Bayesian Inversion: Algorithms

Andrew M Stuart¹

¹Mathematics Institute and Centre for Scientific Computing University of Warwick

Woudshoten Lectures 2013 October 4th 2013

Work funded by EPSRC, ERC and ONR

http://homepages.warwick.ac.uk/~masdr/

A.M. Stuart. *Inverse problems: a Bayesian perspective.* Acta Numerica **19**(2010).

~masdr/BOOKCHAPTERS/stuart15c.pdf

- M. Dashti, K.J.H. Law, A.M. Stuart and J. Voss. MAP estimators and posterior consistency
 Inverse Problems, 29(2013), 095017. arxiv:1303.4795.
- F. Pinski, G. Simpson, A.M. Stuart and H. Weber. Kullback-Leibler approximation for probability measures on infinite dimensional spaces. In preparation.
- S.L. Cotter, G.O. Roberts, A.M. Stuart and D. White. *MCMC methods for functions*.... Statistical Science **28**(2013). arxiv:1202.0709.
- M. Hairer, A.M.Stuart and S. Vollmer. Spectral gaps for a Metropolis-Hastings algorithm arxiv: 1112.1392.

Outline

- SETTING AND ASSUMPTIONS
- MAP ESTIMATORS
- 3 KULLBACK-LEIBLER APPROXIMATION
- SAMPLING
- **5** CONCLUSIONS

Outline

- SETTING AND ASSUMPTIONS
- MAP ESTIMATORS
- 3 KULLBACK-LEIBLER APPROXIMATION
- 4 SAMPLING
- **5** CONCLUSIONS

The Setting

- Probability measure μ on Hilbert space H.
- Reference measure μ_0 (often a prior).
- μ related to μ_0 by (often Bayes' Theorem)

$$\frac{d\mu}{d\mu_0}(u) = \frac{1}{Z_\mu} \exp\left(-\Phi(u)\right).$$

• Another way of saying the same thing:

$$\mathbb{E}^{\mu}f(u) = \frac{1}{Z_{\mu}}\mathbb{E}^{\mu_0}\Big(\exp(-\Phi(u))f(u)\Big).$$

• How do we get information from μ if we know μ_0 and Φ ?

The Talk In One Picture

The Assumptions

- $\mu_0 = N(0, C_0)$ a centred Gaussian measure on H.
- $\mu_0(X) = 1$; X (Banach) continuously embedded in H.
- Let $E = \mathcal{D}(C_0^{-\frac{1}{2}})$ (Cameron-Martin space).
- Then $E \subset X \subseteq H$. E (Hilbert) compactly embedded in X.
- The function $\Phi \in C(X; \mathbb{R}^+)$.
- For all u, v with $||u||_X \le r$, $||v||_X \le r$ there are $M_i(r)$:

$$|\Phi(u)| \le M_1(r);$$

 $|\Phi(u) - \Phi(v)| \le M_2(r)||u - v||.$

Outline

- SETTING AND ASSUMPTIONS
- MAP ESTIMATORS
- 3 KULLBACK-LEIBLER APPROXIMATION
- 4 SAMPLING
- **6** CONCLUSIONS

Probability Maximizers and Tikhonov Regularization

Define the Tikhonov-regularized LSQ functional $I: E \to \mathbb{R}^+$ by

$$I(u) := \frac{1}{2} \|C_0^{-\frac{1}{2}}u\|^2 + \Phi(u).$$

Let $B^{\delta}(z)$ be a ball of radius δ in X centred at $z \in E = \mathcal{D}(C_0^{-\frac{1}{2}})$.

Theorem

(Dashti, Law, S and Voss, 2013). The probability measure μ and functional I are related by

$$\lim_{\delta \to 0} \frac{\mu(B^{\delta}(z_1))}{\mu(B^{\delta}(z_2))} = \exp(I(z_2) - I(z_1)).$$

Thus probability maximizers are minimizers of the regularized Tikhonov functional *I*.

Existence of Probability Maximizers

The minimization is well-defined:

Theorem

(S, Acta Numerica, 2010). $\exists \overline{u} \in E$:

$$I(\overline{u}) = \overline{I} := \inf\{I(u) : u \in E\}.$$

Furthermore, if $\{u_n\}$ is a minimizing sequence satisfying $I(u_n) \to \overline{I}$ then there is a subsequence $\{u_{n'}\}$ that converges strongly to \overline{u} in E.

