High Frequency Solution Behaviour in Wave Scattering Problems

Simon Chandler-Wilde

University of Reading, UK

www.reading.ac.uk/~sms03snc

With: Steve Langdon, Andrea Moiola (Reading), Ivan Graham, Euan Spence (Bath), Dave Hewett (Oxford), Valery Smyshlyaev, Timo Betcke (UCL), Marko Lindner (TU HH), Peter Monk (Delaware) PhDs Andrew Gibbs, Sam Groth, Charlotta Howarth, Ashley Twigger

Funding: • EPSRC project(s) across Bath/Reading/UCL with BAE Systems, Institute of Cancer Research, Met Office, Schlumberger Cambridge Research as project partners.

- 4 NERC/EPSRC CASE Studentships at Bath \& Reading - EPSRC/Swiss NSF Fellowships for Andrea, Euan, Timo

Woudschoten, October 2014

Context

My talks apply (particularly) to acoustic waves - my background is in outdoor noise propagation and noise barriers.

My talks concern new numerical-asymptotic methods for high frequency wave scattering, that combine numerical analysis ideas and tools with high frequency asymptotics, see

C-W, Graham, Langdon, Spence Acta Numerica 21 (2012), 89-305.
This talk is the HF asymptotics - numerical methods are talk two!

Context

My talks apply (particularly) to acoustic waves - my background is in outdoor noise propagation and noise barriers.

My talks concern new numerical-asymptotic methods for high frequency wave scattering, that combine numerical analysis ideas and tools with high frequency asymptotics, see

Motivation. Want to factor unknown oscillatory functions into sums of products of known oscillatory functions and unknown non-oscillatory functions.

Overview

1. Wave Equation and Helmholtz Equation
2. Basic Concept of high frequency asymptotic approximations of GO and GTD
3. Reflection - canonical problems and high frequency GO approximations
4. Diffraction - canonical problems and high frequency GTD approximations
5. The HF Kirchhoff Approximation
6. Preparing for NA: Quantifying Non-Oscillatorariness!
7. WAVE EQUATION AND HELMHOLTZ EQUATION

The Wave Equation and Helmholtz Equation

$$
\Delta U=\frac{1}{c^{2}} \frac{\partial^{2} U}{\partial t^{2}} \quad\left(\Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}\right) .
$$

If time-dependence is time harmonic, i.e., where $x=\left(x_{1}, x_{2}, x_{3}\right)$,

$$
U(x, t)=A(x) \cos (\phi(x)-\omega t)
$$

for some $\omega=2 \pi f>0$, with $f=$ frequency, then

$$
U(x, t)=\Re\left(u(x) \mathrm{e}^{-\mathrm{i} \omega t}\right)
$$

where $u(x)=A(x) \exp (\mathrm{i} \phi(x))$ satisfies the Helmholtz equation

$$
\Delta u+k^{2} u=0
$$

with $k=\omega / c$ the wavenumber.

If time-dependence is time harmonic then

$$
U(x, t)=\Re\left(u(x) \mathrm{e}^{-\mathrm{i} \omega t}\right)
$$

for some $\omega=2 \pi f>0$, with $f=$ frequency, where u satisfies the Helmholtz equation

$$
\Delta u+k^{2} u=0
$$

with $k=\omega / c$ the wavenumber. E.g. if

$$
u(x)=\mathrm{e}^{\mathrm{i} k x \cdot d}
$$

for some unit vector d, then

$$
U(x, t)=\Re\left(u(x) \mathrm{e}^{-\mathrm{i} \omega t}\right)=\cos (k x \cdot d-\omega t)
$$

is a plane wave travelling in direction d with wavelength

$$
\lambda=\frac{2 \pi}{k}=\frac{c}{f}
$$

2. GO AND GTD: THE BASIC CONCEPT

Geometrical Optics/Geometrical Theory of Diffraction (GTD)

where sum is over rays passing through x, with

$$
\begin{aligned}
\arg u_{j}(x) & =\text { optical length of ray path }=k s_{j} \\
\left|u_{j}(x)\right| & =\text { amplitude determined by energy conservation, }
\end{aligned}
$$

but with multiplication of $u_{j}(x)$ by coefficients accounting for reflection, refraction, and diffraction events.

