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Electrowetting on Dielectric: Modeling (w. A. Bonito and S. Walker)

Mixed Formulation (u velocity, p pressure, H curvature, λ multiplier)

α
∂u

∂t
+ βu +∇p = 0 in Ω

div u = 0 in Ω

p = H + E|{z}
electric actuation

+ P0sign (u · ν)| {z }
λ(contact line pinning)

+ Dviscu · ν| {z }
viscous damping

on Γ

Interface Motion
u · ν = ∂tX · ν on Γ
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Electrowetting on Dielectric: Experiments vs Simulations

Moving droplet stirred around by varying voltages
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Electrowetting on Dielectric: Experiments vs Simulations

Splitting of glycerin droplet due to voltage actuation
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Biomembranes: Modeling (w. A. Bonito and M.S. Pauletti)

• Bending (Willmore) energy: J(Γ) = 1
2

R
Γ

H2, H mean curvature

• Geometric Gradient Flow (with area and volume constraint):

v = −δΓJ = −
“
∆ΓH +

1

2
H3 − 2κH

”
ν −

“
λHν + pν

”
where ∆Γ is the Laplace-Beltrami operator on Γ.

• Fluid-Membrane Interaction (with area constraint):

ρDtv − div (−pI + µD(v)| {z }
Σ

) = b in Ωt,

div v = 0 in Ωt,

[Σ]ν = δΓJ on Γt
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Biomembrane: Geometric vs Fluid Red Blood Cell

play
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Director Fields on Flexible Surfaces (w. S. Bartels and G. Dolzmann)

• Coupling of mean curvature H = divΓ ν with a director field n via

J(Γ, n) =
1

2

Z
Γ

| divΓ ν − δ divΓ n|2dσ +
λ

2

Z
Γ

|∇Γn|2dσ

+
1

2

Z
Γ

µ(|n|2 − 1)dσ +
1

2ε

Z
Γ

f(n · ν)dσ

• µ the Lagrange multiplier for the rigid constraint |n| = 1

• f(x) = (x2 − ξ2
0)2 with ξ0 ∈ [0, 1] penalizes the deviation of the angle

between ν and n from arccos ξ0

• Spontaneous curvature H0 = δ divΓ n induced by director field n

• Relaxation dynamics (L2- gradient flow): V normal velocity of Γ

V = −δΓJ(Γ, n), ∂tn = −δnJ(Γ, n)
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Coupling of Director Fields and Flexible Surfaces: Simulations

Cone-like structure near positive degree-one defects pointing outwards ⇒
stomatocyte shape
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The Laplace-Beltrami Operator and Curvature

I Vector curvature: H = Hν = −∆ΓX, X = identity on Γ (Dziuk’ 91)

I Semi-implicit Time Discretization (tn → tn+1): explicit geometry
(Γ = Γn, ∇Γ = ∇Γn , ν = νn)Z

Γn

Hn+1 ·Ψ =

Z
Γn

∇ΓnXn+1 : ∇ΓnΨ, Xn+1 = Xn + τnVn+1

I
R
Γn Hn+1 ·Ψ− τn

R
Γn ∇ΓnVn+1 : ∇ΓnΨ =

R
Γn ∇ΓnXn : ∇ΓnΨ

I Mixed Method: operator splitting

• Velocity (gradient flow or Navier-Stokes)
• Curvature (Laplace-Beltrami)
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The Laplace-Beltrami Problem

−∆γu = f on γ, u = 0 on ∂γ.

I γ is a parametric Lipschitz surface, piecewise ’smooth’, with Lipschitz
boundary ∂γ.

I f ∈ L2(γ) (see Cohen-DeVore-Nochetto for H−1(γ) data).

I ∇γu = ∇ũ− (∇ũ)ν · ν, ∆γ = divγ ·∇γ .

Fk

bK
Weak Formulation

Seek u ∈ H1
0 (γ) :

Z
γ

∇γu · ∇γv =

Z
γ

f v, ∀v ∈ H1
0 (γ).

