High Frequency Solution Behaviour in Wave Scattering Problems

Simon Chandler-Wilde
University of Reading, UK

www.reading.ac.uk/~sms03snc

With: Steve Langdon, Andrea Moiola (Reading), Ivan Graham, Euan Spence (Bath), Dave Hewett (Oxford), Valery Smyshlyaev, Timo Betcke (UCL), Marko Lindner (TU HH), Peter Monk (Delaware)

PhDs Andrew Gibbs, Sam Groth, Charlotta Howarth, Ashley Twigger

Funding: • EPSRC project(s) across Bath/Reading/UCL with BAE Systems, Institute of Cancer Research, Met Office, Schlumberger Cambridge Research as project partners.
• 4 NERC/EPSRC CASE Studentships at Bath & Reading
• EPSRC/Swiss NSF Fellowships for Andrea, Euan, Timo

Woudschoten, October 2014
Context

My talks apply (particularly) to acoustic waves — my background is in outdoor noise propagation and noise barriers.

My talks concern new numerical-asymptotic methods for high frequency wave scattering, that combine numerical analysis ideas and tools with high frequency asymptotics, see

This talk is the HF asymptotics – numerical methods are talk two!
Context

My talks apply (particularly) to **acoustic waves** — my background is in outdoor noise propagation and noise barriers.

My talks concern new **numerical-asymptotic methods** for **high frequency** wave scattering, that combine **numerical analysis ideas and tools** with **high frequency asymptotics**, see

Motivation. Want to factor unknown oscillatory functions into sums of products of **known oscillatory functions** and **unknown non-oscillatory functions**.
Overview

1. Wave Equation and Helmholtz Equation
2. Basic Concept of high frequency asymptotic approximations of GO and GTD
3. Reflection - canonical problems and high frequency GO approximations
4. Diffraction - canonical problems and high frequency GTD approximations
5. The HF Kirchhoff Approximation
6. Preparing for NA: Quantifying Non-Oscillatoriness!
1. WAVE EQUATION AND HELMHOLTZ EQUATION
The Wave Equation and Helmholtz Equation

$$\Delta U = \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2} \left(\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} \right).$$

If time-dependence is time harmonic, i.e., where \(x = (x_1, x_2, x_3), \)

$$U(x, t) = A(x) \cos(\phi(x) - \omega t),$$

for some \(\omega = 2\pi f > 0, \) with \(f = \) frequency, then

$$U(x, t) = \Re \left(u(x)e^{-i\omega t} \right)$$

where \(u(x) = A(x)\exp(i\phi(x)) \) satisfies the Helmholtz equation

$$\Delta u + k^2 u = 0,$$

with \(k = \omega/c \) the wavenumber.
If time-dependence is **time harmonic** then

\[U(x, t) = \Re \left(u(x)e^{-i\omega t} \right) \]

for some \(\omega = 2\pi f > 0 \), with \(f = \text{frequency} \), where \(u \) satisfies the Helmholtz equation

\[\Delta u + k^2 u = 0, \]

with \(k = \omega/c \) the **wavenumber**. E.g. if

\[u(x) = e^{ikx \cdot d}, \]

for some **unit vector** \(d \), then

\[U(x, t) = \Re \left(u(x)e^{-i\omega t} \right) = \cos(kx \cdot d - \omega t) \]

is a **plane wave** travelling in direction \(d \) with **wavelength**

\[\lambda = \frac{2\pi}{k} = \frac{c}{f}. \]
2. GO AND GTD: THE BASIC CONCEPT
Geometrical Optics/Geometrical Theory of Diffraction (GTD)

source

\[u(x) = \sum_j u_j(x) \]

where sum is over \textbf{rays} passing through \(x \), with

\[
\arg u_j(x) = \text{optical length} \text{ of ray path} = ks_j
\]

\[
|u_j(x)| = \text{amplitude} \text{ determined by energy conservation,}
\]

but with multiplication of \(u_j(x) \) by \textbf{coefficients} accounting for \textbf{reflection}, \textbf{refraction}, and \textbf{diffraction} events.
Geometrical Optics/Geometrical Theory of Diffraction (GTD)

