Convergence Rates for AFEM: General Theory

Ricardo H. Nochetto

Department of Mathematics and Institute for Physical Science and Technology **University of Maryland, USA**

イロト イヨト イヨト イヨト

www2.math.umd.edu/~rhn

WSC: The thirty-eighth Woudschoten Conference Woudschoten, October 2-4, 2013

Outline			

Outline

Adaptivity: Goals

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

AFEM: Contraction Property

AFEM: Optimality

Extensions and Limitations

Adaptivity			

Outline

Adaptivity: Goals

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

AFEM: Contraction Property

AFEM: Optimality

Extensions and Limitations

Adaptive Finite Element Method (AFEM)

Adaptive loop:

 $\begin{array}{rcl} \mathsf{AFEM}: & \mathsf{SOLVE} & \to & \mathsf{ESTIMATE} & \to & \mathsf{MARK} & \to & \mathsf{REFINE} \\ & & k \geq 0 \text{ loop counter } & \Rightarrow & (\mathcal{T}_k, \mathbb{V}(\mathcal{T}_k), U_k) \end{array}$

Questions:

- Convergence: This is not an asymptotic result for meshsize $h \rightarrow 0!$
 - Marking: what are minimal conditions?
 - Refinement: what refinements and meshes are admissible?
 - Problems: class and norms.

• Contraction:

- What quantities such as norms are reduced by AFEM?
- What quantities are good condidates for a contraction?
- Rates: Is the performance of AFEM better than classical FEM?
 - Performance: measured as error vs number of degrees of freedom
 - ▶ Nonlinear approximation theory: regularity W_p^2 with p > 1 for dimension d = 2 and polynomial degree n = 1, instead of classical regularity H^2 .

Example (Kellogg' 75): Checkerboard discontinuous coefficients

$u \approx r^{0.1} \Rightarrow u \in H^{1.1}(\Omega) \Rightarrow |u - U_k|_{H^1(\Omega)} \approx \# \mathcal{T}_k^{-0.05}$ (\mathcal{T}_k quasi-uniform)

Discontinuous coefficients: Final graded grid (full grid with < 2000 nodes) (top left), and 3 zooms (×10³, 10⁶, 10⁹); decay rate $N^{-1/2}$. Uniform grid would require $N \approx 10^{20}$ elements for a similar resolution.

	Polynomial Interpolation			

Outline

Adaptivity: Goals

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

AFEM: Contraction Property

AFEM: Optimality

Extensions and Limitations

4 E.

Warm-up: 1d Example

Question: given a continuous function $u: [0,1] \to \mathbb{R}$, a partition $\mathcal{T}_N = \{x_n\}_{n=0}^N$ with $x_0 = 0, x_N = 1$, and a pw constant approximation U_N of u over \mathcal{T}_N , what is the best decay rate of $||u - U_N||_{L^{\infty}(0,1)}$?

Answer 1: W^1_{∞} -Regularity. Let $u \in W^1_{\infty}(0,1)$ and \mathcal{T}_N be quasi-uniform. Then $U_N(x) = u(x_{n-1})$ for $x_{n-1} \leq x < x_n$ satisfies

$$|U_n(x) - u(x)| = |u(x_{n-1}) - u(x)| \le \int_x^{x_{n-1}} |u'(s)| ds \preccurlyeq \frac{1}{N} ||u'||_{L^{\infty}(0,1)}.$$

Answer 2: W_1^1 -Regularity. Let $u \in W_1^1(0,1)$. If x_n is defined by

$$\int_{x_{n-1}}^{x_n} |u'(s)| ds = \frac{1}{N} ||u'||_{L^1(0,1)},$$

then

$$|U_n(x) - u(x)| = |u(x_{n-1}) - u(x)| \le \int_x^{x_{n-1}} |u'(s)| ds \le \frac{1}{N} ||u'||_{L^1(0,1)}.$$

Warm-up: 1d Example

Question: given a continuous function $u : [0,1] \to \mathbb{R}$, a partition $\mathcal{T}_N = \{x_n\}_{n=0}^N$ with $x_0 = 0, x_N = 1$, and a pw constant approximation U_N of u over \mathcal{T}_N , what is the best decay rate of $||u - U_N||_{L^{\infty}(0,1)}$?

Answer 1: W^1_{∞} -Regularity. Let $u \in W^1_{\infty}(0,1)$ and \mathcal{T}_N be quasi-uniform. Then $U_N(x) = u(x_{n-1})$ for $x_{n-1} \leq x < x_n$ satisfies

$$|U_n(x) - u(x)| = |u(x_{n-1}) - u(x)| \le \int_x^{x_{n-1}} |u'(s)| ds \preccurlyeq \frac{1}{N} ||u'||_{L_{\infty}(0,1)}.$$

Answer 2: W_1^1 -Regularity. Let $u \in W_1^1(0,1)$. If x_n is defined by

$$\int_{x_{n-1}}^{x_n} |u'(s)| ds = \frac{1}{N} ||u'||_{L^1(0,1)},$$

then

$$|U_n(x) - u(x)| = |u(x_{n-1}) - u(x)| \le \int_x^{x_{n-1}} |u'(s)| ds \le \frac{1}{N} ||u'||_{L^1(0,1)}.$$

(日) (同) (三) (三)

Warm-up: 1d Example

Question: given a continuous function $u: [0,1] \to \mathbb{R}$, a partition $\mathcal{T}_N = \{x_n\}_{n=0}^N$ with $x_0 = 0, x_N = 1$, and a pw constant approximation U_N of u over \mathcal{T}_N , what is the best decay rate of $||u - U_N||_{L^{\infty}(0,1)}$?