Z
K

∇γu·∇γv =

Z
bK ∇(u◦Fk)T G−1

K ∇(v◦FK)
p

det(GK), GK = DF T
KDFK
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The Finite Element Method on Surfaces

• Γ0 = ∪n
i=1Γ

i
0 is an initial polyhedral domain with nodes lying on γ

• P i : Γi
0 → γi parametrization of γ (globally Lipschitz, C1 on Γi

0).
• Assume, for simplicity, one such Γi

0 (i.e. n = 1) and drop the index i.
• A sequence of refinements of Γ0 is obtained as follows:

(1) subdivide Γ0 onto bTk;
(2) Determine Tk using map P to place the new nodes on γ.
Hence, the new polygonal approximation is given by Γk = Range(IcTk

P ).
IcTk

: Lagrange interpolant onto continuous piecewise linears

γ
P

T0 = bT0, Γ0
bT1

Γ1T1

• V( bTk) is the space of continuous piecewise linear polynomials subordinate tobTk and Vk := V(Tk) is its lift using I bTk
P .

Discrete Formulation: the geometry changes with iteration counter k

Seek Uk ∈ Vk :

Z
Γk

∇ΓkUk · ∇ΓkV =

Z
Γk

f
q

Qk
V, ∀V ∈ Vk.
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Standard Adaptive Algorithm

SOLVE : Compute the solution Uk ∈ Vk := V(Tk) of the discrete problem.

ESTIMATE : Compute a local estimator ηk(Uk, K), K ∈ Tk, for the error
in terms of the discrete solution Uk and given data.

MARK : Use the estimator to mark a subset Mk ⊂ Tk for refinementP
K∈Mk

ηk(Uk, K)2 ≥ θ2 P
K∈Tk

ηk(Uk, K)2. (Dörfler marking)

REFINE : Refine the marked subset Mk to obtain Tk+1, conforming or with
hanging nodes, increment k and go to step SOLVE.

Quasi-Optimal Algorithm

If f ∈ L2(Ω) and the decay rate for the best approximation of u is

inf
#T −#T0≤N

inf
V ∈V(T )

‖∇γ(u− V )‖L2(γ) ≤ C1N
−s, 0 < s ≤ 1/d

then the finite element method delivers the same rate

||∇γ(u− Uk)||L2(γ) ≤ C2(#Tk)−s

Convergence Rates for AFEM: PDE on Parametric Surfaces Ricardo H. Nochetto
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Quasi-Optimal Adaptive Finite Element Methods (AFEM)

I Babuska, Vogelius, 1986 (1D problem).
I Binev, Dahmen, DeVore, 2004 (2D problem, coarsening).
I Stevenson, 2006 (marking by oscillation).
I Kreuzer, Cascon, Nochetto, Siebert, 2008.
I Bonito, Nochetto, 2010 (dG).
I Cohen, DeVore, Nochetto, 2011 (H−1 data and approximation classes).
I Diening, Kreuzer, Stevenson, 2013 (maximum strategy).

Sufficient Condition (for best approximation of u to decay with rate N−1/d)

sob (W 2
p ) > sob (H1) ⇒ 2− d

p
> 1− d

2
⇒ p >

2d

2 + d

Main Ingredients

Orthogonality (Pythagoras):

||∇(u− Uk)||2L2(Ω) = ||∇(u− Uk−1)||2L2(Ω) − ||∇(Uk − Uk−1)||2L2(Ω).

Upper and Lower Bounds:

||∇(u− Uk)||2L2(Ω) � η2
k(Uk, Tk) � ||∇(u− Uk)||2L2(Ω) + osc2(Uk, Tk).

Monotonicity of Estimator: ηk+1(Uk, Tk+1) ≤ ηk(Uk, Tk).
Convergence Rates for AFEM: PDE on Parametric Surfaces Ricardo H. Nochetto
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C1,0.4 surface with Lipschitz boundary

Re-entrant Corner

C1,0.4 Surface

�
�

�	

�
��
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Standard AFEM

Error indicator: η2
T (U, T ) := h2

T ||f ||2L2(T ) +
P

S side
S⊂∂T

hS ||[∇ΓkU ]||2L2(S)

Dörfler parameter in MARK: θ = 10% (quite conservative).