Geometrical Optics/Geometrical Theory of Diffraction (GTD)

where sum is over rays passing through x, with

$$
\begin{aligned}
\arg u_{j}(x) & =\text { optical length of ray path }=k s_{j} \\
\left|u_{j}(x)\right| & =\text { amplitude determined by energy conservation },
\end{aligned}
$$

but with multiplication of $u_{j}(x)$ by coefficients accounting for reflection, refraction, and diffraction events.

Geometrical Optics/Geometrical Theory of Diffraction (GTD)

where sum is over rays passing through x, with

$$
\begin{aligned}
\arg u_{j}(x) & =\text { optical length of ray path }=k s_{j} \\
\left|u_{j}(x)\right| & =\text { amplitude determined by energy conservation },
\end{aligned}
$$

but with multiplication of $u_{j}(x)$ by coefficients accounting for reflection, refraction, and diffraction events.

Geometrical Optics/Geometrical Theory of Diffraction (GTD)

$$
u(x)=\sum_{j} u_{j}(x)
$$

where sum is over rays passing through x, with

$$
\begin{aligned}
\arg u_{j}(x) & =\text { optical length of ray path }=k s_{j} \\
\left|u_{j}(x)\right| & =\text { amplitude determined by energy conservation },
\end{aligned}
$$

but with multiplication of $u_{j}(x)$ by coefficients accounting for reflection, refraction, and diffraction events.

The concept/theory/idea of GO/GTD is that at high frequency these interaction events are local and so these coefficients can be computed by solving canonical problems, with simple geometries and incident fields.

3. REFLECTION: CANONICAL PROBLEMS AND HIGH FREQUENCY GO APPROXIMATIONS ${ }^{\text {a }}$

[^0]
A Canonical Reflection Problem

$$
\Delta u+k^{2} u=0
$$

$d=\left(d_{1}, d_{2}\right)$ is direction of incident plane wave,
$d^{\prime}=\left(d_{1},-d_{2}\right)$ is direction of reflected plane wave,
β is the admittance in the impedance boundary condition,
θ_{0} is the angle of incidence,
R is the reflection coefficient.

A Canonical Reflection Problem

$$
\Delta u+k^{2} u=0
$$

The total field is

$$
u(x)=u^{\mathrm{inc}}(x)+u^{\mathrm{ref}}(x)=\mathrm{e}^{\mathrm{i} k x \cdot d}+R \mathrm{e}^{\mathrm{i} k x \cdot d^{\prime}}
$$

where

$$
R=\text { reflection coefficient }=\frac{\cos \theta_{0}-\beta}{\cos \theta_{0}+\beta} .
$$

A Canonical Reflection Problem

$$
\Delta u+k^{2} u=0
$$

in particular

$$
\begin{gathered}
R=1 \text { if } \beta=0 \text { (sound hard/Neumann), } \\
R=-1 \text { if } \beta \rightarrow \infty \text { (sound soft/Dirichlet). }
\end{gathered}
$$

A Canonical Reflection Problem

$$
\Delta u+k^{2} u=0
$$

$$
\begin{aligned}
& \mathbb{Z}_{u^{\mathrm{inc}}(x)=\mathrm{e}^{\mathrm{i} k x \cdot d} \quad \mathbb{N}^{u^{\mathrm{ref}}}(x)=R \mathrm{e}^{\mathrm{i} k x \cdot d^{\prime}}} \\
& \uparrow \frac{x_{1}}{x_{2}} \\
& R=\text { reflection coefficient }=\frac{\cos \theta_{0}-\beta}{\cos \theta_{0}+\beta} . \\
& \text { and note that } \\
& |R| \leq 1 \Leftrightarrow \Re \beta \geq 0 .
\end{aligned}
$$

A Canonical Reflection Problem

$$
\Delta u+k^{2} u=0
$$

$$
\begin{aligned}
& \mathbb{Z}_{u^{\mathrm{inc}}(x)=\mathrm{e}^{\mathrm{i} k x \cdot d} \quad \mathbb{N}^{u^{\mathrm{ref}}(x)}=R \mathrm{e}^{\mathrm{i} k x \cdot d^{\prime}}} \\
& R=\text { reflection coefficient }=\frac{\cos \theta_{0}-\beta}{\cos \theta_{0}+\beta},
\end{aligned}
$$

and

$$
\frac{\partial u}{\partial x_{2}}=(1-R) \frac{\partial u^{\mathrm{inc}}}{\partial x_{2}}=2 \frac{\partial u^{\mathrm{inc}}}{\partial x_{2}} \text { if } \beta \rightarrow \infty \text { (sound soft/Dirichlet). }
$$