Answer 1: W^1_{∞} -Regularity. Let $u \in W^1_{\infty}(0, 1)$ and \mathcal{T}_N be quasi-uniform. Then $U_N(x) = u(x_{n-1})$ for $x_{n-1} \leq x < x_n$ satisfies

$$|U_n(x) - u(x)| = |u(x_{n-1}) - u(x)| \le \int_x^{x_{n-1}} |u'(s)| ds \preccurlyeq \frac{1}{N} ||u'||_{L_{\infty}(0,1)}.$$

Answer 2: W_1^1 -Regularity. Let $u \in W_1^1(0,1)$. If x_n is defined by

$$\int_{x_{n-1}}^{x_n} |u'(s)| ds = \frac{1}{N} ||u'||_{L^1(0,1)},$$

then

$$|U_n(x) - u(x)| = |u(x_{n-1}) - u(x)| \le \int_x^{x_{n-1}} |u'(s)| ds \le \frac{1}{N} ||u'||_{L^1(0,1)}.$$

	Polynomial Interpolation			
	0000000			

Sobolev Number

Let $\omega \subset \mathbb{R}^d$ be Lipschitz and bounded, $k \in \mathbb{N}$, $1 \le p \le \infty$. The Sobolev number of $W_p^k(\omega)$ is

$$\operatorname{sob}(W_p^k) := k - \frac{d}{p}.$$

Remark 1. This number governs the scaling properties of seminorm $|v|_{W_n^k(\omega)}$: consider $\hat{x} = \frac{1}{h}x$ which transforms ω into $\hat{\omega}$ and note

$$|\hat{v}|_{W_p^k(\widehat{\omega})} = h^{\operatorname{sob}(W_p^k)} |v|_{W_p^k(\omega)} \quad \forall v \in W_p^k(\omega).$$

Remark 2. Let d = 1 and $\omega = (0, 1)$. Then $W^1_{\infty}(\omega)$ is the linear (and usual) Sobolev scale of $L^{\infty}(\omega)$, but $W^1_1(\omega)$ is in the *nonlinear* scale of $L^{\infty}(\omega)$, i.e.

$$\operatorname{sob}(W_1^1) = 1 - \frac{1}{1} = 0 - \frac{1}{\infty} = \operatorname{sob}(L^{\infty}).$$

▲□▶ ▲ □▶ ▲ □

	Polynomial Interpolation			
	0000000			

Sobolev Number

Let $\omega \subset \mathbb{R}^d$ be Lipschitz and bounded, $k \in \mathbb{N}$, $1 \le p \le \infty$. The Sobolev number of $W_p^k(\omega)$ is

$$\operatorname{sob}(W_p^k) := k - \frac{d}{p}$$

Remark 1. This number governs the scaling properties of seminorm $|v|_{W_p^k(\omega)}$: consider $\hat{x} = \frac{1}{h}x$ which transforms ω into $\hat{\omega}$ and note

$$|\hat{v}|_{W_p^k(\widehat{\omega})} = h^{\operatorname{sob}(W_p^k)} |v|_{W_p^k(\omega)} \quad \forall v \in W_p^k(\omega).$$

Remark 2. Let d = 1 and $\omega = (0, 1)$. Then $W^1_{\infty}(\omega)$ is the linear (and usual) Sobolev scale of $L^{\infty}(\omega)$, but $W^1_1(\omega)$ is in the *nonlinear* scale of $L^{\infty}(\omega)$, i.e.

$$\operatorname{sob}(W_1^1) = 1 - \frac{1}{1} = 0 - \frac{1}{\infty} = \operatorname{sob}(L^{\infty}).$$

(a)

	Polynomial Interpolation			
	0000000			

Sobolev Number

Let $\omega \subset \mathbb{R}^d$ be Lipschitz and bounded, $k \in \mathbb{N}$, $1 \le p \le \infty$. The Sobolev number of $W_p^k(\omega)$ is

$$\operatorname{sob}(W_p^k) := k - \frac{d}{p}$$

Remark 1. This number governs the scaling properties of seminorm $|v|_{W^k_p(\omega)}$: consider $\hat{x} = \frac{1}{h}x$ which transforms ω into $\hat{\omega}$ and note

$$|\hat{v}|_{W_p^k(\widehat{\omega})} = h^{\operatorname{sob}(W_p^k)} |v|_{W_p^k(\omega)} \quad \forall v \in W_p^k(\omega).$$

Remark 2. Let d = 1 and $\omega = (0, 1)$. Then $W^1_{\infty}(\omega)$ is the linear (and usual) Sobolev scale of $L^{\infty}(\omega)$, but $W^1_1(\omega)$ is in the *nonlinear* scale of $L^{\infty}(\omega)$, i.e.

$$\operatorname{sob}(W_1^1) = 1 - \frac{1}{1} = 0 - \frac{1}{\infty} = \operatorname{sob}(L^{\infty}).$$

(a)

Conforming Meshes: The Bisection Method and REFINE

• Labeling of a sequence of conforming refinements $T_0 \leq T_1 \leq T_2$ for d = 2 (similar but much more intricate for d > 2)

- Shape regularity: the shape-regularity constant of any $\mathcal{T} \in \mathbb{T}$ solely depends on the shape-regularity constant of \mathcal{T}_0 .
- Nested spaces: refinement leads to $\mathbb{V}(\mathcal{T}) \subset \mathbb{V}(\mathcal{T}_*)$ because $\mathcal{T} \leq \mathcal{T}_*$.
- Monotonicity of meshsize function h_T : if $h_{\mathcal{T}|T} := h_T := |T|^{1/d}$, then $h_{\mathcal{T}_*} \leq h_T$ for $\mathcal{T}_* \geq \mathcal{T}$, and reduction property with $b \geq 1$ bisections

$$h_{\mathcal{T}_*|T} \leq 2^{-b/d} h_{\mathcal{T}|T} \quad \forall T \in \mathcal{T} \setminus \mathcal{T}_*.$$

