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Context

My talks apply (particularly) to acoustic waves — my background is in

outdoor noise propagation and noise barriers.

My talks concern new numerical-asymptotic methods for high

frequency wave scattering, that combine numerical analysis ideas and

tools with high frequency asymptotics, see

C-W, Graham, Langdon, Spence Acta Numerica 21 (2012), 89–305.

This talk is the HF asymptotics – numerical methods are talk two!
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Context

My talks apply (particularly) to acoustic waves — my background is in

outdoor noise propagation and noise barriers.

My talks concern new numerical-asymptotic methods for high

frequency wave scattering, that combine numerical analysis ideas and

tools with high frequency asymptotics, see

Motivation. Want to factor unknown oscillatory functions into sums of

products of known oscillatory functions and unknown non-oscillatory

functions.
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Overview

1. Wave Equation and Helmholtz Equation

2. Basic Concept of high frequency asymptotic approximations of GO

and GTD

3. Reflection - canonical problems and high frequency GO

approximations

4. Diffraction - canonical problems and high frequency GTD

approximations

5. The HF Kirchhoff Approximation

6. Preparing for NA: Quantifying Non-Oscillatorariness!
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1. WAVE EQUATION AND HELMHOLTZ EQUATION
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The Wave Equation and Helmholtz Equation

∆U =
1

c2
∂2U

∂t2

(
∆ =

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
.

If time-dependence is time harmonic, i.e., where x = (x1, x2, x3),

U(x, t) = A(x) cos(φ(x)− ωt),

for some ω = 2πf > 0, with f = frequency, then

U(x, t) = <
(
u(x)e−iωt

)
where u(x) = A(x) exp(iφ(x)) satisfies the Helmholtz equation

∆u+ k2u = 0,

with k = ω/c the wavenumber.
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If time-dependence is time harmonic then

U(x, t) = <
(
u(x)e−iωt

)
for some ω = 2πf > 0, with f = frequency, where u satisfies the

Helmholtz equation

∆u+ k2u = 0,

with k = ω/c the wavenumber. E.g. if

u(x) = eikx·d,

for some unit vector d, then

U(x, t) = <
(
u(x)e−iωt

)
= cos(kx · d− ωt)

is a plane wave travelling in direction d with wavelength

λ =
2π

k
=
c

f
.
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2. GO AND GTD: THE BASIC CONCEPT
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Geometrical Optics/Geometrical Theory of Diffraction (GTD)
source

x, receiver

source

x, receiver

ground

u(x) =
∑
j

uj(x)

where sum is over rays passing through x, with

arg uj(x) = optical length of ray path = ksj

|uj(x)| = amplitude determined by energy conservation,

but with multiplication of uj(x) by coefficients accounting for

reflection, refraction, and diffraction events.
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Geometrical Optics/Geometrical Theory of Diffraction (GTD)
source

x, receiver

source

x, receiver

groundwall

u(x) =
∑
j

uj(x)

where sum is over rays passing through x, with

arg uj(x) = optical length of ray path = ksj

|uj(x)| = amplitude determined by energy conservation,

but with multiplication of uj(x) by coefficients accounting for

reflection, refraction, and diffraction events.
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Geometrical Optics/Geometrical Theory of Diffraction (GTD)
source

x, receiver

source

x, receiver

groundwall
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∑
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uj(x)

where sum is over rays passing through x, with

arg uj(x) = optical length of ray path = ksj

|uj(x)| = amplitude determined by energy conservation,

but with multiplication of uj(x) by coefficients accounting for

reflection, refraction, and diffraction events.
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Geometrical Optics/Geometrical Theory of Diffraction (GTD)

u(x) =
∑
j

uj(x)

where sum is over rays passing through x, with

arg uj(x) = optical length of ray path = ksj

|uj(x)| = amplitude determined by energy conservation,

but with multiplication of uj(x) by coefficients accounting for

reflection, refraction, and diffraction events.

The concept/theory/idea of GO/GTD is that at high frequency these

interaction events are local and so these coefficients can be computed by

solving canonical problems, with simple geometries and incident fields.
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3. REFLECTION: CANONICAL PROBLEMS AND HIGH

FREQUENCY GO APPROXIMATIONSa

a“Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie”, A. Sonmmerfeld,

Ann. Phys. (1909)
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A Canonical Reflection Problem

∆u+ k2u = 0

x1

x2

uinc(x) = eikx·d

θ0

uref(x) = R eikx·d
′

∂u

∂x2
+ ikβu = 0

d = (d1, d2) is direction of incident plane wave,

d′ = (d1,−d2) is direction of reflected plane wave,

β is the admittance in the impedance boundary condition,

θ0 is the angle of incidence,

R is the reflection coefficient.