 0.01

 0.1

 1

 100  1000  10000

Energy Error
Optimal Order -1/2

Order -1/4

⇒ suboptimal decay rate

Convergence Rates for AFEM: PDE on Parametric Surfaces Ricardo H. Nochetto
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Residual Based A-Posteriori Estimators on Surfaces

Refs: Demlow-Dziuk (2007), Demlow (2009), Mekchay-Morin-Nochetto (2011)

Upper Bound For U ∈ V a discrete Galerkin solution then

‖∇γ(u− U)‖2L2(γ) ≤ C1

“
η(U, T )2 + Λ1λ(T )2

”
where Λ1 depends on T0 and λ(T ) is the geometric estimator

P

IT P

λ(T ) = max
T∈T
||∇(P − IT P )||

L∞((IT P )−1(T )| {z }
= bT

)

Lower Bound

C2η(U, T )2 ≤ ||∇γ(u− U)||2L2(γ) +
X
T∈T

h2
T

‚‚‚f
q

Q
− f

q

Q

‚‚‚2

L2(T )| {z }
data oscillation: osc(f,T )2

+Λ1λ(T )2.

Quasi-Orthogonality

For U ∈ V(T ), U∗ ∈ V(T ∗) two Galerkin solutions, T ∗ a refinement of T , then

||∇γ(u− U∗)||2L2(γ) ≤ ||∇γ(u− U)||2L2(γ) −
1

2
||∇γ(U − U∗)||2L2(γ) + Λ2λ(T )2.

Convergence Rates for AFEM: PDE on Parametric Surfaces Ricardo H. Nochetto
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Adaptive Finite Element Method (AFEM)

Let T0 be the initial triangulation of γ, k = 0. Given ε0 > 0 and ω > 0

T +
k = GEOMETRY(Tk, ωεk) : Refine surface until maxT∈T λT (T ) ≤ ω εk

[Tk+1, Uk+1] = PDE(T +
k , εk) : Use the Dörfler marking and refine until

η(Uk+1, Tk+1) ≤ εk

Set εk+1 = εk/2 and repeat.

Equidistribute the errors, similar to R. Stevenson (2006) for oscillations.

Convergence Rates for AFEM: PDE on Parametric Surfaces Ricardo H. Nochetto
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The Module GEOMETRY: Greedy Algorithm

Let T := Tk

T + = GEOMETRY (T , τ)

while (maxT∈T λT (T ) > τ)

Refine all T ∈ T such that λT (T ) > τ

Update T

end

• Module GEOMETRY independent of the PDE

• Complexity of GEOMETRY?

Convergence Rates for AFEM: PDE on Parametric Surfaces Ricardo H. Nochetto
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The Module PDE

[T , U ] = PDE (T +, ε)
while (η(U, T ) > ε)

SOLVE → ESTIMATE → MARK → REFINE

Update T
end

Quasi-monotonicity of geometric estimator

λ(T ) = max
T∈T
||∇(P − IT P )||L∞(T ) ≤ max

T∈T
||∇(P − IT +P )||L∞(T )

+ max
T∈T
||∇IT (P − IT +P )||L∞(T ) ≤ 2 max

T∈T +
||∇(P − IT +P )||L∞(T ) = 2λ(T +)

Relation between geometric and PDE errors
λ(T ) ≤ 2λ(T +

k ) ≤ 2ωε ≤ 2ωη(U, T )

⇒ the geometric error λ(T ) is small relative to η(U, T ) and can be controlled

Convergence Rates for AFEM: PDE on Parametric Surfaces Ricardo H. Nochetto
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Conditional Contraction Property of Module PDE

Theorem

If λ(Tj) ≤ 2ωη(Uj , Tj) for ω ≤ ω∗, then there exists constants 0 < α < 1 and
β > 0 such that the inner iterates of the module PDE satisfy

‖∇γ(u−Uj+1)‖2L2(γ)+βη(Uj+1, Tj+1)
2 ≤ α2

“
‖∇γ(u−Uj)‖2L2(γ)+βη(Uj , Tj)

2
”
.

Moreover, the number J of inner iterates of PDE is uniformly bounded.