(ロ) (四) (E) (E)

Complexity of REFINE

• Recursive bisection of T_3 (sequence of compatible bisection patches)

▶ Naive estimate is NOT valid with Λ_0 independent of refinement level $\#T_* - \#T \leq \Lambda_0 \ \#M$

• Complexity of REFINE (Binev, Dahmen, DeVore '04 (d = 2), and Stevenson' 07 (d > 2)): If \mathcal{T}_0 has a suitable labeling, then there exists a constant $\Lambda_0 > 0$ only depending on \mathcal{T}_0 and d such that for all $k \ge 1$

$$\#\mathcal{T}_k - \#\mathcal{T}_0 \leq \Lambda_0 \sum_{j=0}^{k-1} \#\mathcal{M}_j.$$

Complexity of REFINE

• Recursive bisection of T_3 (sequence of compatible bisection patches)

- ► Naive estimate is NOT valid with Λ_0 independent of refinement level # $T_* - #T \leq \Lambda_0 #M$
- Complexity of REFINE (Binev, Dahmen, DeVore '04 (d = 2), and Stevenson' 07 (d > 2)): If T_0 has a suitable labeling, then there exists a constant $\Lambda_0 > 0$ only depending on T_0 and d such that for all $k \ge 1$

$$\#\mathcal{T}_k - \#\mathcal{T}_0 \leq \Lambda_0 \sum_{j=0}^{k-1} \#\mathcal{M}_j.$$

Complexity of REFINE

• Recursive bisection of T_3 (sequence of compatible bisection patches)

 \blacktriangleright Naive estimate is NOT valid with Λ_0 independent of refinement level

 $\#\mathcal{T}_* - \#\mathcal{T} \leq \Lambda_0 \ \#\mathcal{M}$

• Complexity of REFINE (Binev, Dahmen, DeVore '04 (d = 2), and Stevenson' 07 (d > 2)): If T_0 has a suitable labeling, then there exists a constant $\Lambda_0 > 0$ only depending on T_0 and d such that for all $k \ge 1$

$$\#\mathcal{T}_k - \#\mathcal{T}_0 \leq \Lambda_0 \sum_{j=0}^{k-1} \#\mathcal{M}_j.$$

Piecewise Polynomial Interpolation

Quasi-local error estimate: if $0 \le t \le s \le n+1$ ($n \ge 1$ polynomial degree) and $1 \le p, q \le \infty$ satisfy $\operatorname{sob}(W_p^s) > \operatorname{sob}(W_q^t)$, then for all $T \in \mathcal{T}$

$$\|D^t(v-I_{\mathcal{T}}v)\|_{L^q(T)} \lesssim h_T^{\operatorname{sob}(W_p^s)-\operatorname{sob}(W_q^t)}\|D^s v\|_{L^p(\mathcal{N}_{\mathcal{T}}(T))},$$

where $\mathcal{N}_{\mathcal{T}}(T)$ is a discrete neighborhood of T and $I_{\mathcal{T}}$ is a quasi interpolation operator (Clement or Scott-Zhang). If $\operatorname{sob}(W_p^s) > 0$, then v is Hölder continuous, $I_{\mathcal{T}}$ can be replaced by the Lagrange interpolation operator, and $\mathcal{N}_{\mathcal{T}}(T) = T$.

• Quasi-uniform meshes: if $1 \le s \le n+1$ and $u \in H^s(\Omega)$, then

$$\|\nabla (v - I_{\mathcal{T}} v)\|_{L^2(\Omega)} \preccurlyeq |v|_{H^s(\Omega)} (\#\mathcal{T})^{-\frac{s-1}{d}}.$$

• Optimal error decay: If s = n + 1 (linear Sobolev scale), then

 $\|\nabla(v - I_{\mathcal{T}}v)\|_{L^2(\Omega)} \preccurlyeq |v|_{H^{n+1}(\Omega)} (\#\mathcal{T})^{-\frac{n}{d}}.$

< ロ > < 同 > < 回 > < 回 >

Piecewise Polynomial Interpolation

Quasi-local error estimate: if $0 \le t \le s \le n+1$ ($n \ge 1$ polynomial degree) and $1 \le p, q \le \infty$ satisfy $\operatorname{sob}(W_p^s) > \operatorname{sob}(W_q^t)$, then for all $T \in \mathcal{T}$

$$\|D^t(v-I_{\mathcal{T}}v)\|_{L^q(T)} \lesssim h_T^{\operatorname{sob}(W_p^s)-\operatorname{sob}(W_q^t)}\|D^s v\|_{L^p(\mathcal{N}_{\mathcal{T}}(T))},$$

where $\mathcal{N}_{\mathcal{T}}(T)$ is a discrete neighborhood of T and $I_{\mathcal{T}}$ is a quasi interpolation operator (Clement or Scott-Zhang). If $\operatorname{sob}(W_p^s) > 0$, then v is Hölder continuous, $I_{\mathcal{T}}$ can be replaced by the Lagrange interpolation operator, and $\mathcal{N}_{\mathcal{T}}(T) = T$.

