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SETTING AND ASSUMPTIONS

The Setting

@ Probability measure i on Hilbert space H.
@ Reference measure pq (often a prior).
@ . related to g by (often Bayes’ Theorem)

du 1
dTLo(U) = ZTL exp(—cb(u)).

@ Another way of saying the same thing:

EFf(u) = ZLE“O (exp(—d)(u))f(u)).

m

@ How do we get information from p if we know o and 7?
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SETTING AND ASSUMPTIONS
The Talk In One Picture
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SETTING AND ASSUMPTIONS

The Assumptions

@ 1o = N(0, Cp) a centred Gaussian measure on H.
@ 1o(X) = 1; X (Banach) continuously embedded in H.

o LetE = D(C(;%) (Cameron-Martin space).

@ Then E ¢ X C H. E (Hilbert) compactly embedded in X.
@ The function ® € C(X;R™).

@ Forall u, v with |jul|x < r, ||v||x < rthere are M(r):

[®(u)| < Mi(r);
[®(u) — ®(v)| < Ma(r)||u — v]|.
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MAP ESTIMATORS

Probability Maximizers and Tikhonov Regularization

Define the Tikhonov-regularized LSQ functional / : E — R™ by

1 _1
I(v) = 5G 2|2 + o(u).

1

Let B(z) be a ball of radius ¢ in X centred at z € E = D(C, ?).

(Dashti, Law, S and Voss, 2013). The probability measure p
and functional | are related by

jim 28 (1))

I (B (z)) P~ M20).

Thus probability maximizers are minimizers of the regularized
Tikhonov functional /. & ray
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MAP ESTIMATORS

Existence of Probability Maximizers

The minimization is well-defined:

Theorem
(S, Acta Numerica, 2010). du € E :

I(@) =1 :=inf{l(u) : uc E}.

Furthermore, if {un} is @ minimizing sequence satisfying
I(un) — I then there is a subsequence {u, } that converges
strongly tou in E.

= raeY
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MAP ESTIMATORS

Example: Navier-Stokes Inversion for Initial Condition

@ Incompressible NSE on Q7 = T? x (0, 00) :

v —vAV+v-Vv+Vp=1Ff inQr,
V-v=0 inQT,
V]mo = U in T2,

e o L0 Yk = V(X k) + ik, ik ~ N(O,0%hy2).
- — ° C0 = (_Astokes)_z; ® = 10:137“/ - g(U)|2
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MAP ESTIMATORS

Example: Navier-Stokes Inversion for Initial Condition
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KULLBACK-LEIBLER APPROXIMATION

The Objective Functional

Recall 1o = N(0, Cp) and p(du) o< exp(—®(u)) po(du). Let A
denote a set of simple measures on H (usually Gaussian).

Problem

Find v € A that minimizes I(v) := Dgy(v||p).

Here Dk =Kullbach-Leibler divergence = relative entropy

else.

Dxv(v||u) = {fH x)log ( q (X ))u(dX) if v < p

We note, for intuition, the inequality:

Ahien(v; 1)? < 2Dk (v]|p).
£ a



KULLBACK-LEIBLER APPROXIMATION

Existence of Minimizers

The minimization is well-defined:

Theorem

(Pinski, Simpson, S, Weber, 2013) If A is closed under weak
convergence and there isv € A with I(v) < oo then3v € A
such that

1) = 1:=inf{I(v) : v € A}.

Furthermore, if {vn} is a minimizing sequence satisfying
I(vn) — I then there is a subsequence {v,} that converges tov
in the Hellinger metric:

dHell(Vn, 1/) — 0.

Example: A := G = {Gaussian measures on H}.

el )]
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KULLBACK-LEIBLER APPROXIMATION

Parameterization of g

Gaussian case equivalentto v = N<m, (CO‘1 + r)*1).

Dky.(v|| ) if (m,T) € ExHS(E,E*)
+00 else.

J(m,T) = {

Theorem
(Pinski, Simpson, S, Weber, 2013) 3(m,T) € E x HS(E, E*) :

J(M,T) = J = inf{J(m,T) : (m,T) € E x HS(E, E*)}.

Furthermore, if {(mn,Tp)} is @ minimizing sequence satisfying
J(mn,Tn) — J then there is a subsequence {(my,T )} such
that

o — Tl + 1w = Fllas(e ) = O- o
— K ) ) |




KULLBACK-LEIBLER APPROXIMATION
Cautionary Examples

@ 1 is Brownian bridge on [—1,1] :
vy = N(O, (061 + r,,)‘1).
@ Either:

(Thu)(Xx) = p(nx)u(x), ¢ € Cr;, mean®
Un= V.= N(O, (Co_1 +¢/d)_1>

@ Or:

Y (Thu)(x) = ne(nx)u(x), ¢ € G5, [lellr =1
T s 9 o5 ‘ Vp= V= N(O, (CO_1 + 50/d)_1).




KULLBACK-LEIBLER APPROXIMATION

Regularization of J |

Let (S,| - ||s) be compact in L(E, E*).

J(m,T) +5HI’H28 if (mTN) e ExS
400 else.

J(;(m, F) = {

Theorem
(Pinski, Simpson, S, Weber, 2013) 3(m,T) € E x S :

| \

Js(M,T) = Js := inf{Js(m,T) : (m,T) € E x S}.