• The proof proceeds as in Cascón, Kreuzer, Nochetto, and Siebert (2008) and
Bonito and Nochetto (2010), with the additional information

λ(T ) ≤ 2ωη(U, T )

in the inner loops of PDE for ω ≤ ω∗ sufficiently small.

• Reduction of error estimator: there exist constants 0 < ξ < 1 and Λ2, Λ3 > 0
such that for all δ > 0

η(U∗, T∗)2 ≤ (1 + δ)
`
η(U, T )2 − ξη(U,M)2

´
+ (1 + δ−1)

`
Λ3‖∇γ(U∗ − U)2‖L2(γ) + Λ2λ(T )2

´
.
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Contracting Quantities of AFEM (in flat domains)

• Energy error: |||Uk − u|||Ω is monotone, but not strictly monotone (e.g.
Uk+1 = Uk).

Ω = (0, 1)2, A = I, f = 1 ⇒ U0 = U1 =
1

12
φ0, U2 6= U1

• Residual estimator: ηk(Uk, Tk) is not reduced by AFEM, and
is not even monotone. But, if Uk+1 = Uk, then ηk(Uk, Tk) decreases strictly

η2
k+1(Uk+1, Tk+1) = η2

k+1(Uk, Tk+1) ≤ η2
k(Uk, Tk)− ξη2

k(Uk,Mk)

• Heuristics: the quantity |||Uk − u|||2Ω + βη2
k(Uk, Tk) might contract!

• Additional term λ(Tk) for Laplace-Beltrami, but λ(Tk) ≤ 2ωηk(Uk, Tk).

Convergence Rates for AFEM: PDE on Parametric Surfaces Ricardo H. Nochetto
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Proof of Contraction: Step 1

ej = ‖∇γ(u−Uj)‖L2(γ), Ej = ‖∇γ(Uj+1−Uj)‖L2(γ), ηj = η(Uj , Tj), λj = λ(Tj).

Combine, quasi-orthogonality of energy error

e2
j+1 ≤ e2

j −
1

2
E2

j + Λ2λ
2
j

with reduction of residual error estimator:

η2
j+1 ≤ (1 + δ)

`
η2

j − ξηj(Mj)
2´

+ (1 + δ−1)
`
Λ3E

2
j + Λ2λ

2
j

´
to get

e2
j+1 + βη2

j+1 ≤ e2
j +

“
− 1

2
+ β(1 + δ−1)Λ3

”
E2

j

+ Λ2

“
1 + β(1 + δ−1)

”
λ2

j + β(1 + δ)
“
η2

j − ξηj(Mj)
2
”
.

Choose β, depending on δ, so that

β(1 + δ−1)Λ3 =
1

2
⇒ β(1 + δ) =

δ

2Λ3
.

This implies

e2
j+1 + βη2

j+1 ≤ e2
j + Λ2

“
1 + β(1 + δ−1)

”
λ2

j + β(1 + δ)
“
η2

j − ξηj(Mj)
2
”
.

Convergence Rates for AFEM: PDE on Parametric Surfaces Ricardo H. Nochetto



Motivation LB and STD Adaptivity AFEM for LB Convergence Rates of AFEM Discontinuous Coefficients Conclusions

Proof of Contraction: Step 2

Use Dörfler marking ηj(Mj) ≥ θηj to derive

η2
j − ξηj(Mj)

2 ≤
`
1− ξθ2´

η2
j .

Recall λj ≤ 2λ+ and properties λ+ ≤ ωε and ε < ηj to write

e2
j+1 + βη2

j+1 ≤ e2
j − β(1 + δ)

ξθ2

2
η2

j

+ β
“`

1 + δ
´“

1− ξθ2

2

”
+ Λ2

“
1 +

1

2Λ3

”4ω2

β

”
η2

j .