• Quasi-uniform meshes: if $1 \le s \le n+1$ and $u \in H^s(\Omega)$, then

$$\|\nabla(v - I_{\mathcal{T}}v)\|_{L^2(\Omega)} \preccurlyeq |v|_{H^s(\Omega)} (\#\mathcal{T})^{-\frac{s-1}{d}}.$$

• Optimal error decay: If s = n + 1 (linear Sobolev scale), then

$$\|\nabla(v - I_{\mathcal{T}}v)\|_{L^2(\Omega)} \preccurlyeq |v|_{H^{n+1}(\Omega)} (\#\mathcal{T})^{-\frac{n}{d}}.$$

Adaptive Approximation (Binev, Dahmen, DeVore, Petrushev '02)

Question: can one achieve the same decay rate with lower regularity? • Let n = 1, d = 2 and note that $H^2(\Omega) \subset \mathcal{A}_{1/2}$ where

 $\mathcal{A}_{1/2} = \{ v \in H^1_0(\Omega) : \inf_{\#\mathcal{T} - \#\mathcal{T}_0 \le N} | v - I_{\mathcal{T}} v |_{H^1(\Omega)} \preccurlyeq N^{-1/2} \}$

• Let $v \in W^2_p(\Omega;\mathcal{T}_0) \cap H^1_0(\Omega)$ with p>1, and notice that

$$\operatorname{sob}(W_p^2) = 2 - \frac{2}{p} > 1 - \frac{2}{2} = 0 = \operatorname{sob}(H^1).$$

• Theorem 1. Given any $\delta > 0$, the following algorithm THRESHOLD THRESHOLD (\mathcal{T}, δ) while $\mathcal{M} := \{T \in \mathcal{T} : \|\nabla(v - I_T v)\|_{L^2(T)} > \delta\} \neq \emptyset$ $\mathcal{T} := \operatorname{REFINE}(\mathcal{T}, \mathcal{M})$ end while return (\mathcal{T}) terminates if $v \in W_p^2(\Omega; \mathcal{T}_0) \cap H_0^1(\Omega)$ with p > 1 and its output satisfies $\|v - I_T v\|_{U^1(\Omega)} \le \delta(\#\mathcal{T})^{1/2}, \qquad \#\mathcal{T} - \#\mathcal{T}_0 \le \delta^{-1} \|\Omega\|^{1-1/p} \|D^2 v\|_{L^p(\Omega)}$

Adaptive Approximation (Binev, Dahmen, DeVore, Petrushev '02)

Question: can one achieve the same decay rate with lower regularity?

• Let n=1, d=2 and note that $H^2(\Omega)\subset \mathcal{A}_{1/2}$ where

Polynomial Interpolation

$$\mathcal{A}_{1/2} = \{ v \in H^1_0(\Omega) : \inf_{\#\mathcal{T} - \#\mathcal{T}_0 \le N} | v - I_{\mathcal{T}} v |_{H^1(\Omega)} \preccurlyeq N^{-1/2} \}$$

• Let $v \in W_p^2(\Omega; \mathcal{T}_0) \cap H_0^1(\Omega)$ with p > 1, and notice that

$$\operatorname{sob}(W_p^2) = 2 - \frac{2}{p} > 1 - \frac{2}{2} = 0 = \operatorname{sob}(H^1).$$

• Theorem 1. Given any $\delta > 0$, the following algorithm THRESHOLD THRESHOLD (\mathcal{T}, δ) while $\mathcal{M} := \{T \in \mathcal{T} : \|\nabla(v - I_T v)\|_{L^2(T)} > \delta\} \neq \emptyset$ $\mathcal{T} := \mathsf{REFINE}(\mathcal{T}, \mathcal{M})$ end while return (\mathcal{T}) terminates if $v \in W_p^2(\Omega; \mathcal{T}_0) \cap H_0^1(\Omega)$ with p > 1 and its output satisfies $|v - I_T v|_{H^1(\Omega)} \lesssim \delta(\#\mathcal{T})^{1/2}, \qquad \#\mathcal{T} - \#\mathcal{T}_0 \lesssim \delta^{-1} |\Omega|^{1-1/p} \|D^2 v\|_{L^p(\Omega; \mathcal{T}_0)}.$

Remarks on Adaptive Approximation

• Let $v \in H_0^1(\Omega) \cap W_p^2(\Omega; \mathcal{T}_0)$, n = 1, d = 2, p > 1. For $N > \#\mathcal{T}_0$ there exists $\mathcal{T} \in \mathbb{T}$ such that

 $|v - I_{\mathcal{T}}v|_{H^1(\Omega)} \lesssim |\Omega|^{1-1/p} \|D^2 v\|_{L^p(\Omega;\mathcal{T}_0)} N^{-1/2}, \qquad \#\mathcal{T} - \#\mathcal{T}_0 \lesssim N.$

Choose $\delta = |\Omega|^{1-1/p} \|D^2 v\|_{L^p(\Omega)} N^{-1}$ in algorithm THRESHOLD.

- $W_p^2(\Omega; \mathcal{T}_0) \subset \mathcal{A}_{1/2}$ for d = 2 and p > 1. All geometric singularities for d = 2 (corner and interfaces) satisfy this (Nicaise' 94).
- For arbitrary $n \ge 1$, $d \ge 2$, comparing Sobolev numbers yields

$$n+1-\frac{d}{p} > \operatorname{sob}(H^1) = 1-\frac{d}{2} \quad \Rightarrow \quad p > \frac{2d}{2n+d}.$$

This may give p < 1 and corresponding Besov space $B_p^{n+1}(L^p(\Omega))$. Theorem 1 holds for any $n \ge 1$ (Gaspoz and Morin '11). Regularity theory for elliptic PDE is incomplete for p < 1.

• Anisotropic elements: Isotropic refinement is not always optimal for d = 3.