Example: Navier-Stokes Inversion for Initial Condition

• Incompressible NSE on $\Omega_T = \mathbb{T}^2 \times (0, \infty)$:

$$\begin{array}{ll} \partial_t v - \nu \triangle v + v \cdot \nabla v + \nabla p = f & \text{in } \Omega_T, \\ \nabla \cdot v = 0 & \text{in } \Omega_T, \\ v|_{t=0} = u & \text{in } \mathbb{T}^2. \end{array}$$

- $y_{j,k} = v(x_j, t_k) + \eta_{j,k}, \quad \eta_{j,k} \sim N(0, \sigma^2 I_{2\times 2}).$
- $y = G(u) + \eta$, $\eta \sim N(0, \sigma^2 I)$.
- $C_0 = (-\triangle_{\text{stokes}})^{-2}$; $\Phi = \frac{1}{10^3 \sigma^2} |y \mathcal{G}(u)|^2$.

Example: Navier-Stokes Inversion for Initial Condition

Figure: MAP estimator u^* ; Truth u^{\dagger}

Outline

- SETTING AND ASSUMPTIONS
- MAP ESTIMATORS
- 3 KULLBACK-LEIBLER APPROXIMATION
- 4 SAMPLING
- **6** CONCLUSIONS

The Objective Functional

Recall $\mu_0 = N(0, C_0)$ and $\mu(du) \propto \exp(-\Phi(u))\mu_0(du)$. Let \mathcal{A} denote a set of simple measures on H (usually Gaussian).

Problem

Find $\nu \in \mathcal{A}$ that minimizes $I(\nu) := D_{KL}(\nu \| \mu)$.

Here D_{KL} =Kullbach-Leibler divergence = relative entropy

$$D_{\mathrm{KL}}(
u \| \mu) = egin{cases} \int_{\mathcal{H}} rac{d
u}{d\mu}(\mathbf{x}) \log \left(rac{d
u}{d\mu}(\mathbf{x})
ight) \mu(d\mathbf{x}) & ext{if }
u \ll \mu \ +\infty & ext{else}. \end{cases}$$

We note, for intuition, the inequality:

$$d_{Hell}(\nu,\mu)^2 \leq 2D_{KL}(\nu\|\mu).$$

Existence of Minimizers

The minimization is well-defined:

Theorem

(Pinski, Simpson, S, Weber, 2013) If \mathcal{A} is closed under weak convergence and there is $\nu \in \mathcal{A}$ with $I(\nu) < \infty$ then $\exists \, \overline{\nu} \in \mathcal{A}$ such that

$$I(\overline{\nu}) = \overline{I} := \inf\{I(\nu) : \nu \in A\}.$$

Furthermore, if $\{\nu_n\}$ is a minimizing sequence satisfying $I(\nu_n) \to \overline{I}$ then there is a subsequence $\{\nu_{n'}\}$ that converges to $\overline{\nu}$ in the Hellinger metric:

$$d_{Hell}(\nu_n, \nu) \rightarrow 0.$$

Example: $A := \mathcal{G} = \{ \text{Gaussian measures on } \mathcal{H} \}.$

Parameterization of \mathcal{G}

Gaussian case equivalent to $\nu = N(m, (C_0^{-1} + \Gamma)^{-1})$.

$$J(m,\Gamma) = egin{cases} D_{\mathrm{KL}}(
u \| \mu) & \quad & \mathrm{if} \ (m,\Gamma) \in E imes \mathcal{HS}(E,E^*) \ +\infty & \quad & \mathrm{else}. \end{cases}$$

Theorem

(Pinski, Simpson, S, Weber, 2013) $\exists (\overline{m}, \overline{\Gamma}) \in E \times \mathcal{HS}(E, E^*)$:

$$J(\overline{m},\overline{\Gamma}) = \overline{J} := \inf\{J(m,\Gamma) : (m,\Gamma) \in E \times \mathcal{HS}(E,E^*)\}.$$

Furthermore, if $\{(m_n, \Gamma_n)\}$ is a minimizing sequence satisfying $J(m_n, \Gamma_n) \to \overline{J}$ then there is a subsequence $\{(m_{n'}, \Gamma_{n'})\}$ such that

$$||m_{n'} - \overline{m}||_{\mathcal{E}} + ||\Gamma_{n'} - \overline{\Gamma}||_{\mathcal{HS}(\mathcal{E}, \mathcal{E}^*)} \to 0.$$

Cautionary Examples

- μ_0 is Brownian bridge on [-1, 1]:
- $\nu_n := N(0, (C_0^{-1} + \Gamma_n)^{-1}).$
- Either:

$$(\Gamma_n u)(x) = \varphi(nx)u(x), \varphi \in C_{\mathrm{per}}^{\infty}, \, \mathrm{mean}\,\overline{\varphi}$$
 $\nu_n \Rightarrow \nu := N\Big(0, \big(C_0^{-1} + \overline{\varphi}Id\big)^{-1}\Big)$

• Or:

$$(\Gamma_n u)(x) = n\varphi(nx)u(x), \varphi \in C_0^{\infty}, \|\varphi\|_{L^1} = 1$$

$$\nu_n \Rightarrow \nu := N\left(0, \left(C_0^{-1} + \delta_0 Id\right)^{-1}\right).$$