source

\[u(x) = \sum_{j} u_j(x) \]

where sum is over rays passing through \(x \), with

\[\arg u_j(x) = \text{optical length of ray path} = ks_j \]

\[|u_j(x)| = \text{amplitude determined by energy conservation,} \]

but with multiplication of \(u_j(x) \) by coefficients accounting for reflection, refraction, and diffraction events.
Geometrical Optics/Geometrical Theory of Diffraction (GTD)

\[u(x) = \sum_j u_j(x) \]

where sum is over rays passing through \(x \), with

\[\text{arg } u_j(x) = \text{optical length of ray path } = ks_j \]

\[|u_j(x)| = \text{amplitude determined by energy conservation,} \]

but with multiplication of \(u_j(x) \) by coefficients accounting for reflection, refraction, and diffraction events.
Geometrical Optics/Geometrical Theory of Diffraction (GTD)

\[u(x) = \sum_j u_j(x) \]

where sum is over rays passing through \(x \), with

\[\arg u_j(x) = \text{optical length of ray path} = ks_j \]
\[|u_j(x)| = \text{amplitude determined by energy conservation}, \]

but with multiplication of \(u_j(x) \) by coefficients accounting for reflection, refraction, and diffraction events.

The concept/theory/idea of GO/GTD is that at high frequency these interaction events are local and so these coefficients can be computed by solving canonical problems, with simple geometries and incident fields.
3. REFLECTION: CANONICAL PROBLEMS AND HIGH FREQUENCY GO APPROXIMATIONSa

a``Über die Ausbreitung der Wellen in der drahtlosen Telegraphie'', A. Sommerfeld, \textit{Ann. Phys.} (1909)
A Canonical Reflection Problem

\[\Delta u + k^2 u = 0 \]

\[u^{\text{inc}}(x) = e^{ikx \cdot d} \]

\[u^{\text{ref}}(x) = Re^{ikx \cdot d'} \]

\[\frac{\partial u}{\partial x_2} + ik\beta u = 0 \]

d = \(d_1, d_2\) is direction of **incident** plane wave,
d' = \(d_1, -d_2\) is direction of **reflected** plane wave,
\(\beta\) is the **admittance** in the **impedance boundary condition**,
\(\theta_0\) is the **angle of incidence**,
\(R\) is the **reflection coefficient**.
A Canonical Reflection Problem

\[\Delta u + k^2 u = 0 \]

\[u^{\text{inc}}(x) = e^{ik x \cdot d} \]

\[u^{\text{ref}}(x) = R e^{ik x \cdot d'} \]

The total field is

\[u(x) = u^{\text{inc}}(x) + u^{\text{ref}}(x) = e^{ik x \cdot d} + R e^{ik x \cdot d'} \]

where

\[R = \text{reflection coefficient} = \frac{\cos \theta_0 - \beta}{\cos \theta_0 + \beta}. \]
A Canonical Reflection Problem

\[
\Delta u + k^2 u = 0
\]

\[
\begin{align*}
\text{inc} \ (x) &= e^{i k x \cdot d} \\
\text{ref} \ (x) &= R e^{i k x \cdot d'}
\end{align*}
\]

\[
R = \text{reflection coefficient} = \frac{\cos \theta_0 - \beta}{\cos \theta_0 + \beta},
\]

in particular

\[
R = 1 \text{ if } \beta = 0 \text{ (sound hard/Neumann),}
\]

\[
R = -1 \text{ if } \beta \to \infty \text{ (sound soft/Dirichlet).}
\]
A Canonical Reflection Problem

\[\Delta u + k^2 u = 0 \]

\[u^{\text{inc}}(x) = e^{i k x \cdot d} \]

\[u^{\text{ref}}(x) = R e^{i k x \cdot d'} \]

\[\frac{\partial u}{\partial x_2} + i k \beta u = 0 \]

\[R = \text{reflection coefficient} = \frac{\cos \theta_0 - \beta}{\cos \theta_0 + \beta}. \]