The Ray Perspective

Geometrical Optics (and the Geometrical Theory of Diffraction)

where sum is over rays passing through x, with

$$
\begin{aligned}
\arg u_{j}(x) & =\text { optical length of ray path }=k s_{j} \\
\left|u_{j}(x)\right| & =\text { amplitude determined by energy conservation, }
\end{aligned}
$$

but with multiplication of $u_{j}(x)$ by coefficients accounting for reflection, refraction, and diffraction events, these events depending only on the local geometry.

Geometrical Optics (and the Geometrical Theory of Diffraction)

$$
u(x)=\sum_{j} u_{j}(x)=\exp (\mathrm{i} k s)+R \exp \left(\mathrm{i} k s^{\prime}\right)
$$

where sum is over rays passing through x, with

$$
\begin{aligned}
\arg u_{j}(x) & =\text { optical length of ray path }=k s_{j} \\
\left|u_{j}(x)\right| & =\text { amplitude determined by energy conservation, }
\end{aligned}
$$

but with multiplication of $u_{j}(x)$ by coefficients accounting for reflection, refraction, and diffraction events, these events depending only on the local geometry.

Geometrical Optics (and the Geometrical Theory of Diffraction)

$$
u(x)=\sum_{j} u_{j}(x)=\exp (\mathrm{i} k s)+R \exp \left(\mathrm{i} k s^{\prime}\right)
$$

where sum is over rays passing through x, with

$$
\begin{aligned}
\arg u_{j}(x) & =\text { optical length of ray path }=k s_{j} \\
\left|u_{j}(x)\right| & =\text { amplitude determined by energy conservation, }
\end{aligned}
$$

but with multiplication of $u_{j}(x)$ by coefficients accounting for reflection, refraction, and diffraction events, these events depending only on the local geometry. In general only valid for k large.

A First High Frequency (HF) Geometrical Optics Approximation

$$
\Re u^{\mathrm{inc}}(x)
$$

In this example the (2D) incident field is a cylindrical wave generated by a monopole point source at $y=\left(y_{1}, y_{2}\right)$,
$u^{\mathrm{inc}}(x)=\Phi(x, y):=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k \mathcal{R})$
where $\mathcal{R}=|x-y|$ and $H_{0}^{(1)}$ is Hankel function of 1st kind of order 0 .

A First High Frequency (HF) Geometrical Optics Approximation

In this example the (2D) incident field is a cylindrical wave generated by a monopole point source at $y=\left(y_{1}, y_{2}\right)$,
$\Re u^{\text {inc }}(x)$

$$
u^{\mathrm{inc}}(x)=\Phi(x, y):=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k \mathcal{R})
$$

$H_{0}^{(1)}(z)$ is analytic except for log singularity at 0 and

$$
H_{0}^{(1)}(z) \sim \operatorname{const} \mathrm{e}^{\mathrm{i} z} z^{-1 / 2} \quad \text { as } \quad z \rightarrow \infty
$$

so

$$
u^{\mathrm{inc}}(x) \sim \operatorname{const} \frac{\mathrm{e}^{\mathrm{i} k \mathcal{R}}}{\sqrt{k \mathcal{R}}} \quad \text { as } \quad|x| \rightarrow \infty
$$

is locally like a plane wave - key to GTD working.

A First High Frequency (HF) Geometrical Optics Approximation

$$
\Delta u+k^{2} u=0
$$

$$
u^{\mathrm{inc}}(x)=\Phi(x, y):=\frac{\mathrm{i}}{4} H_{0}^{(1)}(k \mathcal{R})
$$

A First High Frequency (HF) Geometrical Optics Approximation

where

$$
R=\text { reflection coefficient }=\frac{\cos \theta_{0}-\beta}{\cos \theta_{0}+\beta} .
$$

This is accurate provided $k \mathcal{R}^{\prime} \gg 1$ and $k \mathcal{R}^{\prime}\left|\beta+\cos \theta_{0}\right|^{2} \gg 1$.