Furthermore, if {va(mn, [n)} is @ minimizing sequence
satisfying Js(mn,n) — Js then there is a subsequence
{(mp,T )} such that

Aren(vp,v) + [T — rHS — 0. Fay

vy J |




KULLBACK-LEIBLER APPROXIMATION

Regularization of J Il

@ Let H=L?%(Q),Q CRY, Cy=(—A)"*with a > d/2.
@ Choose (I'u)(x) = B(x)u(x) and S=H", r > 0.
@ Thusv=N(m,C), C'=C,'+B(-)ld for potential B.

J(m, B) + §| B2, if (m,B) € H* x H"
Sy, B) — {+(OO ) +3l1BI elie )

v

(Pinski, Simpson, S, Weber, 2013) 3(m, B) € H* x H" :

Js(, B) = Js = inf{Js(m, B) : (m, B) € H* x H'}.

”
4 )



KULLBACK-LEIBLER APPROXIMATION

Example: Conditioned Diffusion in a Double Well

@ Consider the conditioned diffusion

dX; = —VV(X;)dt + V2edW;s, .
X 17=x_< 0,X+T = x4 > 0.

@ For x_ = —x4, by symmetry, we can study
paths satisfying Xo = 0, X7 = x.
' @ Path space distribution approximated by
N(m(t), C), with

: 4 (50

¢ ° @ Bis either a constant or B = B(t)

=R ()]
@ m and B obtained by minimizing Dy’

BWava



KULLBACK-LEIBLER APPROXIMATION

Stochastic Root Finding & Optimization

Robbins-Monro with Derivatives and Iterate Averaging

Functions Estimated Via Sampling

Assume f(x) (the target function) can be estimated via F(y; x)
as
f(x) =EY[F(Y;x)], f(x)=E"[0F(Y;x)]

Iteration Scheme (See, for instance, Asmussen & Glynn)

Xpid = Xn — ( Z@XFYxn) ( ZFYX,,)

with a, ~ n™7,~ € (3,1) and Y; i.id. Also let X, = > ; x;.
Then X, — x,, with f(x,) = 0, in distribution at rate n—1/2.

()]



KULLBACK-LEIBLER APPROXIMATION

Numerical Results With Constant Potential B
T=5e=.15,
10* Iterations, 10° Samples per lteration, 102 Points in (0, T) per Sample




KULLBACK-LEIBLER APPROXIMATION

Numerical Results With Variable Potential B
T=5¢c=.15¢6=1 x10"* r=1so H' regularization
10* Iterations, 10* Samples per lteration, 102 Points in (0, T) per Sample




KULLBACK-LEIBLER APPROXIMATION

Model Comparison

95% Confidence Intervals about the Mean Path

Variable B
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SAMPLING

@ MCMC: create an ergodic Markov chain u(%) which is
invariant for approximate target  (or 1V the approximation
on RN) so that

1
e kz: f(uk)) — E#f
=1

@ Recall 10 = N(0, Cp) and p(du) o< exp(—®(u)) po(du).

1
@ Recall the Tikhonov functional /(u) = }||C, 2ul|? + &(u).
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Standard Random Walk Algorithm

Metropolis, Rosenbluth, Teller and Teller,
J. Chem. Phys. 19583.

@ Set k = 0 and Pick u(9).

@ Propose v(F) = k) 4 getd) (k) ~ N(0, Cp).
@ Set utk+1) = (k) with proability a(u®), v(¥)).
@ Set ulkt1) = y(®) otherwise.

@ k— k+1.

Here a(u, v) = min{1,exp(/(u) — I(v))}.
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SAMPLING

New Random Walk Algorithm

Cotter, Roberts, S and White, Stat. Sci. 2013.
@ Set k = 0 and Pick u(9.
@ Propose v = /(1 — 52)utk) 4 petk) ¢k) ~ N(0, Cyp).
@ Set utk+1) = v(K) with proability a(u(®, v(¥)).
@ Set ultkt!) = y(®) otherwise.
@ k— k+1.

Here a(u, v) = min{1,exp(®(u) — ®(v))}.
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SAMPLING

Example: Navier-Stokes Inversion for Forcing

RWMH, Ar = 0.002

@ Incompressible NSE on
QT = Tz X (0,00) :

ov—vAv+v-Vv+Vp=u inQr,
V.-v=0 inQT,
V‘t:O =W in T2.

® yik=V(X,t)+&k ik~ N(O,02hyo).
° y=G(u)+¢, &~ N(O,0%).
@ Prior OU process; ¢ = |y — G(u)[?.
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SAMPLING

Spectral Gaps

(Hairer, S, Vollmer, arXiv 2012.)
@ fFor the standard Random walk algorithm the spectral gap
is bounded above by C N~z

@ For the new Random walk algorithm the spectral gap is
bounded below independently of dimension.

= raeY
(N ) ) |



CONCLUSIONS
Outline

© CONCLUSIONS

4 )



CONCLUSIONS

What We Have Shown

We have shown that:

@ Common Structure: A range of problems require
extracting information from a probability measure on a
Hilbert space, having density with respect to a Gaussian.

@ Algorithmic Approaches We have laid the foundations of
a range of computational methods related to this task.

@ MAP Estimators Maximum a posteriori estimators can be
defined on Hilbert space; there is a link to Tikhonov
regularization.

@ Kullback-Leibler Approximation Kullback-Leibler
approximation can be defined on Hilbert space and finding
the closest Gaussian results in a well-defined problem in
the calculus of variations.

@ Sampling MCMC methods can be defined on Hilbert
space. Results in new algorithms robust to discretization &, {683
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