and note that

\[|R| \leq 1 \iff \Re \beta \geq 0. \]
A Canonical Reflection Problem

\[\Delta u + k^2 u = 0 \]

\[u^{\text{inc}}(x) = e^{ikx \cdot d} \]

\[u^{\text{ref}}(x) = R e^{ikx \cdot d'} \]

\[R = \text{reflection coefficient} = \frac{\cos \theta_0 - \beta}{\cos \theta_0 + \beta}, \]

and

\[\frac{\partial u}{\partial x_2} = (1 - R) \frac{\partial u^{\text{inc}}}{\partial x_2} = 2 \frac{\partial u^{\text{inc}}}{\partial x_2} \text{ if } \beta \to \infty \text{ (sound soft/Dirichlet)}. \]
The Ray Perspective

\[u(x) = e^{i k x \cdot d} + R e^{i k x \cdot d'} = \exp(i k s) + R \exp(i k s'), \]

\[s = \text{distance along direct magenta ray}, \]
\[s' = \text{distance along reflected blue ray}. \]
Geometrical Optics (and the Geometrical Theory of Diffraction)

\[u(x) = \sum_j u_j(x) \]

where sum is over rays passing through \(x \), with

\[\text{arg } u_j(x) = \text{optical length of ray path } = k s_j \]

\[|u_j(x)| = \text{amplitude determined by energy conservation,} \]

but with multiplication of \(u_j(x) \) by coefficients accounting for \text{reflection, refraction, and diffraction} events, these events depending only on the local geometry.
Geometrical Optics (and the Geometrical Theory of Diffraction)

\[u(x) = \sum_j u_j(x) = \exp(ik s) + R \exp(ik s'), \]

where sum is over rays passing through \(x \), with

\[
\arg u_j(x) = \text{optical length of ray path} = ks_j
\]
\[
|u_j(x)| = \text{amplitude determined by energy conservation},
\]

but with multiplication of \(u_j(x) \) by \textbf{coefficients} accounting for \textbf{reflection, refraction, and diffraction} events, these events depending only on the local geometry.
Geometrical Optics (and the Geometrical Theory of Diffraction)

\[u(x) = \sum_j u_j(x) = \exp(ik s) + R \exp(ik s'), \]

where sum is over rays passing through \(x \), with

\[\arg u_j(x) = \text{optical length of ray path} = ks_j \]
\[|u_j(x)| = \text{amplitude determined by energy conservation}, \]

but with multiplication of \(u_j(x) \) by \textit{coefficients} accounting for \textit{reflection}, \textit{refraction}, and \textit{diffraction} events, these events depending only on the local geometry. \textbf{In general only valid for} \(k \) \textbf{large}.
In this example the (2D) incident field is a cylindrical wave generated by a monopole point source at \(y = (y_1, y_2) \),

\[
\Phi(x, y) := \frac{i}{4} H_0^{(1)}(kR)
\]

where \(R = |x - y| \) and \(H_0^{(1)} \) is Hankel function of 1st kind of order 0.
In this example the (2D) incident field is a cylindrical wave generated by a monopole point source at \(y = (y_1, y_2) \),

\[
\mathcal{R} u^{\text{inc}}(x) = \Phi(x, y) := \frac{i}{4} H_0^{(1)}(k \mathcal{R}).
\]

\(H_0^{(1)}(z) \) is analytic except for log singularity at 0 and

\[
H_0^{(1)}(z) \sim \text{const } e^{iz} z^{-1/2} \quad \text{as} \quad z \to \infty,
\]

so

\[
u^{\text{inc}}(x) \sim \text{const } \frac{e^{i k \mathcal{R}}}{\sqrt{k \mathcal{R}}} \quad \text{as} \quad |x| \to \infty
\]
is locally like a plane wave – key to GTD working.
A First High Frequency (HF) Geometrical Optics Approximation

\[\Delta u + k^2 u = 0 \]

source \(y \)

image \(y' \)

\[\frac{\partial u}{\partial x_2} + ik\beta u = 0 \]

\[u^{\text{inc}}(x) = \Phi(x, y) := \frac{i}{4} H_0^{(1)}(k|R|). \]
A First High Frequency (HF) Geometrical Optics Approximation

\[\Delta u + k^2 u = 0 \]

\[\frac{\partial u}{\partial x_2} + i k \beta u = 0 \]

\[u(x) \approx \Phi(x, y) + R \Phi(x, y') = \frac{i}{4} H_0^{(1)}(kR) + R \frac{i}{4} H_0^{(1)}(kR') , \]

where

\[R = \text{reflection coefficient} = \frac{\cos \theta_0 - \beta}{\cos \theta_0 + \beta} . \]