Regularization of J I

Let $(S, \|\cdot\|_S)$ be compact in $\mathcal{L}(E, E^*)$.

$$J_{\delta}(\textit{m},\Gamma) = egin{cases} J(\textit{m},\Gamma) + \delta \|\Gamma\|_{\mathcal{S}}^2 & \quad & ext{if } (\textit{m},\Gamma) \in \textit{E} imes \textit{S} \ +\infty & \quad & ext{else}. \end{cases}$$

Theorem

(Pinski, Simpson, S, Weber, 2013) \exists $(\overline{m}, \overline{\Gamma}) \in E \times S$:

$$J_{\delta}(\overline{m},\overline{\Gamma}) = \overline{J}_{\delta} := \inf\{J_{\delta}(m,\Gamma) : (m,\Gamma) \in E \times S\}.$$

Furthermore, if $\{\nu_n(m_n, \Gamma_n)\}$ is a minimizing sequence satisfying $J_\delta(m_n, \Gamma_n) \to \overline{J}_\delta$ then there is a subsequence $\{(m_{n'}, \Gamma_{n'})\}$ such that

$$d_{Hell}(\nu_{n'}, \nu) + \|\Gamma_{n'} - \overline{\Gamma}\|_S \to 0.$$

Regularization of J II

- Let $H = L^2(\Omega)$, $\Omega \subset \mathbb{R}^d$, $C_0 = (-\triangle)^{-\alpha}$ with $\alpha > d/2$.
- Choose $(\Gamma u)(x) = B(x)u(x)$ and $S = H^r$, r > 0.
- Thus $\nu = N(m, C)$, $C^{-1} = C_0^{-1} + B(\cdot)Id$ for potential B.

$$J_{\delta}(m,B) = egin{cases} J(m,B) + \delta \|B\|_{H^r}^2 & \qquad \text{if } (m,B) \in H^{lpha} imes H^r \ +\infty & \qquad \text{else}. \end{cases}$$

Theorem

(Pinski, Simpson, S, Weber, 2013) $\exists (\overline{m}, \overline{B}) \in H^{\alpha} \times H^{r}$:

$$J_{\delta}(\overline{m}, \overline{B}) = \overline{J}_{\delta} := \inf\{J_{\delta}(m, B) : (m, B) \in H^{\alpha} \times H^{r}\}.$$

Example: Conditioned Diffusion in a Double Well

Consider the conditioned diffusion

$$dX_t = -\nabla V(X_t)dt + \sqrt{2\epsilon}dW_ts,.$$

$$X_{-T} = X_{-} < 0, X_{+T} = X_{+} > 0.$$

- For $x_- = -x_+$, by symmetry, we can study paths satisfying $X_0 = 0$, $X_T = x_+$
- Path space distribution approximated by N(m(t), C), with

$$C^{-1}=rac{1}{2\epsilon}\left(-rac{d^2}{dt^2}+BI
ight)$$

- B is either a constant or B = B(t)
- m and B obtained by minimizing D_K

Stochastic Root Finding & Optimization

Robbins-Monro with Derivatives and Iterate Averaging

Functions Estimated Via Sampling

Assume f(x) (the target function) can be estimated via F(y; x) as

$$f(x) = \mathbb{E}^{Y}[F(Y;x)], \quad f'(x) = \mathbb{E}^{Y}[\partial_{x}F(Y;x)]$$

Iteration Scheme (See, for instance, Asmussen & Glynn)

$$x_{n+1} = x_n - a_n \left(\frac{1}{M} \sum_{i=1}^{M} \partial_x F(Y_i; x_n)\right)^{-1} \left(\frac{1}{M} \sum_{i=1}^{M} F(Y_i; x_n)\right),$$

with $a_n \sim n^{-\gamma}$, $\gamma \in (\frac{1}{2}, 1)$ and Y_i i.i.d. Also let $\bar{x}_n \equiv \sum_{j=1}^n x_j$. Then $\bar{x}_n \to x_*$, with $f(x_*) = 0$, in distribution at rate $n^{-1/2}$.

Numerical Results With Constant Potential B

 $T = 5, \epsilon = .15,$

10⁴ Iterations, 10³ Samples per Iteration, 10² Points in (0, T) per Sample

Numerical Results With Variable Potential B

T=5, $\epsilon=.15$, $\delta=\frac{1}{2}\times 10^{-4}$, r=1 so H^1 regularization 10^4 Iterations, 10^4 Samples per Iteration, 10^2 Points in (0,T) per Sample

Model Comparison

95% Confidence Intervals about the Mean Path

Outline

- SETTING AND ASSUMPTIONS
- MAP ESTIMATORS
- 3 KULLBACK-LEIBLER APPROXIMATION
- SAMPLING
- **5** CONCLUSIONS

MCMC

• MCMC: create an ergodic Markov chain $u^{(k)}$ which is invariant for approximate target μ (or μ^N the approximation on \mathbb{R}^N) so that

$$\frac{1}{K}\sum_{k=1}^K f(u^{(k)}) \to \mathbb{E}^\mu f$$

- Recall $\mu_0 = N(0, C_0)$ and $\mu(du) \propto \exp(-\Phi(u))\mu_0(du)$.
- Recall the Tikhonov functional $I(u) = \frac{1}{2} ||C_0^{-\frac{1}{2}} u||^2 + \Phi(u)$.