.
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A Canonical Reflection Problem

∆u+ k2u = 0

x1

x2

uinc(x) = eikx·d

θ0

uref(x) = R eikx·d
′

∂u

∂x2
+ ikβu = 0

The total field is

u(x) = uinc(x) + uref(x) = eikx·d +R eikx·d′

where

R = reflection coefficient =
cos θ0 − β
cos θ0 + β

.
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A Canonical Reflection Problem

∆u+ k2u = 0

x1

x2

uinc(x) = eikx·d

θ0

uref(x) = R eikx·d
′

∂u

∂x2
+ ikβu = 0

R = reflection coefficient =
cos θ0 − β
cos θ0 + β

,

in particular

R = 1 if β = 0 (sound hard/Neumann),

R = −1 if β →∞ (sound soft/Dirichlet).
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A Canonical Reflection Problem

∆u+ k2u = 0

x1

x2

uinc(x) = eikx·d

θ0

uref(x) = R eikx·d
′

∂u

∂x2
+ ikβu = 0

R = reflection coefficient =
cos θ0 − β
cos θ0 + β

.

and note that

|R| ≤ 1 ⇔ < β ≥ 0.

.
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A Canonical Reflection Problem

∆u+ k2u = 0

x1

x2

uinc(x) = eikx·d

θ0

uref(x) = R eikx·d
′

∂u

∂x2
+ ikβu = 0

R = reflection coefficient =
cos θ0 − β
cos θ0 + β

,

and

∂u

∂x2
= (1−R)

∂uinc

∂x2
= 2

∂uinc

∂x2
if β →∞ (sound soft/Dirichlet).

.
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The Ray Perspective

x1

x2 θ0

x
d′

d

u(x) = eikx·d +R eikx·d
′
= exp(ik s) +R exp(ik s′),

s = distance along direct magenta ray,

s′ = distance along reflected blue ray.
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Geometrical Optics (and the Geometrical Theory of Diffraction)

x
d′

d

u(x) =
∑
j

uj(x)

where sum is over rays passing through x, with

arg uj(x) = optical length of ray path = ksj

|uj(x)| = amplitude determined by energy conservation,

but with multiplication of uj(x) by coefficients accounting for

reflection, refraction, and diffraction events, these events depending

only on the local geometry.

20



Geometrical Optics (and the Geometrical Theory of Diffraction)

x
d′

d

u(x) =
∑
j

uj(x) = exp(ik s) +R exp(ik s′),

where sum is over rays passing through x, with

arg uj(x) = optical length of ray path = ksj

|uj(x)| = amplitude determined by energy conservation,

but with multiplication of uj(x) by coefficients accounting for

reflection, refraction, and diffraction events, these events depending

only on the local geometry.
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Geometrical Optics (and the Geometrical Theory of Diffraction)

x
d′

d

u(x) =
∑
j

uj(x) = exp(ik s) +R exp(ik s′),

where sum is over rays passing through x, with

arg uj(x) = optical length of ray path = ksj

|uj(x)| = amplitude determined by energy conservation,

but with multiplication of uj(x) by coefficients accounting for

reflection, refraction, and diffraction events, these events depending

only on the local geometry. In general only valid for k large.
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A First High Frequency (HF) Geometrical Optics Approximation

<uinc(x)

In this example the (2D) inci-

dent field is a cylindrical wave

generated by a monopole point

source at y = (y1, y2),

uinc(x) = Φ(x, y) :=
i

4
H

(1)
0 (kR)

where R = |x− y| and H
(1)
0 is Hankel function of 1st kind of order 0.

.
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A First High Frequency (HF) Geometrical Optics Approximation

<uinc(x)

In this example the (2D) inci-

dent field is a cylindrical wave

generated by a monopole point

source at y = (y1, y2),

uinc(x) = Φ(x, y) :=
i

4
H

(1)
0 (kR).