A First High Frequency (HF) Geometrical Optics Approximation

This HF Geometrical Optics approximation is accurate provided $k \mathcal{R}^{\prime} \gg 1$ and $k \mathcal{R}^{\prime}\left|\beta+\cos \theta_{0}\right|^{2} \gg 1$.

Unfortunately in outdoor sound propagation often $|\beta| \ll 1$ and $\cos _{0} \theta \ll 1$ so this approximation poor.

A First High Frequency (HF) Geometrical Optics Approximation

Exact solution as highly oscillatory Fourier integral and its uniform asymptotic expansion for $k \mathcal{R}^{\prime} \gg 1$ via a steepest descent path method modified for pole near saddle point are given in C-W and Hothersall (1995a).

A First High Frequency (HF) Geometrical Optics Approximation

Exact solution and its uniform asymptotic expansion for $k \mathcal{R}^{\prime} \gg 1$ via a steepest descent path method modified for pole near saddle point are given in C-W and Hothersall (1995a). ${ }^{\text {a }}$

[^1]
A First High Frequency (HF) Geometrical Optics Approximation

Efficient and accurate numerical method, a numerical steepest descent path method, given in C-W and Hothersall (1995b).

These are case studies relevant to Daan's first lecture yesterday!

4. DIFFRACTION: CANONICAL PROBLEMS AND HIGH FREQUENCY GTD APPROXIMATIONS®

a"Goemetrical theory of diffraction", J.B. Keller, JOSA (1962), "Mathematische Theorie der Diffraction", A. Sommerfeld, Math. Ann., (1896), "The Computation of Conical Diffraction Coefficients in High-Frequency Acoustic Wave Scattering", B.D. Bonner, I.G. Graham, and V.P. Smyshlyaev, SINUM (2005)

A Canonical Diffraction Problem

$$
u(x)=E(r, \theta-\alpha)+E(r, \theta+\alpha)
$$

where $E(r, \psi)=\exp (-\mathrm{i} k r \cos \psi) F(-\sqrt{2 k r} \cos (\psi / 2))$ and the Fresnel integral

$$
F(t)=c_{1} \int_{t}^{\infty} \mathrm{e}^{\mathrm{i} s^{2}} d s=c_{2} \mathrm{e}^{\mathrm{i} t^{2}} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-t^{2} u^{2}}}{1+\mathrm{i} u^{2}} d u, \quad t>0
$$

The Fresnel Integral - Example relevant to Daan's 1st Lecture

$$
F(t)=c_{1} \underbrace{\int_{t}^{\infty} \mathrm{e}^{\mathrm{i} s^{2}} d s}_{\text {oscillatory integral }}=c_{2} \underbrace{\mathrm{e}^{\mathrm{i} t^{2}} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-t^{2} u^{2}}}{1+\mathrm{i} u^{2}} d u}_{\text {SDP integral }} .
$$

Use Watson's lemma or numerical method of steepest descent!

The Fresnel Integral - Example relevant to Daan's 1st Lecture

$$
F(t)=c_{1} \underbrace{\int_{t}^{\infty} \mathrm{e}^{\mathrm{i} s^{2}} d s}_{\text {oscillatory integral }}=c_{2} \underbrace{\mathrm{e}^{\mathrm{i} t^{2}} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-t^{2} u^{2}}}{1+\mathrm{i} u^{2}} d u}_{\text {SDP integral }} .
$$

Use Watson's lemma or numerical method of steepest descent!
Alternatively, based on contour integral arguments dating back to Turing (1945), Alazah, C-W, La Porte, Numer Math (2014) propose the modified truncated midpoint rule

$$
F(t) \approx F_{N}(t):=\frac{1}{2}+\frac{\mathrm{i}}{2} \tan \left(\pi t \mathrm{e}^{\mathrm{i} \pi / 4} / h_{N}\right)+\frac{t}{\pi} \mathrm{e}^{\mathrm{i}\left(t^{2}+\pi / 4\right)} h_{N} \sum_{k=1}^{N} \frac{\mathrm{e}^{-s_{k}^{2}}}{t^{2}+\mathrm{i} s_{k}^{2}}
$$

where $s_{k}=(k-1 / 2) h_{N}$ and $h_{N}=\sqrt{\pi /(N+1 / 2)}$, and show

$$
\frac{\left|F(t)-F_{N}(t)\right|}{|F(t)|}<11 \mathrm{e}^{-\pi N}, \quad t \in \mathbb{R} .
$$