This is accurate provided \(kR' \gg 1 \) and \(kR' |\beta + \cos \theta_0|^2 \gg 1 \).
A First High Frequency (HF) Geometrical Optics Approximation

\[\Delta u + k^2 u = 0 \]

This HF Geometrical Optics approximation is **accurate provided** $kR' \gg 1$ and $kR' |\beta + \cos \theta_0|^2 \gg 1$.

Unfortunately in outdoor sound propagation often $|\beta| \ll 1$ and $\cos_0 \theta \ll 1$ so this approximation poor.
A First High Frequency (HF) Geometrical Optics Approximation

\[\Delta u + k^2 u = 0 \]

source \(y \)

image \(y' \)

\[\frac{\partial u}{\partial x_2} + i k \beta u = 0 \]

Exact solution as highly oscillatory Fourier integral and its uniform asymptotic expansion for \(kR' \gg 1 \) via a steepest descent path method modified for pole near saddle point are given in C-W and Hothersall (1995a).
A First High Frequency (HF) Geometrical Optics Approximation

\[\Delta u + k^2 u = 0 \]

Source \(y \) \hspace{2cm} Image \(y' \)

Exact solution and its \textbf{uniform asymptotic expansion} for \(kR' \gg 1 \) via a \textbf{steepest descent path method modified for pole near saddle point} are given in C-W and Hothersall (1995a).\(^a\)

\(^a\)Extending “Die Sattelpunktsmethode in der Umgebung eines Pols. Mit Anwendungen auf die Wellenoptik und Akustik”, H. Ott, Annalen Physik, (1943)!
A First High Frequency (HF) Geometrical Optics Approximation

\[\Delta u + k^2 u = 0 \]

Efficient and accurate numerical method, a numerical steepest descent path method, given in C-W and Hothersall (1995b). These are case studies relevant to Daan’s first lecture yesterday!
4. DIFFRACTION: CANONICAL PROBLEMS AND HIGH FREQUENCY GTD APPROXIMATIONS

A Canonical Diffraction Problem

\[u^{\text{inc}}(x) = e^{i k x \cdot d} \]

\[u(x) = E(r, \theta - \alpha) + E(r, \theta + \alpha) \]

where \(E(r, \psi) = \exp(-i k r \cos \psi) F(-\sqrt{2 k r} \cos(\psi/2)) \) and the Fresnel integral

\[F(t) = c_1 \int_t^\infty e^{is^2} ds = c_2 e^{it^2} \int_{-\infty}^\infty \frac{e^{-t^2u^2}}{1 + iu^2} du, \quad t > 0. \]
The Fresnel Integral - Example relevant to Daan’s 1st Lecture

\[F(t) = c_1 \int_t^\infty e^{is^2} \, ds = c_2 e^{it^2} \int_{-\infty}^\infty \frac{e^{-t^2u^2}}{1 + iu^2} \, du. \]

oscillatory integral \hspace{1cm} SDP integral

Use **Watson’s lemma** or **numerical method of steepest descent**!
The Fresnel Integral - Example relevant to Daan’s 1st Lecture

\[F(t) = c_1 \int_t^\infty e^{is^2} \, ds = c_2 \int_{-\infty}^\infty \frac{e^{-t^2u^2}}{1 + iu^2} \, du. \]

oscillatory integral \hspace{1cm} SDP integral

Use Watson’s lemma or numerical method of steepest descent!
Alternatively, based on contour integral arguments dating back to Turing (1945), Alazah, C-W, La Porte, *Numer Math* (2014) propose the modified truncated midpoint rule