H
(1)
0 (z) is analytic except for log singularity at 0 and

H
(1)
0 (z) ∼ const eiz z−1/2 as z →∞,

so

uinc(x) ∼ const
eikR
√
kR

as |x| → ∞

is locally like a plane wave – key to GTD working.
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A First High Frequency (HF) Geometrical Optics Approximation

∆u+ k2u = 0
source y

image y′

xx
R

R′

θ0 ∂u

∂x2
+ ikβu = 0

uinc(x) = Φ(x, y) :=
i

4
H

(1)
0 (kR).
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A First High Frequency (HF) Geometrical Optics Approximation

∆u+ k2u = 0
source y

image y′

xx
R

R′

θ0 ∂u

∂x2
+ ikβu = 0

u(x) ≈ Φ(x, y) +RΦ(x, y′) =
i

4
H

(1)
0 (kR) +R

i

4
H

(1)
0 (kR′),

where

R = reflection coefficient =
cos θ0 − β
cos θ0 + β

.

This is accurate provided kR′ � 1 and kR′|β + cos θ0|2 � 1.
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A First High Frequency (HF) Geometrical Optics Approximation

∆u+ k2u = 0
source y

image y′

xx
R

R′

θ0 ∂u

∂x2
+ ikβu = 0

This HF Geometrical Optics approximation is accurate provided

kR′ � 1 and kR′|β + cos θ0|2 � 1.

Unfortunately in outdoor sound propagation often |β| � 1 and

cos0 θ � 1 so this approximation poor.

.
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A First High Frequency (HF) Geometrical Optics Approximation

∆u+ k2u = 0
source y

image y′

xx
R

R′

θ0 ∂u

∂x2
+ ikβu = 0

Exact solution as highly oscillatory Fourier integral and its uniform

asymptotic expansion for kR′ � 1 via a steepest descent path

method modified for pole near saddle point are given in C-W and

Hothersall (1995a).

.
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A First High Frequency (HF) Geometrical Optics Approximation

∆u+ k2u = 0
source y

image y′

xx
R

R′

θ0 ∂u

∂x2
+ ikβu = 0

Exact solution and its uniform asymptotic expansion for kR′ � 1 via

a steepest descent path method modified for pole near saddle

point are given in C-W and Hothersall (1995a).a

aExtending “Die Sattelpunktsmethode in der Umgebung eines Pols. Mit Anwen-

dungen auf die Wellenoptik und Akustik”, H. Ott, Annalen Physik, (1943)!
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A First High Frequency (HF) Geometrical Optics Approximation

∆u+ k2u = 0
source y

image y′

xx
R

R′

θ0 ∂u

∂x2
+ ikβu = 0

Efficient and accurate numerical method, a numerical steepest

descent path method, given in C-W and Hothersall (1995b).

These are case studies relevant to Daan’s first lecture yesterday!

.

.
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4. DIFFRACTION: CANONICAL PROBLEMS AND HIGH

FREQUENCY GTD APPROXIMATIONSa

a“Goemetrical theory of diffraction”, J.B. Keller, JOSA (1962), “Mathematis-

che Theorie der Diffraction”, A. Sommerfeld, Math. Ann., (1896), “The Computa-

tion of Conical Diffraction Coefficients in High-Frequency Acoustic Wave Scattering”,

B.D. Bonner, I.G. Graham, and V.P. Smyshlyaev, SINUM (2005)
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A Canonical Diffraction Problem

α

uinc(x) = eikx·d

d

x

r

θ

<u(x)

u(x) = E(r, θ − α) + E(r, θ + α)

where E(r, ψ) = exp(−ikr cosψ)F (−
√

2kr cos(ψ/2)) and the Fresnel

integral

F (t) = c1

∫ ∞
t

eis2 ds = c2 eit2
∫ ∞
−∞

e−t
2u2

1 + iu2
du, t > 0.
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The Fresnel Integral - Example relevant to Daan’s 1st Lecture

F (t) = c1

∫ ∞
t

eis2 ds︸ ︷︷ ︸
oscillatory integral

= c2 eit2
∫ ∞
−∞

e−t
2u2

1 + iu2
du︸ ︷︷ ︸

SDP integral

.

Use Watson’s lemma or numerical method of steepest descent!

.
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The Fresnel Integral - Example relevant to Daan’s 1st Lecture

F (t) = c1

∫ ∞
t

eis2 ds︸ ︷︷ ︸
oscillatory integral

= c2 eit2
∫ ∞
−∞

e−t
2u2

1 + iu2
du︸ ︷︷ ︸

SDP integral

.

Use Watson’s lemma or numerical method of steepest descent!