The Fresnel Integral - Example relevant to Daan's 1st Lecture

$$
F(t)=c_{1} \underbrace{\int_{t}^{\infty} \mathrm{e}^{\mathrm{i} s^{2}} d s}_{\text {oscillatory integral }}=c_{2} \underbrace{\mathrm{e}^{\mathrm{i} t^{2}} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-t^{2} u^{2}}}{1+\mathrm{i} u^{2}} d u}_{\text {SDP integral }} .
$$

Alternatively, based on contour integral arguments dating back to Turing (1945) Alazah, C-W, La Porte, Numer Math (2014) propose the modified truncated midpoint rule

$$
F(t) \approx F_{N}(t):=\frac{1}{2}+\frac{\mathrm{i}}{2} \tan \left(\pi t \mathrm{e}^{\mathrm{i} \pi / 4} / h_{N}\right)+\frac{t}{\pi} \mathrm{e}^{\mathrm{i}\left(t^{2}+\pi / 4\right)} h_{N} \sum_{k=1}^{N} \frac{\mathrm{e}^{-s_{k}^{2}}}{t^{2}+\mathrm{i} s_{k}^{2}}
$$

[^2]
The GTD Approach to this Knife-Edge Problem

where $u^{\mathrm{d}}(x)=u^{\mathrm{inc}}(z) \mathcal{D} \frac{\mathrm{e}^{\mathrm{i} k r}}{\sqrt{k r}}$ and \mathcal{D} is a diffraction coefficient.
5. THE HF KIRCHHOFF APPROXIMATION

Green's Representation Theorem and the Kirchhoff Approximation $V_{\Delta} u_{\text {inc }} \quad \Delta u+k^{2} u=0$ D

Theorem
$u(x)=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left(\frac{\partial u}{\partial n}(y) \Phi(x, y)-u(y) \frac{\partial \Phi(x, y)}{\partial n(y)}\right) d s(y), \quad x \in D$.
Proof. Green's theorem - see Ivan's talk.
N.B. We only need the Cauchy data $u, \frac{\partial u}{\partial n}$ on Γ to compute u in D.

Green's Representation Theorem and the Kirchhoff Approximation

$$
\mathscr{V}_{ \pm} u_{\text {inc }} \quad \Delta u+k^{2} u=0
$$

Theorem

$$
u(x)=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left(\frac{\partial u}{\partial n}(y) \Phi(x, y)-u(y) \frac{\partial \Phi(x, y)}{\partial n(y)}\right) d s(y), \quad x \in D
$$

Proof. Green's theorem - see Ivan's talk.
N.B. These Cauchy data $u, \frac{\partial u}{\partial n}$ can be obtained from B.C. + boundary integral equation on Γ.

Green's Representation Theorem and the Kirchhoff Approximation

$$
\mathscr{V}_{\boldsymbol{x}} u_{\text {inc }} \quad \Delta u+k^{2} u=0
$$

Theorem

$$
u(x)=u^{\mathrm{inc}}(x)+\int_{\Gamma}\left(\frac{\partial u}{\partial n}(y) \Phi(x, y)-u(y) \frac{\partial \Phi(x, y)}{\partial n(y)}\right) d s(y), \quad x \in D
$$

Proof. Green's theorem - see Ivan's talk.
N.B. If Γ is convex then $\mathbf{G O}$ can be used, e.g. if $u=0$ on Γ then

$$
\frac{\partial u}{\partial n} \approx \begin{cases}2 \frac{\partial u^{\mathrm{inc}}}{\partial n}, & \text { on illuminated part } \\ 0, & \text { on part of } \Gamma \text { in shadow }\end{cases}
$$

Green's Representation Theorem and the Kirchhoff Approximation

$$
\mathscr{V}_{\boldsymbol{x}} u^{\text {inc }} \quad \Delta u+k^{2} u=0
$$

$$
u(x) \approx u^{\mathrm{K} . \mathrm{O} .}(x):=u^{\mathrm{inc}}(x)+\underbrace{2 \int_{\Gamma_{\text {illum }}} \frac{\partial u^{\mathrm{inc}}}{\partial n}(y) \Phi(x, y) d s(y)}_{\text {oscillatory integral - call Daan! }}, \quad x \in D .
$$