Remarks on Adaptive Approximation

• Let $v \in H_0^1(\Omega) \cap W_p^2(\Omega; \mathcal{T}_0)$, n = 1, d = 2, p > 1. For $N > \#\mathcal{T}_0$ there exists $\mathcal{T} \in \mathbb{T}$ such that

 $|v - I_{\mathcal{T}}v|_{H^1(\Omega)} \lesssim |\Omega|^{1-1/p} \|D^2 v\|_{L^p(\Omega;\mathcal{T}_0)} N^{-1/2}, \qquad \#\mathcal{T} - \#\mathcal{T}_0 \lesssim N.$

Choose $\delta = |\Omega|^{1-1/p} \|D^2 v\|_{L^p(\Omega)} N^{-1}$ in algorithm THRESHOLD.

- $W_p^2(\Omega; \mathcal{T}_0) \subset \mathcal{A}_{1/2}$ for d = 2 and p > 1. All geometric singularities for d = 2 (corner and interfaces) satisfy this (Nicaise' 94).
- For arbitrary $n \ge 1$, $d \ge 2$, comparing Sobolev numbers yields

$$n+1-\frac{d}{p} > \operatorname{sob}(H^1) = 1-\frac{d}{2} \quad \Rightarrow \quad p > \frac{2d}{2n+d}.$$

This may give p < 1 and corresponding Besov space $B_p^{n+1}(L^p(\Omega))$. Theorem 1 holds for any $n \ge 1$ (Gaspoz and Morin '11). Regularity theory for elliptic PDE is incomplete for p < 1.

• Anisotropic elements: Isotropic refinement is not always optimal for d = 3.

Nonconforming Meshes

► Hanging nodes for d ≥ 2: quad-refinement, red refinement, bisection showing domain of influence of conforming node P.

- Fixed level of nonconformity: domains of influence are comparable with elements contained in them (Ex: one hanging node per edge for quadrilaterals).
- Complexity of REFINE (Bonito and Nochetto' 10): there exists a constant Λ₀ > 0 only depending on T₀ and d such that for all k ≥ 1

$$\#\mathcal{T}_k - \#\mathcal{T}_0 \le \Lambda_0 \sum_{j=0}^{k-1} \#\mathcal{M}_j.$$

Nonconforming Meshes

► Hanging nodes for d ≥ 2: quad-refinement, red refinement, bisection showing domain of influence of conforming node P.

- Fixed level of nonconformity: domains of influence are comparable with elements contained in them (Ex: one hanging node per edge for quadrilaterals).
- Complexity of REFINE (Bonito and Nochetto' 10): there exists a constant $\Lambda_0 > 0$ only depending on \mathcal{T}_0 and d such that for all $k \ge 1$

$$\#\mathcal{T}_k - \#\mathcal{T}_0 \leq \Lambda_0 \sum_{j=0}^{k-1} \#\mathcal{M}_j.$$

	Model Problem		

Outline

Adaptivity: Goals

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

AFEM: Contraction Property

AFEM: Optimality

Extensions and Limitations

4 E.

	Model Problem		
	0000		

Model Problem: Basic Assumptions

Consider model problem

$$-\operatorname{div}(A\nabla u) = f \quad \text{in} \quad \Omega, \qquad u|_{\partial\Omega} = 0,$$

with

- Ω polygonal domain in \mathbb{R}^d , $d \geq 2$;
- T_0 is a conforming mesh made of simplices with compatible labeling;
- A(x) is symmetric and positive definite for all $x \in \Omega$ with eigenvalues $\lambda(x)$ satisfying

$$0 < a_{\min} \le \lambda_i(x) \le a_{\max}, \ x \in \Omega;$$

- ► A is piecewise Lipschitz in T₀;
- $f \in L^2(\Omega)$ ($f \in H^{-1}(\Omega)$ in Extensions);
- ▶ V(T) space of continuous elements of degree ≤ n over a conforming refinement T of T₀ (by bisection).
- Exact numerical integration.

	Model Problem		
	0000		

Galerkin Method

- Function space: $\mathbb{V} := H_0^1(\Omega)$.
- **b** Bilinear form: $\mathcal{B} : \mathbb{V} \times \mathbb{V} \to \mathbb{R}$

$$\mathcal{B}(v,w) := \int_{\Omega} A \nabla v \cdot \nabla w \quad \forall v, w \in \mathbb{V}.$$

Then solution u of model problem satisfies

$$u \in \mathbb{V}$$
: $\mathcal{B}(u, v) = \langle f, v \rangle \quad \forall v \in \mathbb{V}.$

► Finite element space: If P_n(T) denote polynomials of degree ≤ n over T, then

$$\mathbb{V}(\mathcal{T}) := \{ v \in H_0^1(\Omega) : v |_T \in \mathbb{P}_n(T) \quad \forall T \in \mathcal{T} \}.$$

• Galerkin solution: The discrete solution $U = U_T$ satisfies

$$U \in \mathbb{V}(\mathcal{T}): \quad \mathcal{B}(U, V) = \langle f, V \rangle \quad \forall V \in \mathbb{V}(\mathcal{T}).$$

< ロ > < 同 > < 回 > < 回 >

	Model Problem		
	0000		

Galerkin Method (Continued)

• **Residual:**
$$\mathcal{R} \in V^* = H^{-1}(\Omega)$$
 is given by

$$\langle \mathcal{R}, v \rangle := \langle f, v \rangle - \mathcal{B}(U, v) = \mathcal{B}(u - U, v) \quad \forall v \in V.$$