Alternatively, based on contour integral arguments dating back to Turing

(1945), Alazah, C-W, La Porte, Numer Math (2014) propose the

modified truncated midpoint rule

F (t) ≈ FN (t) :=
1

2
+

i

2
tan

(
πteiπ/4/hN

)
+
t

π
ei(t2+π/4) hN

N∑
k=1

e−s
2
k

t2 + is2
k

where sk = (k − 1/2)hN and hN =
√
π/(N + 1/2), and show

|F (t)− FN (t)|
|F (t)|

< 11 e−πN , t ∈ R.
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The Fresnel Integral - Example relevant to Daan’s 1st Lecture

F (t) = c1

∫ ∞
t

eis2 ds︸ ︷︷ ︸
oscillatory integral

= c2 eit2
∫ ∞
−∞

e−t
2u2

1 + iu2
du︸ ︷︷ ︸

SDP integral

.

Alternatively, based on contour integral arguments dating back to Turing

(1945)a, Alazah, C-W, La Porte, Numer Math (2014) propose the

modified truncated midpoint rule

F (t) ≈ FN (t) :=
1

2
+

i

2
tan

(
πteiπ/4/hN

)
+
t

π
ei(t2+π/4) hN

N∑
k=1

e−s
2
k

t2 + is2
k

.

.
a“A method for the calculation of the zeta-function”, A.M. Turing, Proc. London

Math. Soc. (1945), and cf. Trefethen and Weideman, SIAM Rev. (2014)
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The GTD Approach to this Knife-Edge Problem

Zone 2

Zone 1Zone 3

uinc(x) = eikx·d

d

z

x

r

<u(x)

u(x) ≈


uinc(x) + uref(x) + ud(x), x in Zone 1

uinc(x) + ud(x), x in Zone 2

ud(x), x in Zone 3

where ud(x) = uinc(z)D eikr

√
kr

and D is a diffraction coefficient.

36



5. THE HF KIRCHHOFF APPROXIMATION
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Green’s Representation Theorem and the Kirchhoff Approximation

uinc

Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.

Theorem

u(x) = uinc(x) +

∫
Γ

(
∂u

∂n
(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂n(y)

)
ds(y), x ∈ D.

Proof. Green’s theorem – see Ivan’s talk.

N.B. We only need the Cauchy data u,
∂u

∂n
on Γ to compute u in D.

.
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Green’s Representation Theorem and the Kirchhoff Approximation

uinc

Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.

Theorem

u(x) = uinc(x) +

∫
Γ

(
∂u

∂n
(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂n(y)

)
ds(y), x ∈ D.

Proof. Green’s theorem – see Ivan’s talk.

N.B. These Cauchy data u,
∂u

∂n
can be obtained from B.C. +

boundary integral equation on Γ.
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Green’s Representation Theorem and the Kirchhoff Approximation

uinc

Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.

Theorem

u(x) = uinc(x) +

∫
Γ

(
∂u

∂n
(y)Φ(x, y)− u(y)

∂Φ(x, y)

∂n(y)

)
ds(y), x ∈ D.

Proof. Green’s theorem – see Ivan’s talk.

N.B. If Γ is convex then GO can be used, e.g. if u = 0 on Γ then

∂u

∂n
≈

 2∂u
inc

∂n , on illuminated part

0, on part of Γ in shadow
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Green’s Representation Theorem and the Kirchhoff Approximation

uinc

Γ

∆u+ k2u = 0

D

u− uinc satisfies S.R.C.

u(x) ≈ uK.O.(x) := uinc(x) + 2

∫
Γillum

∂uinc

∂n
(y)Φ(x, y) ds(y)︸ ︷︷ ︸

oscillatory integral - call Daan!

, x ∈ D.

N.B. If Γ is convex then GO can be used, e.g. if u = 0 on Γ then

∂u

∂n
≈

 2∂u
inc

∂n , on illuminated part

0, on part of Γ in shadow
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6. PREPARING FOR NA: QUANTIFYING

NON-OSCILLATORARINESS!
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Oscillatory and Non-Oscillatory Functions on (0,∞)

Motivation. I want to factor unknown oscillatory functions into

(maybe sums of) products of known oscillatory functions and

unknown non-oscillatory functions.

To make a theory of this I need a definition.

.
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Oscillatory and Non-Oscillatory Functions on (0,∞)

Motivation. I want to factor unknown oscillatory functions into

(maybe sums of) products of known oscillatory functions and

unknown non-oscillatory functions.