\[F(t) \approx F_N(t) := \frac{1}{2} + \frac{i}{2} \tan \left(\pi t e^{i\pi/4}/h_N \right) + \frac{t}{\pi} e^{i(t^2 + \pi/4)} h_N \sum_{k=1}^N \frac{e^{-s_k^2}}{t^2 + i s_k^2} \]

where \(s_k = (k - 1/2) h_N \) and \(h_N = \sqrt{\pi/(N + 1/2)} \), and show

\[\frac{|F(t) - F_N(t)|}{|F(t)|} < 11 e^{-\pi N}, \quad t \in \mathbb{R}. \]
The Fresnel Integral - Example relevant to Daan’s 1st Lecture

\[F(t) = c_1 \int_{t}^{\infty} e^{is^2} \, ds \quad = \quad c_2 \int_{-\infty}^{\infty} \frac{e^{-t^2u^2}}{1 + iu^2} \, du. \]

\(\text{oscillatory integral} \quad \text{SDP integral} \)

Alternatively, based on contour integral arguments dating back to Turing (1945)\(^a\), Alazah, C-W, La Porte, *Numer Math* (2014) propose the modified truncated midpoint rule

\[F(t) \approx F_N(t) := \frac{1}{2} + \frac{i}{2} \tan \left(\pi te^{i\pi/4}/h_N \right) + \frac{t}{\pi} e^{i(t^2+\pi/4)} h_N \sum_{k=1}^{N} \frac{e^{-s_k^2}}{t^2 + is_k^2}. \]

The GTD Approach to this Knife-Edge Problem

\[u^{\text{inc}}(x) = e^{ikx \cdot d} \]

\[u(x) \approx \begin{cases}
 u^{\text{inc}}(x) + u^{\text{ref}}(x) + u^d(x), & x \text{ in Zone 1} \\
 u^{\text{inc}}(x) + u^d(x), & x \text{ in Zone 2} \\
 u^d(x), & x \text{ in Zone 3}
\end{cases} \]

where

\[u^d(x) = u^{\text{inc}}(z) \mathcal{D} \frac{e^{ikr}}{\sqrt{kr}} \]

and \(\mathcal{D} \) is a diffraction coefficient.
5. THE HF KIRCHHOFF APPROXIMATION
Green’s Representation Theorem and the Kirchhoff Approximation

\[\nabla u^{inc} \quad \Delta u + k^2 u = 0 \]

\[u - u^{inc} \text{ satisfies S.R.C.} \]

Theorem

\[u(x) = u^{inc}(x) + \int_{\Gamma} \left(\frac{\partial u}{\partial n}(y) \Phi(x, y) - u(y) \frac{\partial \Phi(x, y)}{\partial n(y)} \right) \, ds(y), \quad x \in D. \]

Proof. Green’s theorem – see Ivan’s talk.

N.B. We only need the **Cauchy data** \(u, \frac{\partial u}{\partial n} \) on \(\Gamma \) to compute \(u \) in \(D \).
Green’s Representation Theorem and the Kirchhoff Approximation

\[\nabla^2 u^{\text{inc}} + k^2 u = 0 \]

\[u - u^{\text{inc}} \] satisfies S.R.C.

Theorem

\[u(x) = u^{\text{inc}}(x) + \int_{\Gamma} \left(\frac{\partial u}{\partial n}(y) \Phi(x, y) - u(y) \frac{\partial \Phi(x, y)}{\partial n(y)} \right) \, ds(y), \quad x \in D. \]

Proof. Green’s theorem – see Ivan’s talk.

N.B. These **Cauchy data** \(u, \frac{\partial u}{\partial n} \) can be obtained from B.C. + boundary integral equation on \(\Gamma \).
Green’s Representation Theorem and the Kirchhoff Approximation

\[\nabla \cdot u^{\text{inc}} + \Delta u + k^2 u = 0 \]

\[u - u^{\text{inc}} \text{ satisfies S.R.C.} \]

Theorem

\[u(x) = u^{\text{inc}}(x) + \int_{\Gamma} \left(\frac{\partial u}{\partial n}(y) \Phi(x, y) - u(y) \frac{\partial \Phi(x, y)}{\partial n(y)} \right) ds(y), \quad x \in D. \]

Proof. Green’s theorem – see Ivan’s talk.