Employ upper bound

e2
j ≤ C1

“
ηj + Λ1λ

2
j

”
≤ C1

`
1 + 4ω2Λ1

´
η2

j = C3η
2
j

to deduce

e2
j+1+βη2

j+1 ≤
“
1− δ

ξθ2

2Λ3C3

”
| {z }

=α1(δ)

e2
j+

“
(1 + δ)

“
1− ξθ2

2

”
+ Λ2

“
1 +

1

2Λ3

”4ω2

β

”
| {z }

=α2(δ)

η2
j

Choose δ = ξθ2

4−2ξθ2 and β = ξθ2

2Λ3(4−ξθ2)
to obtain α1, α2 < 1.
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Optimal Decay Rates

Assumptions: Let 0 < s ≤ 1/d.

• The solution u and forcing f are of class As, namely given an error tolerance
ε > 0 there exists a refinement Tε of T0 such that

‖∇γ(u− Uε)‖L2(γ) + osc(f, Tε) ≤ ε, #Tε −#T0 . |u, f |Asε−
1
s .

• The surface is of class Bs and T + = GEOMETRY (T , τ) is s-optimal, i.e.

#M+ . |γ|Bsτ−
1
s .

Theorem

Assume that (u, f) are of class As, that γ is of class Bs, and that GEOMETRY
is s-optimal. Then for θ ≤ θ∗ and ω ≤ ω∗ sufficiently small, we have

||∇γ(u−Uk)||L2(γ) +ω−1λΓk +osc(f, Tk) �
“
|u, f |As + |γ|Bs

”
(#Tk−#T0)−s.
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Ingredients of the Proof

• Localized upper bound (to the refined set)

• Minimality of set M in Dörfler marking

• Explicit restriction of Dörfler parameter θ < θ∗ < 1

• Explicit restriction of surface parameter ω ≤ ω∗ < 1

• Conditional contraction property of PDE

• Complexity of REFINE (Binev-Dahmen-DeVore (d = 2), Stevenson (d > 2),
for conforming meshes, and Bonito-Nochetto for non-conforming meshes
(d ≥ 2)).
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Greedy Algorithm for GEOMETRY

T + = GEOMETRY(T , τ)

Theorem (Quasi-optimality of GEOMETRY for continuous pw linears)

Let γ be a surface of dimension d and piecewise of class W 2
p , p > d (over the

initial partition T0). Then the greedy algorithm terminates and is 1/d-optimal

#M+ � |γ|dW2
p

τ−d.

Therefore, γ ∈W 2
p for p > d is of class B 1

d
. Note that

sob (W 2
p ) > sob (W 1

∞) ⇒ 2− d

p
> 1− d

∞ ⇒ p > d

but NOT γ ∈W 2
∞.
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The Role of ω for Convergence Rates

Consider the example

−∆γu = 1, in γ, u = 0, on ∂γ,

where γ is the graph of class C1,α given by

z(x, y) =
`
0.75− x2 − y2´1+α

+
,

over the flat domain Ω = (0, 1)2, and consider two cases α = 3/5 and α = 2/5.

It turns out that

α = 3/5 : ⇒ z ∈ B1/2

α = 2/5 : ⇒ z ∈ Bt, ∀t < 2/5.
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The Role of ω for Convergence Rates: Case α = 3/5
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Figure: ηk + λk/ω (left) and ηk + λk (right) versus the number of elements in logarithmic scale

for ω = 0.1, 1, 10. We observe that ηk + λk/ω decays as N−0.5 right from the beginning,
whereas ηk + λk shows the same decay after the meshes have some refinement, depending on the
value of ω. Our theory predicts the decay of N−0.5 for both notions of total error if ω is
sufficiently small, but the best relation between the error ηk + λk and #DOFs is obtained for
w = 1, which is not so small.
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The Role of ω for Convergence Rates: Case α = 3/5
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Figure: ηk, λk/ω and ηk + λk/ω for ω = 0.1 (left) ω = 1 (middle) and ω = 10 (right).