- Galerkin Orthogonality: $\langle \mathcal{R}, V \rangle = 0 \quad \forall V \in \mathbb{V}(\mathcal{T}).$
- ► Quasi-Best Approximation (Céa Lemma): α₁ ≤ α₂ coercivity and continuity constants of B

$$\begin{aligned} \alpha_1 \| u - U \|_{\mathbb{V}}^2 &\leq \mathcal{B}(u - U, u - U) = \mathcal{B}(u - U, u - V) \\ &\leq \alpha_2 \| u - U \|_{\mathbb{V}} \| u - V \|_{\mathbb{V}} \quad \forall V \in \mathbb{V}(\mathcal{T}). \end{aligned}$$
$$\Rightarrow \quad \| u - U \|_{\mathbb{V}} &\leq \frac{\alpha_2}{\alpha_1} \inf_{V \in \mathbb{V}(\mathcal{T})} \| u - V \|_{\mathbb{V}}. \end{aligned}$$

▶ Approximation Class A_s : Let $0 < s \le n/d$ $(n \ge 1)$ and

$$\mathcal{A}_s := \left\{ v \in \mathbb{V} : |u|_s := \sup_{N>0} \left(N^s \inf_{\#\mathcal{T} - \#\mathcal{T}_0 \le N} \inf_{V \in \mathbb{V}(\mathcal{T})} \|v - V\|_{\mathbb{V}} \right) \right\}$$

$$\Rightarrow \quad \exists \ \mathcal{T} \in \mathbb{T} : \quad \#\mathcal{T} - \#\mathcal{T}_0 \le N, \quad \inf_{V \in \mathbb{V}(\mathcal{T})} \|v - V\|_{\mathbb{V}} \le |v|_s N^{-s}.$$

	Model Problem		
	0000		

A Priori Error Analysis

If $u \in \mathcal{A}_s$, $0 < s \le n/d$, there exists $\mathcal{T} \in \mathbb{T}$ with $\#\mathcal{T} - \#\mathcal{T}_0 \le N$ and $\|u - U\|_{\mathbb{V}} \le \frac{\alpha_2}{\alpha_1} |u|_s N^{-s}.$

▶ If n = 1, d = 2, p > 1, and $u \in \mathbb{V} \cap W_p^2(\Omega; \mathcal{T}_0)$, then THRESHOLD shows that $|u|_{1/2} \preccurlyeq ||D^2u||_{L^p(\Omega; \mathcal{T}_0)}$ whence (optimal estimate)

 $\exists \mathcal{T} \in \mathbb{T} : \quad \#\mathcal{T} - \#\mathcal{T}_0 \le N, \quad \|u - U\|_{\mathbb{V}} \preccurlyeq \|D^2 u\|_{L^p(\Omega;\mathcal{T}_0)} N^{-1/2}.$

- ▶ THRESHOLD needs access to the element interpolation error E_T and so to the unknown u. It is thus not practical.
- ► The a posteriori error analysis provides a tool to extract this missing information from the residual *R*. This is discussed next.
- \blacktriangleright The a priori analysis is valid for a bilinear for ${\cal B}$ on a Hilbert space $\mathbb V$ that is continuous and satisfies a discrete inf-sup condition

 $|\mathcal{B}(v,w)| \le \alpha_1 \|v\|_{\mathbb{V}} \|w\|_{\mathbb{V}} \quad \forall v, w \in \mathbb{V};$

 $\alpha_2 \|V\|_{\mathbb{V}} \le \sup_{v \in \mathbb{V}} \frac{\mathcal{B}(V, W)}{\|W\|_{w}} \quad \forall V \in \mathbb{V}(\mathcal{J}).$

A Priori Error Analysis

If $u \in \mathcal{A}_s$, $0 < s \le n/d$, there exists $\mathcal{T} \in \mathbb{T}$ with $\#\mathcal{T} - \#\mathcal{T}_0 \le N$ and $\|u - U\|_{\mathbb{V}} \le \frac{\alpha_2}{\alpha_1} |u|_s N^{-s}.$

▶ If n = 1, d = 2, p > 1, and $u \in \mathbb{V} \cap W_p^2(\Omega; \mathcal{T}_0)$, then THRESHOLD shows that $|u|_{1/2} \preccurlyeq ||D^2u||_{L^p(\Omega; \mathcal{T}_0)}$ whence (optimal estimate)

 $\exists \mathcal{T} \in \mathbb{T}: \quad \#\mathcal{T} - \#\mathcal{T}_0 \leq N, \quad \|u - U\|_{\mathbb{V}} \preccurlyeq \|D^2 u\|_{L^p(\Omega;\mathcal{T}_0)} N^{-1/2}.$

- ► THRESHOLD needs access to the element interpolation error E_T and so to the unknown u. It is thus not practical.
- ► The a posteriori error analysis provides a tool to extract this missing information from the residual *R*. This is discussed next.
- \blacktriangleright The a priori analysis is valid for a bilinear for ${\cal B}$ on a Hilbert space $\mathbb V$ that is continuous and satisfies a discrete inf-sup condition

 $|\mathcal{B}(v,w)| \le \alpha_1 \|v\|_{\mathbb{V}} \|w\|_{\mathbb{V}} \quad \forall v, w \in \mathbb{V};$

 $\alpha_2 \|V\|_{\mathbb{V}} \le \sup_{W \in V} \frac{\mathcal{D}(V, W)}{\|W\|_{\mathbb{V}}} \quad \forall V \in \mathbb{V}(\mathcal{T}).$

	Model Problem		
	0000		

A Priori Error Analysis

If $u \in \mathcal{A}_s$, $0 < s \le n/d$, there exists $\mathcal{T} \in \mathbb{T}$ with $\#\mathcal{T} - \#\mathcal{T}_0 \le N$ and $\|u - U\|_{\mathbb{V}} \le \frac{\alpha_2}{\alpha_1} |u|_s N^{-s}.$

