x1) + eikx1F+(x1) + e−ikx1F−(x1)

where ‘known’ = Fresnel integral and F is analytic and bounded in

fixed neighbourhood of Γ2, and again N = O(log2 k) as k →∞ is

provably enough.
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hp-BEM Based on this Ansastz

k dof dof per λ L2 error Relative L2 error

5 320 10.7 2.09e-2 1.51e-2

10 320 5.3 1.07e-2 1.11e-2

20 320 2.7 4.60e-3 6.91e-3

40 320 1.3 3.13e-3 6.83e-3

C-W, Langdon, Hewett, Twigger, Numer Math (2014).
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3D Thin Screen: Square Plate

Hargreaves, Hewett, Langdon, Lam,

EPSRC project Reading/Salford
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Approximation Methodology

• Subtract leading order oscillatory behaviour (incident field).

• Small conventional elements around the rim (to represent singular

behaviour at edge).

• Large hybrid elements in the centre; basis functions are plane waves

multiplied by polynomial basis functions (order p).

• Phase functions on hybrid elements correspond to first order diffraction

directions (“edge plane waves”).
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Mesh and required number of DOFS, k = 5

57



Mesh and required number of DOFS, k = 10
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Mesh and required number of DOFS, k = 20
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Mesh and required number of DOFS, k = 40
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Degrees of freedom trend
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Convergence of hybrid scheme
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Other Geometries

• Smooth convex obstacles: see Bruno et al. Phil. Trans R. Soc.

(2004), Dominguez, Graham et al Numer. Math. (2007), Huybrechs

& Vandewalle SISC (2007)

• Piecewise smooth convex polygons: see Langdon, Mokgolele,

C-W J. Comp. Appl. Math (2010)

• Inhomogeneous impedance plane: outdoor noise propagation:

see C-W, Langdon Phil. Trans R. Soc. (2004), Langdon & C-W

SINUM (2006)

• Penetrable scatterers: see Groth, Hewett, Langdon IMA J. Appl.

Math. (2014)
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Recap

1. Green’s Representation Theorem and boundary integral equations

(for Helmholtz)

2. A Case study for numerical-asymptotic methods: the thin screen

Step A. Represent the unknown as sum of products of known oscillatory

and unknown non-oscillatory functions using GO/GTD.

Step B. Decide on the approximation space - combine HF asymptotics

with hp-approximation theory

Step C. Implement it and see that (we hope) the cost is O(1) as k →∞!

Step D. Try to prove this by theorems about the k-dependence of

everything!

3. Other geometries and 3D
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Note Unified transform methods ≈ WBM from Daan’s talk.
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