Figure: Meshes after 10, 20 and 30 refinements have been performed, C1,0.6-surface, with
ω = 1. They are composed of 192, 1216 and 5564 elements, respectively.
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The Role of ω for Convergence Rates: Case α = 2/5
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Figure: ηk + λk/ω (left) and ηk + λk (right) versus the number of elements in logarithmic scale

for ω = 0.1, 1, 10. We observe that ηk + λk/ω decays as N−0.4 right from the beginning,
whereas ηk + λk shows the same decay after the meshes have some refinement, depending on the
value of ω. Our theory predicts the decay of N−0.4 for both notions of total error if ω is
sufficiently small. The best relation between the error ηk + λk seems to occur for ω = 1 and
ω = 10.
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The Role of ω for Convergence Rates: Case α = 2/5
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Figure: ηk, λk/ω and ηk + λk/ω for ω = 0.1 (left) ω = 1 (middle) and ω = 10 (right).
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Discontinuous Coefficients (w. A. Bonito and R. DeVore)

Consider elliptic PDE of the form − div(A∇u) = f with

• A = (aij(x))d
i,j=1 uniformly positive definite and bounded

λmin(A)|y|2 ≤ ytA(x)y ≤ λmax(A)|y|2 ∀ x ∈ Ω, y ∈ Rd;

• The discontinuities of A are not match by the sequence of meshes T ;

• The forcing f ∈W−1
p (Ω) for some p > 2.

Goal: Design and study an AFEM able to handle such an A.

Difficulty: PDE perturbation results hinge on approximation of A in L∞

‖u− bu‖H1
0 (Ω) ≤ λ−1

min( bA)
“
‖f − bf‖H−1(Ω) + ‖A− bA‖L∞(Ω)‖f‖H−1(Ω)

”
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Perturbation Argument

Theorem (perturbation). Let p ≥ 2, q = 2p/(p− 2) ∈ [2,∞] and
∇u ∈ Lp(Ω). Then

‖u− bu‖H1
0 (Ω) ≤ λ−1

min( bA)
“
‖f − bf‖H−1(Ω) + ‖A− bA‖Lq(Ω)‖∇u‖Lp(Ω)

”

Question: can we guarantee that ∇u ∈ Lp(Ω) with p > 2?

Proposition (Meyers). Let eK > 0 be so that the solution eu of the Laplacian
satisfies

‖∇eu‖Lp(Ω) ≤ eK‖f‖
W−1

p (Ω)
.

Then the solution u of − div(A∇u) = f satisfies

‖∇u‖Lp(Ω) ≤ K‖f‖
W−1

p (Ω)

if 2 ≤ p < p∗ and K = 1
λmax(A)

eKη(p)

1− eKη(p)
`
1− λmin(A)

λmax(A)

´ with η(p) =
1
2−

1
p

1
2−

1
p∗

.

Convergence Rates for AFEM: PDE on Parametric Surfaces Ricardo H. Nochetto



Motivation LB and STD Adaptivity AFEM for LB Convergence Rates of AFEM Discontinuous Coefficients Conclusions

Perturbation Argument

Theorem (perturbation). Let p ≥ 2, q = 2p/(p− 2) ∈ [2,∞] and
∇u ∈ Lp(Ω). Then

‖u− bu‖H1
0 (Ω) ≤ λ−1

min( bA)
“
‖f − bf‖H−1(Ω) + ‖A− bA‖Lq(Ω)‖∇u‖Lp(Ω)

”

Question: can we guarantee that ∇u ∈ Lp(Ω) with p > 2?

Proposition (Meyers). Let eK > 0 be so that the solution eu of the Laplacian
satisfies

‖∇eu‖Lp(Ω) ≤ eK‖f‖
W−1

p (Ω)
.

Then the solution u of − div(A∇u) = f satisfies

‖∇u‖Lp(Ω) ≤ K‖f‖
W−1

p (Ω)

if 2 ≤ p < p∗ and K = 1
λmax(A)

eKη(p)

1− eKη(p)
`
1− λmin(A)

λmax(A)

´ with η(p) =
1
2−

1
p

1
2−

1
p∗

.

Convergence Rates for AFEM: PDE on Parametric Surfaces Ricardo H. Nochetto



Motivation LB and STD Adaptivity AFEM for LB Convergence Rates of AFEM Discontinuous Coefficients Conclusions

Perturbation Argument

Theorem (perturbation). Let p ≥ 2, q = 2p/(p− 2) ∈ [2,∞] and
∇u ∈ Lp(Ω). Then

‖u− bu‖H1
0 (Ω) ≤ λ−1

min( bA)
“
‖f − bf‖H−1(Ω) + ‖A− bA‖Lq(Ω)‖∇u‖Lp(Ω)

”

Question: can we guarantee that ∇u ∈ Lp(Ω) with p > 2?