N.B. If Γ is convex then $\mathbf{G O}$ can be used, e.g. if $u=0$ on Γ then

$$
\frac{\partial u}{\partial n} \approx \begin{cases}2 \frac{\partial u^{\mathrm{inc}}}{\partial n}, & \text { on illuminated part } \\ 0, & \text { on part of } \Gamma \text { in shadow }\end{cases}
$$

6. PREPARING FOR NA: QUANTIFYING NON-OSCILLATORARINESS!

Oscillatory and Non-Oscillatory Functions on ($0, \infty$)

Motivation. I want to factor unknown oscillatory functions into (maybe sums of) products of known oscillatory functions and unknown non-oscillatory functions.

To make a theory of this I need a definition.

Oscillatory and Non-Oscillatory Functions on $(0, \infty)$

Motivation. I want to factor unknown oscillatory functions into (maybe sums of) products of known oscillatory functions and unknown non-oscillatory functions.

Definition. Call $F \in C^{\infty}(0, \infty)$ non-oscillatory if, for some $p_{0}>-1$ and $p_{\infty}<0$, it holds for $n=0,1, \ldots$ that

$$
F^{(n)}(t)= \begin{cases}O\left(t^{p_{0}-n}\right), & t \rightarrow 0 \\ O\left(t^{p_{\infty}-n}\right), & t \rightarrow \infty\end{cases}
$$

Oscillatory and Non-Oscillatory Functions on $(0, \infty)$

Definition. Call $F \in C^{\infty}(0, \infty)$ non-oscillatory if, for some $p_{0}>-1$ and $p_{\infty}<0$, it holds for $n=0,1, \ldots$ that

$$
F^{(n)}(t)= \begin{cases}O\left(t^{p_{0}-n}\right), & t \rightarrow 0 \\ O\left(t^{p_{\infty}-n}\right), & t \rightarrow \infty\end{cases}
$$

Are these examples??
(i) $F(t)=t^{-1 / 2}$
(ii) $F(t)=t^{-1 / 2} \mathrm{e}^{\mathrm{i} t}$
(iii) $F(t)=H_{0}^{(1)}(t)$
(iv) $F(t)=\mathrm{e}^{-\mathrm{it} t} H_{0}^{(1)}(t)$

Oscillatory and Non-Oscillatory Functions on $(0, \infty)$

Definition. Call $F \in C^{\infty}(0, \infty)$ non-oscillatory if, for some $p_{0}>-1$ and $p_{\infty}<0$, it holds for $n=0,1, \ldots$ that

$$
F^{(n)}(t)= \begin{cases}O\left(t^{p_{0}-n}\right), & t \rightarrow 0 \\ O\left(t^{p_{\infty}-n}\right), & t \rightarrow \infty\end{cases}
$$

Are these examples??
(i) $F(t)=t^{-1 / 2}$

Yes, with $p_{0}=p_{\infty}=-1 / 2$.
(ii) $F(t)=t^{-1 / 2} \mathrm{e}^{\mathrm{i} t}$
(iii) $F(t)=H_{0}^{(1)}(t)$

No, ditto.
(iv) $F(t)=\mathrm{e}^{-\mathrm{i} t} H_{0}^{(1)}(t) \quad$ Yes, with any $-1<p_{0}<0$ and $p_{\infty}=-1 / 2$.

Oscillatory and Non-Oscillatory Functions on $(0, \infty)$

Definition. Call $F \in C^{\infty}(0, \infty)$ non-oscillatory if, for some $p_{0}>-1$ and $p_{\infty}<0$, it holds for $n=0,1, \ldots$ that

$$
F^{(n)}(t)= \begin{cases}O\left(t^{p_{0}-n}\right), & t \rightarrow 0 \\ O\left(t^{p_{\infty}-n}\right), & t \rightarrow \infty\end{cases}
$$

Remark. Non-oscillatory F with $p_{\infty}<-1$, so $F \in L^{1}(0, \infty)$, are easy to integrate with quadgk.