N.B. If \(\Gamma \) is convex then GO can be used, e.g. if \(u = 0 \) on \(\Gamma \) then

\[\frac{\partial u}{\partial n} \approx \begin{cases} 2 \frac{\partial u^{\text{inc}}}{\partial n}, & \text{on illuminated part} \\ 0, & \text{on part of } \Gamma \text{ in shadow} \end{cases} \]
Green’s Representation Theorem and the Kirchhoff Approximation

\[\nabla^2 u^{\text{inc}} + k^2 u = 0 \]

\[u - u^{\text{inc}} \text{ satisfies S.R.C.} \]

\[u(x) \approx u^{\text{K.O.}}(x) := u^{\text{inc}}(x) + 2 \int_{\Gamma_{\text{illum}}} \frac{\partial u^{\text{inc}}}{\partial n}(y) \Phi(x,y) \, ds(y), \quad x \in D. \]

\[\text{oscillatory integral - call Daan!} \]

N.B. If \(\Gamma \) is convex then GO can be used, e.g. if \(u = 0 \) on \(\Gamma \) then

\[\frac{\partial u}{\partial n} \approx \begin{cases} 2 \frac{\partial u^{\text{inc}}}{\partial n}, & \text{on illuminated part} \\ 0, & \text{on part of } \Gamma \text{ in shadow} \end{cases} \]
6. PREPARING FOR NA: QUANTIFYING NON-OSCILLATORARINESS!
Oscillatory and Non-Oscillatory Functions on $(0, \infty)$

Motivation. I want to factor unknown oscillatory functions into (maybe sums of) products of known oscillatory functions and unknown non-oscillatory functions.

To make a theory of this I need a definition.
Oscillatory and Non-Oscillatory Functions on \((0, \infty)\)

Motivation. I want to factor **unknown oscillatory functions** into (maybe sums of) products of **known oscillatory functions** and **unknown non-oscillatory functions**.

Definition. Call \(F \in C^\infty(0, \infty)\) **non-oscillatory** if, for some \(p_0 > -1\) and \(p_\infty < 0\), it holds for \(n = 0, 1, \ldots\) that

\[
F^{(n)}(t) = \begin{cases}
O(t^{p_0-n}), & t \to 0, \\
O(t^{p_\infty-n}), & t \to \infty.
\end{cases}
\]
Oscillatory and Non-Oscillatory Functions on $(0, \infty)$

Definition. Call $F \in C^\infty(0, \infty)$ non-oscillatory if, for some $p_0 > -1$ and $p_\infty < 0$, it holds for $n = 0, 1, \ldots$ that

$$F^{(n)}(t) = \begin{cases} O(t^{p_0-n}), & t \to 0, \\ O(t^{p_\infty-n}), & t \to \infty. \end{cases}$$

Are these examples??

(i) $F(t) = t^{-1/2}$
(ii) $F(t) = t^{-1/2}e^{it}$
(iii) $F(t) = H_0^{(1)}(t)$
(iv) $F(t) = e^{-it} H_0^{(1)}(t)$
Oscillatory and Non-Oscillatory Functions on \((0, \infty)\)

Definition. Call \(F \in C^\infty(0, \infty)\) non-oscillatory if, for some \(p_0 > -1\) and \(p_\infty < 0\), it holds for \(n = 0, 1, \ldots\) that

\[
F^{(n)}(t) = \begin{cases}
O(t^{p_0-n}), & t \to 0, \\
O(t^{p_\infty-n}), & t \to \infty.
\end{cases}
\]

Are these examples??

(i) \(F(t) = t^{-1/2}\) \quad **Yes**, with \(p_0 = p_\infty = -1/2\).