▶ If n = 1, d = 2, p > 1, and $u \in \mathbb{V} \cap W_p^2(\Omega; \mathcal{T}_0)$, then THRESHOLD shows that $|u|_{1/2} \preccurlyeq ||D^2u||_{L^p(\Omega; \mathcal{T}_0)}$ whence (optimal estimate)

$$\exists \mathcal{T} \in \mathbb{T}: \quad \#\mathcal{T} - \#\mathcal{T}_0 \leq N, \quad \|u - U\|_{\mathbb{V}} \preccurlyeq \|D^2 u\|_{L^p(\Omega;\mathcal{T}_0)} N^{-1/2}.$$

- ► THRESHOLD needs access to the element interpolation error E_T and so to the unknown u. It is thus not practical.
- ► The a posteriori error analysis provides a tool to extract this missing information from the residual *R*. This is discussed next.
- ► The a priori analysis is valid for a bilinear for B on a Hilbert space V that is continuous and satisfies a discrete inf-sup condition

$$\begin{split} |\mathcal{B}(v,w)| &\leq \alpha_1 \|v\|_{\mathbb{V}} \|w\|_{\mathbb{V}} \quad \forall v, w \in \mathbb{V};\\ \alpha_2 \|V\|_{\mathbb{V}} &\leq \sup_{W \in V} \frac{\mathcal{B}(V,W)}{\|W\|_{\mathbb{V}}} \quad \forall V \in \mathbb{V}(\mathcal{T}). \end{split}$$

		A Posteriori Error Analysis		

Outline

Adaptivity: Goals

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

AFEM: Contraction Property

AFEM: Optimality

Extensions and Limitations

Error-Residual Equation (Babuška-Miller' 87)

- Since $\langle \mathcal{R}, v \rangle = \langle f, v \rangle \mathcal{B}(U, v) = \mathcal{B}(u U, v)$ for all $v \in \mathbb{V}$, we deduce $\|u - U\|_{\mathbb{V}} \leq \frac{1}{\alpha_1} \|\mathcal{R}\|_{\mathbb{V}^*} \leq \frac{\alpha_2}{\alpha_1} \|u - U\|_{\mathbb{V}}.$
- Residual representation: elementwise integration by parts yields

$$\langle \mathcal{R}, v \rangle = \sum_{T \in \mathcal{T}} \int_T \underbrace{f + \operatorname{div}_{\mathcal{T}}(A \nabla U)}_{=r} v + \sum_{S \in \mathcal{S}} \int_S \underbrace{[A \nabla U] \cdot \nu}_{=j} v \quad \forall v \in \mathbb{V}$$

where $\boldsymbol{r}=\boldsymbol{r}(\boldsymbol{U}), \boldsymbol{j}=\boldsymbol{j}(\boldsymbol{U})$ are the interior and jump residuals.

• Localization: The Courant (hat) basis $\{\phi_z\}_{z \in \mathcal{N}(\mathcal{T})}$ satisfy the partition of unity property $\sum_{z \in \mathcal{N}(\mathcal{T})} \phi_z = 1$. Therefore, for all $v \in \mathbb{V}$,

$$\langle \mathcal{R}, v \rangle = \sum_{z \in \mathcal{N}(\mathcal{T})} \langle \mathcal{R}, v \phi_z \rangle = \sum_{z \in \mathcal{N}(\mathcal{T})} \Big(\int_{\omega_z} r v \phi_z + \int_{\gamma_z} j v \phi_z \Big).$$

• Galerkin orthogonality: $\int_{\omega_z} r \phi_z + \int_{\gamma_z} j \phi_z = 0 \quad \forall z \in \mathcal{N}_0(\mathcal{T})$

Reliability: Global Upper A Posteriori Bound

• Exploit Galerkin orthogonality

$$\langle \mathcal{R}, v \rangle = \sum_{z \in \mathcal{N}(\mathcal{T})} \left(\int_{\omega_z} r(v - \boldsymbol{\alpha_z}(v)) \phi_z + \int_{\gamma_z} j(v - \boldsymbol{\alpha_z}(v)) \phi_z \right)$$

and take $\alpha_z(v) := \frac{\int_{\omega_z} v \phi_z}{\int_{\omega_z} \phi_z}$ if z is interior and $\alpha_z(v) = 0$ if $z \in \partial \Omega$. • Use Poincaré inequality in ω_z

$$\|v - \alpha_z(v)\|_{L^2(\omega_z)} \le C_0 h_z \|\nabla v\|_{L^2(\omega_z)} \quad \forall z \in \mathcal{N}(\mathcal{T})$$

and a scaled trace lemma, to deduce

$$\left| \langle \mathcal{R}, v\phi_z \rangle \right| \preccurlyeq \left(h_z \| r\phi_z^{1/2} \|_{L^2(\omega_z)} + h_z^{1/2} \| j\phi_z^{1/2} \|_{L^2(\gamma_z)} \right) \| \nabla v \|_{L^2(\omega_z)}.$$

• Sum over $z \in \mathcal{N}(\mathcal{T})$ and use $\sum_{z \in \mathcal{N}(\mathcal{T})} \|\nabla v\|_{L^2(\omega_z)}^2 \preccurlyeq \|\nabla v\|_{L^2(\Omega)}^2$ to get

$$\|\mathcal{R}\|_{\mathbb{V}^*} \preccurlyeq \Big(\sum_{z \in \mathcal{N}(T)} h_z^2 \|r\phi_z^{1/2}\|_{L^2(\omega_z)}^2 + h_z \|j\phi_z^{1/2}\|_{L^2(\gamma_z)}^2\Big)^{1/2}.$$

Reliability: Global Upper A Posteriori Bound

• Exploit Galerkin orthogonality

$$\langle \mathcal{R}, v \rangle = \sum_{z \in \mathcal{N}(\mathcal{T})} \left(\int_{\omega_z} r(v - \boldsymbol{\alpha}_z(v)) \phi_z + \int_{\gamma_z} j(v - \boldsymbol{\alpha}_z(v)) \phi_z \right)$$

and take $\alpha_z(v) := \frac{\int_{\omega_z} v\phi_z}{\int_{\omega_z} \phi_z}$ if z is interior and $\alpha_z(v) = 0$ if $z \in \partial\Omega$.

