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BAYESIAN INVERSION: PDE INVERSE PROBLEMS

Motivation

@ Aim: to solve y = G(u) + noise for u given y.
@ LSQ: minimize ¢(u; y) := |y — G(u)|?.

@ Bayesian: u and y|u random variables then find u|y.
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BAYESIAN INVERSION: PDE INVERSE PROBLEMS

Lagrangian Data Assimilation

@ Find u € H = L2 (Q,R?) initial condition for Navier-Stokes:

(Zl‘;—l—I/AV—{—B(V, v)="f v(0)=u

@ Given noisy Lagrangian data y = {z;(t) + 7} :

dz;
71‘/ =v(z,1), Z(0) = zj0

@ Abstractly: for G : X C H— Y = R’ find u given

y = G(u) +n, noise.
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BAYESIAN INVERSION: PDE INVERSE PROBLEMS

Eulerian Data Assimilation

@ Find u € H = L3 (Q,R?) initial condition for Navier-Stokes:

Z‘;+VAV+B(V, v)="Ff v(0)=u

@ Given noisy Eulerian data y = {v(x;, t&) + nj}:

Yik = V(X &) + nj«

@ Abstractly: for G : X ¢ H— Y = R’X find u given

y = G(u) + n, noise.
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BAYESIAN INVERSION: PDE INVERSE PROBLEMS

Groundwater Flow Inversion

@ Let f € H='(D). Find log permeability u € X = L>(D) :

—V-(e“Vp) =f, xeD
p=0, xecdD.

@ Given,forj=1,...,J,

¥; = 4i(p) +nj, ¢j € H™ (D), n;noise.

@ Abstractly: for G : X — Y = R find u given

y = G(u) + n, noise.
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BAYESIAN INVERSION: CONDITIONED DIFFUSIONS
Motivation

@ Aim: to find u € L2([0, T]; RP) solving
du = f(u)dt + ¥aB, u(0)=u". J

@ Conditioned on:
u(T) = ut. J

@ Or conditioned on y € L?([0, T]; R9) solving
dy = h(u)dt +FdW, y(0) = 0. J
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BAYESIAN INVERSION: CONDITIONED DIFFUSIONS

Molecular Dynamics

@ Find u ¢ H = L2([0, 1], RN9):

du=—-VV(u)dt + \/gdB.

@ Conditioned on red atom moving into vacancy:
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BAYESIAN INVERSION: CONDITIONED DIFFUSIONS
Signal Processing

@ Find uc H = L2([0,1],R):

du=u— u® + dB, u(0) = —1 J

@ Conditioned on: y € [?(]0, 1], R) where

y(t) = /Ot u(s)ds + TW(t).
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COMMON STRUC

Common Probabilistic Framework

@ There is a simple probability measure pg on H.
@ The complicated measure of interest is 1Y, also on H.
@ Y is related to pg by

du 1
d—zo(u) =3 exp(—cb(u)). J

@ Since 1Y (du) = Z~" exp(—®(u)) po(du) we have

B f(u) = %E“O (exp(~o(u))f(w)). J

@ Here Z is the normalization:

Z = [EHo (exp(—cb(u))). E1m
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PDE Inverse Problems

@ Unknown u € H.

@ Datay e RY.

@ Prior P(u): u ~ po(du).

@ Likelihood P(y|u): y|lu ~ N(G(u),T).

@ Bayes’ Theorem: P(uly) ocIP’(y|u) x P(u).
°

Posterior: ¥ (du) < exp( — )Mo

@ Potential: ®(u; y) := 1H

4 )
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Hellinger Distance

@ For x and v which have density with respect to g we
define the Hellinger distance

AHen (1, v) = \/(;/X[(dd:()); — (dd:();rduo(u)).

e Distance good because, for f € L3(H; S), L2(H; S):

[ f(u) — B F(u)lls < 2B F(u)% + B |1 F(u)I3) * dhin(, ).
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The Well-Posedness Theorem

POTENTIAL CONDITIONS: ¢ : X x Y — R locally Lipschitz with
appropriate growth conditions on Lipschitz constant.

Theorem
(S, Acta Numerica, 2010.) Assume that
@ POTENTIAL CONDITIONS; X C H.
@ 10(X) =1 plus INTEGRABILITY CONDITIONS.
Then 1Y well-defined and there is C = C(|y1],|y2|) > 0 :

Aren(p", 1?) < Clys — yal.
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Implications

@ Mean:
HIE“y1 u—IE“yzuHH < Cly1 — ysl.

@ Covariance

IEF u@u—E?ueul,_, < Clyr — yal.
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Forward Error Gives Inverse Error

Write . = 1'; let N denote approximation in finite dimensions.

(Cotter, Dashti and S, SINUM, 2010).
Assume that X C H

@ ¢ and oN satisfy POTENTIAL CONDITIONS, uniformly in N;
@ forward approximation error satisfies

[&(u) — oN(u)| < M(Jlullx) b (N)

where )(N) — 0 as N — oo;
@ 1io(X) =1 plus INTEGRABILITY CONDITIONS.

Then there is a constant C, independent of N, and such that
the inverse approximation error is

Aren (i1, 1) < C(N). )




Implications

@ Mean: \
|E*u —E* ul|, < Cy(N).

@ Covariance

|EFu @ u— E U@ Ul < Co(N)

(Marzouk/Xiu used Kullback-Leibler divergence instead of
Hellinger distance to prove a similar result.)
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What We Have Shown

We have shown that:

@ Applications: Many inverse problems in partial and
stochastic differential equations can be formulated in the
framework of Bayesian statistics on function space.

@ Common Structure: These problems share a common
mathematical structure leading to well-posed inverse
problems for measures.

@ Approximation: This well-posedness leads to a transfer of
approximation properties from the forward problem to the
inverse problem, in the Hellinger metric.

@ Algorithms: Good algorithms follow from this infinite
dimensional perspective on Bayes’ Theorem — next lecture.
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