(ii) \(F(t) = t^{-1/2}e^{it}\) \quad **No**, \(F^{(n)}(t) \sim i^n t^{-1/2}e^{it}\) as \(t \to \infty\).

(iii) \(F(t) = H_0^{(1)}(t)\) \quad **No**, ditto.

(iv) \(F(t) = e^{-it}H_0^{(1)}(t)\) \quad **Yes**, with any \(-1 < p_0 < 0\) and \(p_\infty = -1/2\).
Oscillatory and Non-Oscillatory Functions on \((0, \infty)\)

Definition. Call \(F \in C^\infty(0, \infty)\) **non-oscillatory** if, for some \(p_0 > -1\) and \(p_\infty < 0\), it holds for \(n = 0, 1, \ldots\) that

\[
F^{(n)}(t) = \begin{cases}
O(t^{p_0-n}), & t \to 0, \\
O(t^{p_\infty-n}), & t \to \infty.
\end{cases}
\]

Remark. Non-oscillatory \(F\) with \(p_\infty < -1\), so \(F \in L^1(0, \infty)\), are easy to integrate with `quadgk`.

Compare

\[
F(t) = \frac{H_0^{(1)}(t)}{(1+t)^{3/4}} \quad \text{with} \quad F(t) = \frac{e^{-it}H_0^{(1)}(t)}{(1+t)^{3/4}}.
\]

Matlab demo ...
Oscillatory and Non-Oscillatory Functions on $(0, \infty)$

Definition. Call $F \in C^\infty(0, \infty)$ **non-oscillatory** if, for some $p_0 > -1$ and $p_\infty < 0$, it holds for $n = 0, 1, \ldots$ that

$$F^{(n)}(t) = \begin{cases} O(t^{p_0-n}), & t \to 0, \\ O(t^{p_\infty-n}), & t \to \infty. \end{cases}$$

Definition. Call $F(z)$ **strongly non-oscillatory** if it is analytic in $\Re z > 0$ and, for some $p_0 > -1, p_\infty < 0,$ and $C' > 0,$ it holds for $\Re z > 0$ that

$$|F(z)| \leq \begin{cases} C'|z|^{p_0}, & |z| < 1, \\ C'|z|^{p_\infty}, & |z| \geq 1. \end{cases}$$

Theorem. If F is strongly non-oscillatory then it is non-oscillatory, with the same values of p_0 and $p_\infty.$
Oscillatory and Non-Oscillatory Functions on \((0, \infty)\)

Definition. Call \(F \in C^\infty(0, \infty)\) non-oscillatory if, for some \(p_0 > -1\) and \(p_\infty < 0\), it holds for \(n = 0, 1, \ldots\) that

\[
F^{(n)}(t) = \begin{cases}
O(t^{p_0-n}), & t \to 0, \\
O(t^{p_\infty-n}), & t \to \infty.
\end{cases}
\]

Definition. Call \(F(z)\) strongly non-oscillatory if it is analytic in \(\Re z > 0\) and, for some \(p_0 > -1\), \(p_\infty < 0\), and \(C > 0\), it holds for \(\Re z > 0\) that

\[
|F(z)| \leq \begin{cases}
C|z|^{p_0}, & |z| < 1, \\
C|z|^{p_\infty}, & |z| \geq 1.
\end{cases}
\]

Theorem. If \(F\) is strongly non-oscillatory then it is non-oscillatory, with the same values of \(p_0\) and \(p_\infty\). **Example.** \(F(z) = e^{-iz}H_0^{(1)}(z)\).
Recap

1. Wave Equation and Helmholtz Equation
2. Basic Concept of high frequency asymptotic approximations of GO and GTD
3. Reflection - canonical problems and high frequency GO approximations
4. Diffraction - canonical problems and high frequency GTD approximations
5. The HF Kirchhoff Approximation
6. Preparing for NA: Quantifying Non-Oscillatoryariness!

Tomorrow: use this knowledge to design Galerkin methods for boundary integral equations that combine hp-approximation with new oscillatory basis functions to solve (at least some classes of) HF scattering problems with $O(1)$ cost as $k \rightarrow \infty$.
References