Proposition (Meyers). Let eK > 0 be so that the solution eu of the Laplacian
satisfies

‖∇eu‖Lp(Ω) ≤ eK‖f‖
W−1

p (Ω)
.

Then the solution u of − div(A∇u) = f satisfies

‖∇u‖Lp(Ω) ≤ K‖f‖
W−1

p (Ω)

if 2 ≤ p < p∗ and K = 1
λmax(A)

eKη(p)

1− eKη(p)
`
1− λmin(A)

λmax(A)

´ with η(p) =
1
2−

1
p

1
2−

1
p∗

.

Convergence Rates for AFEM: PDE on Parametric Surfaces Ricardo H. Nochetto



Motivation LB and STD Adaptivity AFEM for LB Convergence Rates of AFEM Discontinuous Coefficients Conclusions

DISC: AFEM for Discontinuous Diffusion Matrices

Given ω > 0 explicit and β < 1, let

DISC(T0, ε1)
k = 1
LOOP

[T (f)k, fk] = RHS(Tk−1, f, ωεk)
[T (A)k, Ak] = COEFF(Tk(f), A, ωεk)
[Tk, Uk] = PDE(T (A)k, Ak, fk, εk/2)
εk+1 = βεk

k ← k + 1
END LOOP

END DISC

• [T (f)k, fk] = RHS(Tk−1, f, ωεk) gives a mesh Tk(f) ≥ Tk−1 and a pw
polynonial approximation fk of f on T F

k such that ‖f − fk‖H−1(Ω) ≤ ωεk;

• [T (A)k, Ak] = COEFF(Tk(f), A, ωεk) gives a mesh Tk(A) ≥ Tk(f) and a pw
polynomial approximation Ak of A on Tk(A) such that
‖A−Ak‖Lq(Ω) ≤ ωεk and its eigenvalues satisfy uniformly in k

C−1λmin(A) ≤ λ(Ak) ≤ Cλmax(A).
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Optimality of DISC

Theorem (optimality). Assume that the right side f is in Bsf (H−1(Ω)) with
0 < sf ≤ S, and that the diffusion matrix A is positive definite, in L∞(Ω) and
inMsA(Lq(Ω)) for q := 2p

p−2
and 0 < sA ≤ S. Let T0 be the initial subdivision

and Uk ∈ V(Tk) be the Galerkin solution obtained at the kth iteration of the
algorithm. Then, whenever u ∈ As(H1

0 (Ω)) for 0 < s ≤ S, we have for k ≥ 1

‖u− Uk‖H1
0 (Ω) ≤ εk,

and

#Tk −#T0 .
“
|A|1/s∗

Ms∗ (Lq(Ω)) + |f |1/s∗
Bs∗ (H−1(Ω))

+ |u|1/s∗
As∗ (H1

0 (Ω))

”
ε
−1/s∗
k ,

with s∗ = min(s, sA, sf ).

Counterexample: s cannot be achieved if sA, sf < s.
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Comments and Conclusions

• Coupling PDE-Geometry: This is a new feature in adaptivity and leads to
separate handling of geometry and PDE resolution with specific relative
tolerances.

• Convergence rates: We show optimal convergence rates in the energy norm

‖∇(u− Uk)‖L2(γ) . (#Tk)−s

provided this is the rate of the best approximation of u in H1 and that of γ
in W 1

∞.

• Weaker conditions on f : We refer to Cohen, DeVore, Nochetto (2011) for
convergence rates of elliptic PDE in flat domains with f ∈ H−1 and A
piecewise constant:

div(A∇u) = f.

We show that approximability of u is sufficient for a complete theory.

• Weaker conditions on γ: We assume γ is W 2
p with p > d, which implies γ

is C1. In the flat case, this corresponds to piecewise continuous A. We refer
to Bonito, DeVore, Nochetto (2013) for convergence rates with weaker
assumptions on A.
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