Compare

$$
F(t)=\frac{H_{0}^{(1)}(t)}{(1+t)^{3 / 4}} \quad \text { with } \quad F(t)=\frac{\mathrm{e}^{-\mathrm{i} t} H_{0}^{(1)}(t)}{(1+t)^{3 / 4}}
$$

Matlab demo ...

Oscillatory and Non-Oscillatory Functions on $(0, \infty)$

Definition. Call $F \in C^{\infty}(0, \infty)$ non-oscillatory if, for some $p_{0}>-1$ and $p_{\infty}<0$, it holds for $n=0,1, \ldots$ that

$$
F^{(n)}(t)= \begin{cases}O\left(t^{p_{0}-n}\right), & t \rightarrow 0 \\ O\left(t^{p_{\infty}-n}\right), & t \rightarrow \infty\end{cases}
$$

Definition. Call $F(z)$ strongly non-oscillatory if it is analytic in $\Re z>0$ and, for some $p_{0}>-1, p_{\infty}<0$, and $C>0$, it holds for $\Re z>0$ that

$$
|F(z)| \leq \begin{cases}C|z|^{p_{0}}, & |z|<1 \\ C|z|^{p_{\infty}}, & |z| \geq 1\end{cases}
$$

Theorem. If F is strongly non-oscillatory then it is non-oscillatory, with the same values of p_{0} and p_{∞}.

Oscillatory and Non-Oscillatory Functions on $(0, \infty)$

Definition. Call $F \in C^{\infty}(0, \infty)$ non-oscillatory if, for some $p_{0}>-1$ and $p_{\infty}<0$, it holds for $n=0,1, \ldots$ that

$$
F^{(n)}(t)= \begin{cases}O\left(t^{p_{0}-n}\right), & t \rightarrow 0 \\ O\left(t^{p_{\infty}-n}\right), & t \rightarrow \infty\end{cases}
$$

Definition. Call $F(z)$ strongly non-oscillatory if it is analytic in $\Re z>0$ and, for some $p_{0}>-1, p_{\infty}<0$, and $C>0$, it holds for $\Re z>0$ that

$$
|F(z)| \leq \begin{cases}C|z|^{p_{0}}, & |z|<1, \\ C|z|^{p_{\infty}}, & |z| \geq 1 .\end{cases}
$$

Theorem. If F is strongly non-oscillatory then it is non-oscillatory, with the same values of p_{0} and p_{∞}. Example. $F(z)=\mathrm{e}^{-\mathrm{i} z} H_{0}^{(1)}(z)$.

Recap

1. Wave Equation and Helmholtz Equation
2. Basic Concept of high frequency asymptotic approximations of GO and GTD
3. Reflection - canonical problems and high frequency GO approximations
4. Diffraction - canonical problems and high frequency GTD approximations
5. The HF Kirchhoff Approximation
6. Preparing for NA: Quantifying Non-Oscillatorariness!

Tomorrow: use this knowledge to design Galerkin methods for boundary integral equations that combine $h p$-approximation with new oscillatory basis functions to solve (at least some classes of) HF scattering problems with $O(1)$ cost as $k \rightarrow \infty$.

References

- "Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering", C-W, I.G. Graham, S Langdon, \& E.A. Spence, Acta Numerica (2012).
- "A uniformly valid far field asymptotic expansion for the Green function for two-dimensional propagation above a homogeneous impedance plane", C-W \& D.C. Hothersall, J. Sound Vib. (1995).
- "Efficient calculation of the Green function for acoustic propagation above a homogeneous impedance plane", C-W \& D.C. Hothersall, J. Sound Vib. (1995).
- "Computing Fresnel integrals with modified trapezium rules", M. Alazah, C-W, \& S. La Porte, Numer. Math. (2014).

[^0]: a "Uber die Ausbreitung der Wellen in der drahtlosen Telegraphie", A. Sonmmerfeld, Ann. Phys. (1909)

[^1]: ${ }^{\text {a }}$ Extending "Die Sattelpunktsmethode in der Umgebung eines Pols. Mit Anwendungen auf die Wellenoptik und Akustik", H. Ott, Annalen Physik, (1943)!

[^2]: a"A method for the calculation of the zeta-function", A.M. Turing, Proc. London Math. Soc. (1945), and cf. Trefethen and Weideman, SIAM Rev. (2014)