Definition. Call F ∈ C∞(0,∞) non-oscillatory if, for some p0 > −1

and p∞ < 0, it holds for n = 0, 1, ... that

F (n)(t) =

{
O(tp0−n), t→ 0,

O(tp∞−n), t→∞.

.
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Oscillatory and Non-Oscillatory Functions on (0,∞)

Definition. Call F ∈ C∞(0,∞) non-oscillatory if, for some p0 > −1

and p∞ < 0, it holds for n = 0, 1, ... that

F (n)(t) =

{
O(tp0−n), t→ 0,

O(tp∞−n), t→∞.

Are these examples??

(i) F (t) = t−1/2

(ii) F (t) = t−1/2eit

(iii) F (t) = H
(1)
0 (t)

(iv) F (t) = e−itH
(1)
0 (t)

.
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Oscillatory and Non-Oscillatory Functions on (0,∞)

Definition. Call F ∈ C∞(0,∞) non-oscillatory if, for some p0 > −1

and p∞ < 0, it holds for n = 0, 1, ... that

F (n)(t) =

{
O(tp0−n), t→ 0,

O(tp∞−n), t→∞.

Are these examples??

(i) F (t) = t−1/2 Yes, with p0 = p∞ = −1/2.

(ii) F (t) = t−1/2eit No, F (n)(t) ∼ int−1/2eit as t→∞.

(iii) F (t) = H
(1)
0 (t) No, ditto.

(iv) F (t) = e−itH
(1)
0 (t) Yes, with any −1 < p0 < 0 and p∞ = −1/2.

.
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Oscillatory and Non-Oscillatory Functions on (0,∞)

Definition. Call F ∈ C∞(0,∞) non-oscillatory if, for some p0 > −1

and p∞ < 0, it holds for n = 0, 1, ... that

F (n)(t) =

{
O(tp0−n), t→ 0,

O(tp∞−n), t→∞.

Remark. Non-oscillatory F with p∞ < −1, so F ∈ L1(0,∞), are easy

to integrate with quadgk.

Compare

F (t) =
H

(1)
0 (t)

(1 + t)3/4
with F (t) =

e−itH
(1)
0 (t)

(1 + t)3/4
.

Matlab demo ...
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Oscillatory and Non-Oscillatory Functions on (0,∞)

Definition. Call F ∈ C∞(0,∞) non-oscillatory if, for some p0 > −1

and p∞ < 0, it holds for n = 0, 1, ... that

F (n)(t) =

 O(tp0−n), t→ 0,

O(tp∞−n), t→∞.

Definition. Call F (z) strongly non-oscillatory if it is analytic in

< z > 0 and, for some p0 > −1, p∞ < 0, and C > 0, it holds for

< z > 0 that

|F (z)| ≤

 C|z|p0 , |z| < 1,

C|z|p∞ , |z| ≥ 1.

Theorem. If F is strongly non-oscillatory then it is non-oscillatory, with

the same values of p0 and p∞.
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Oscillatory and Non-Oscillatory Functions on (0,∞)

Definition. Call F ∈ C∞(0,∞) non-oscillatory if, for some p0 > −1

and p∞ < 0, it holds for n = 0, 1, ... that

F (n)(t) =

 O(tp0−n), t→ 0,

O(tp∞−n), t→∞.

Definition. Call F (z) strongly non-oscillatory if it is analytic in

< z > 0 and, for some p0 > −1, p∞ < 0, and C > 0, it holds for

< z > 0 that

|F (z)| ≤

 C|z|p0 , |z| < 1,

C|z|p∞ , |z| ≥ 1.

Theorem. If F is strongly non-oscillatory then it is non-oscillatory, with

the same values of p0 and p∞. Example. F (z) = e−izH
(1)
0 (z).
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Recap

1. Wave Equation and Helmholtz Equation

2. Basic Concept of high frequency asymptotic approximations of GO and

GTD

3. Reflection - canonical problems and high frequency GO approximations

4. Diffraction - canonical problems and high frequency GTD approximations

5. The HF Kirchhoff Approximation

6. Preparing for NA: Quantifying Non-Oscillatorariness!

Tomorrow: use this knowledge to design Galerkin methods for boundary

integral equations that combine hp-approximation with new oscillatory

basis functions to solve (at least some classes of) HF scattering

problems with O(1) cost as k →∞.
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