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Motivation

Aim: to solve y = G(u) + noise for u given y .

LSQ: minimize Φ(u; y) := 1
2‖y − G(u)‖2.

Bayesian: u and y |u random variables then find u|y .
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Lagrangian Data Assimilation

Find u ∈ H = L2
div(Ω,R2) initial condition for Navier-Stokes:

dv
dt

+ νAv + B(v , v) = f , v(0) = u

Given noisy Lagrangian data y = {zj(tk ) + ηj,k} :

dzj

dt
= v(zj , t), zj(0) = zj,0

Abstractly: for G : X ⊆ H 7→ Y = RJK find u given

y = G(u) + η, noise.
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Eulerian Data Assimilation

Find u ∈ H = L2
div(Ω,R2) initial condition for Navier-Stokes:

dv
dt

+ νAv + B(v , v) = f , v(0) = u

Given noisy Eulerian data y = {v(xj , tk ) + ηj,k}:

yj,k = v(xj , tk ) + ηj,k

Abstractly: for G : X ⊂ H 7→ Y = RJK find u given

y = G(u) + η, noise.
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Groundwater Flow Inversion

Let f ∈ H−1(D). Find log permeability u ∈ X = L∞(D) :

−∇ ·
(

eu∇p
)

= f , x ∈ D

p = 0, x ∈ ∂D.

Given, for j = 1, . . . , J,

yj = `j(p) + ηj , `j ∈ H−1(D), ηj noise.

Abstractly: for G : X 7→ Y = RJ find u given

y = G(u) + η, noise.
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Motivation

Aim: to find u ∈ L2([0,T ];Rp) solving

du = f (u)dt + ΣdB, u(0) = u−.

Conditioned on:

u(T ) = u+.

Or conditioned on y ∈ L2([0,T ];Rq) solving

dy = h(u)dt + ΓdW , y(0) = 0.
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Molecular Dynamics

Find u ∈ H = L2([0,1],RNd ):

du = −∇V (u)dt +

√
2
β

dB.

Conditioned on red atom moving into vacancy:
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Signal Processing

Find u ∈ H = L2([0,1],R):

du = u − u3 + dB,u(0) = −1

Conditioned on: y ∈ L2([0,1],R) where

y(t) =

∫ t

0
u(s)ds + ΓW (t).
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Common Probabilistic Framework

There is a simple probability measure µ0 on H.
The complicated measure of interest is µy , also on H.
µy is related to µ0 by

dµy

dµ0
(u) =

1
Z

exp
(
−Φ(u)

)
.

Since µy (du) = Z−1 exp
(
−Φ(u)

)
µ0(du) we have

Eµ
y
f (u) =

1
Z
Eµ0
(

exp
(
−Φ(u)

)
f (u)

)
.

Here Z is the normalization:

Z = Eµ0
(

exp
(
−Φ(u)

))
.
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PDE Inverse Problems

Unknown u ∈ H.
Data y ∈ RJ .
Prior P(u): u ∼ µ0(du).
Likelihood P(y |u): y |u ∼ N(G(u), Γ).

Bayes’ Theorem: P(u|y) ∝ P(y |u)× P(u).

Posterior: µy (du) ∝ exp
(
−Φ(u; y)

)
µ0(du).

Potential: Φ(u; y) := 1
2

∥∥Γ−
1
2
(
y − G(u)

)∥∥2
.
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Priors for Permeability
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Hellinger Distance

For µ and ν which have density with respect to µ0 we
define the Hellinger distance

dHell(µ, ν) =

√(1
2

∫
X

[( dµ
dµ0

) 1
2 −

( dν
dµ0

) 1
2
]2

dµ0(u)
)
.

Distance good because, for f ∈ L2
µ(H; S),L2

ν(H; S):

‖Eµf (u)− Eν f (u)‖S ≤ 2
(
Eµ‖f (u)‖2S + Eν‖f (u)‖2S

) 1
2 dHell(µ, ν).
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The Well-Posedness Theorem

POTENTIAL CONDITIONS: Φ : X × Y → R locally Lipschitz with
appropriate growth conditions on Lipschitz constant.

Theorem
(S, Acta Numerica, 2010.) Assume that

POTENTIAL CONDITIONS; X ⊆ H.
µ0(X ) = 1 plus INTEGRABILITY CONDITIONS.

Then µy well-defined and there is C = C(|y1|, |y2|) > 0 :

dHell(µ
y1 , µy2) ≤ C|y1 − y2|.
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Implications

Mean: ∥∥Eµy1 u − Eµ
y2 u
∥∥

H ≤ C|y1 − y2|.

Covariance∥∥Eµy1 u ⊗ u − Eµ
y2 u ⊗ u

∥∥
H→H ≤ C|y1 − y2|.
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Forward Error Gives Inverse Error

Write µ = µy ; let µN denote approximation in finite dimensions.

Theorem
(Cotter, Dashti and S, SINUM, 2010).
Assume that X ⊆ H

Φ and ΦN satisfy POTENTIAL CONDITIONS, uniformly in N;
forward approximation error satisfies

|Φ(u)− ΦN(u)| ≤ M
(
‖u‖X

)
ψ(N)

where ψ(N)→ 0 as N →∞;
µ0(X ) = 1 plus INTEGRABILITY CONDITIONS.

Then there is a constant C, independent of N, and such that
the inverse approximation error is

dHell(µ, µ
N) ≤ Cψ(N).
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Implications

Mean: ∥∥Eµu − Eµ
N
u
∥∥

H ≤ Cψ(N).

Covariance∥∥Eµu ⊗ u − Eµ
N
u ⊗ u

∥∥
H→H ≤ Cψ(N)

(Marzouk/Xiu used Kullback-Leibler divergence instead of
Hellinger distance to prove a similar result.)
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What We Have Shown

We have shown that:

Applications: Many inverse problems in partial and
stochastic differential equations can be formulated in the
framework of Bayesian statistics on function space.
Common Structure: These problems share a common
mathematical structure leading to well-posed inverse
problems for measures.
Approximation: This well-posedness leads to a transfer of
approximation properties from the forward problem to the
inverse problem, in the Hellinger metric.
Algorithms: Good algorithms follow from this infinite
dimensional perspective on Bayes’ Theorem – next lecture.
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