Standard Random Walk Algorithm

Metropolis, Rosenbluth, Teller and Teller, J. Chem. Phys. 1953.

- Set k = 0 and Pick $u^{(0)}$.
- Propose $v^{(k)} = u^{(k)} + \beta \xi^{(k)}, \quad \xi^{(k)} \sim N(0, C_0).$
- Set $u^{(k+1)} = v^{(k)}$ with proability $a(u^{(k)}, v^{(k)})$.
- Set $u^{(k+1)} = u^{(k)}$ otherwise.
- $k \rightarrow k + 1$.

Here
$$a(u, v) = \min\{1, \exp(I(u) - I(v))\}.$$

New Random Walk Algorithm

Cotter, Roberts, S and White, Stat. Sci. 2013.

- Set k = 0 and Pick $u^{(0)}$
- Propose $v^{(k)} = \sqrt{(1-\beta^2)}u^{(k)} + \beta \xi^{(k)}, \quad \xi^{(k)} \sim N(0, C_0).$
- Set $u^{(k+1)} = v^{(k)}$ with proability $a(u^{(k)}, v^{(k)})$.
- Set $u^{(k+1)} = u^{(k)}$ otherwise.
- $k \rightarrow k + 1$.

Here $a(u, v) = \min\{1, \exp(\Phi(u) - \Phi(v))\}.$

Example: Navier-Stokes Inversion for Forcing

• Incompressible NSE on $\Omega_T = \mathbb{T}^2 \times (0, \infty)$:

$$\begin{split} \partial_t v - \nu \triangle v + v \cdot \nabla v + \nabla p &= u & \text{in } \Omega_T, \\ \nabla \cdot v &= 0 & \text{in } \Omega_T, \\ v|_{t=0} &= v_0 & \text{in } \mathbb{T}^2. \end{split}$$

- $y_{j,k} = v(x_j, t_k) + \xi_{j,k}, \quad \xi_{j,k} \sim N(0, \sigma^2 I_{2\times 2}).$
- $y = \mathcal{G}(u) + \xi$, $\xi \sim N(0, \sigma^2 I)$.
- Prior OU process; $\Phi = \frac{1}{\sigma^2} |y \mathcal{G}(u)|^2$.

Spectral Gaps

Theorem

(Hairer, S, Vollmer, arXiv 2012.)

- For the standard Random walk algorithm the spectral gap is bounded above by $C N^{-\frac{1}{2}}$.
- For the new Random walk algorithm the spectral gap is bounded below independently of dimension.

Outline

- SETTING AND ASSUMPTIONS
- MAP ESTIMATORS
- 3 KULLBACK-LEIBLER APPROXIMATION
- 4 SAMPLING
- **5** CONCLUSIONS

What We Have Shown

We have shown that:

- Common Structure: A range of problems require extracting information from a probability measure on a Hilbert space, having density with respect to a Gaussian.
- Algorithmic Approaches We have laid the foundations of a range of computational methods related to this task.
- MAP Estimators Maximum a posteriori estimators can be defined on Hilbert space; there is a link to Tikhonov regularization.
- Kullback-Leibler Approximation Kullback-Leibler approximation can be defined on Hilbert space and finding the closest Gaussian results in a well-defined problem in the calculus of variations.
- Sampling MCMC methods can be defined on Hilbert space. Results in new algorithms robust to discretization.

http://homepages.warwick.ac.uk/~masdr/

- A.M. Stuart. *Inverse problems: a Bayesian perspective.*Acta Numerica **19**(2010).
- M. Dashti, K.J.H. Law, A.M. Stuart and J. Voss. MAP estimators and posterior consistency....
 Inverse Problems, 29(2013), 095017. arxiv:1303.4795.
- F. Pinski, G. Simpson, A.M. Stuart and H. Weber. Kullback-Leibler approximation for probability measures on infinite dimensional spaces. In preparation.
- S.L. Cotter, G.O. Roberts, A.M. Stuart and D. White. *MCMC methods for Functions*.... Statistical Science **28**(2013). arxiv:1202.0709.
- M. Hairer, A.M.Stuart and S. Vollmer. Spectral gaps for a Metropolis-Hastings algorithm arxiv: 1112.1392.