• Use Poincaré inequality in ω_z

$$\|v - \alpha_z(v)\|_{L^2(\omega_z)} \le C_0 h_z \|\nabla v\|_{L^2(\omega_z)} \quad \forall z \in \mathcal{N}(\mathcal{T})$$

and a scaled trace lemma, to deduce

$$\left| \langle \mathcal{R}, v\phi_z \rangle \right| \preccurlyeq \left(h_z \| r\phi_z^{1/2} \|_{L^2(\omega_z)} + h_z^{1/2} \| j\phi_z^{1/2} \|_{L^2(\gamma_z)} \right) \| \nabla v \|_{L^2(\omega_z)}.$$

• Sum over $z \in \mathcal{N}(\mathcal{T})$ and use $\sum_{z \in \mathcal{N}(\mathcal{T})} \|\nabla v\|_{L^2(\omega_z)}^2 \preccurlyeq \|\nabla v\|_{L^2(\Omega)}^2$ to get

$$\|\mathcal{R}\|_{\mathbb{V}^*} \preccurlyeq \Big(\sum_{z \in \mathcal{N}(\mathcal{T})} h_z^2 \|r\phi_z^{1/2}\|_{L^2(\omega_z)}^2 + h_z \|j\phi_z^{1/2}\|_{L^2(\gamma_z)}^2\Big)^{1/2}.$$
Reliability: Global Upper A Posteriori Bound

• Exploit Galerkin orthogonality

$$\langle \mathcal{R}, v \rangle = \sum_{z \in \mathcal{N}(\mathcal{T})} \left(\int_{\omega_z} r(v - \boldsymbol{\alpha}_z(v)) \phi_z + \int_{\gamma_z} j(v - \boldsymbol{\alpha}_z(v)) \phi_z \right)$$

and take $\alpha_z(v) := \frac{\int_{\omega_z} v \phi_z}{\int_{\omega_z} \phi_z}$ if z is interior and $\alpha_z(v) = 0$ if $z \in \partial \Omega$.

• Use Poincaré inequality in ω_z

$$\|v - \alpha_z(v)\|_{L^2(\omega_z)} \le C_0 h_z \|\nabla v\|_{L^2(\omega_z)} \quad \forall z \in \mathcal{N}(\mathcal{T})$$

and a scaled trace lemma, to deduce

$$\left| \langle \mathcal{R}, v \phi_z \rangle \right| \preccurlyeq \left(h_z \| r \phi_z^{1/2} \|_{L^2(\omega_z)} + h_z^{1/2} \| j \phi_z^{1/2} \|_{L^2(\gamma_z)} \right) \| \nabla v \|_{L^2(\omega_z)}.$$

• Sum over $z\in\mathcal{N}(\mathcal{T})$ and use $\sum_{z\in\mathcal{N}(\mathcal{T})}\|\nabla v\|_{L^{2}(\omega_{z})}^{2}\preccurlyeq\|\nabla v\|_{L^{2}(\Omega)}^{2}$ to get

$$\|\mathcal{R}\|_{\mathbb{V}^*} \preccurlyeq \Big(\sum_{z \in \mathcal{N}(\mathcal{T})} h_z^2 \|r\phi_z^{1/2}\|_{L^2(\omega_z)}^2 + h_z \|j\phi_z^{1/2}\|_{L^2(\gamma_z)}^2\Big)^{1/2}.$$

Upper A Posteriori Bound (Element Oriented)

• Use that $h_z \preccurlyeq h(x)$ for all $x \in \omega_z$, and $\sum_{z \in \mathcal{N}(\mathcal{T})} \phi_z = 1$, to derive

$$\|\mathcal{R}\|_{V^*} \preccurlyeq \left(\|hr\|_{L^2(\Omega)}^2 + \|h^{1/2}j\|_{L^2(\Gamma)}^2 \right)^{1/2}$$

in terms of weighted (and computable) L^2 norms of the residuals.

• Upper bound: Introduce element indicators $\mathcal{E}_{\mathcal{T}}(U,T)$

$$\mathcal{E}_{\mathcal{T}}(U,T)^2 = h_T^2 \|r\|_{L^2(T)}^2 + h_T \|j\|_{L^2(\partial T)}^2$$

and error estimator $\mathcal{E}_{\mathcal{T}}(U)^2 = \sum_{T \in \mathcal{T}} \mathcal{E}_{\mathcal{T}}(U,T)^2$. Then

$$\|u - U\|_{\mathbb{V}} \le \frac{1}{\alpha_1} \|\mathcal{R}\|_{V^*} \preccurlyeq \frac{1}{\alpha_1} \mathcal{E}_{\mathcal{T}}(U).$$

イロト イボト イヨト イヨト

Efficiency: Local Lower A Posteriori Bound (n = 1) (Verfürth'89)

• Local dual norms: for $v \in H^1_0(\omega)$ we have

$$\langle \mathcal{R}, v \rangle = \mathcal{B}(u - U, v) \le \alpha_2 \|u - U\|_{\mathbb{V}} \|v\|_{\mathbb{V}} \quad \Rightarrow \quad \|\mathcal{R}\|_{H^{-1}(\omega)} \le \alpha_2 \|u - U\|_{\mathbb{V}}$$

• Interior residual: take $\omega = T \in \mathcal{T}$ and note $\langle \mathcal{R}, v \rangle = \int_T rv$. Then

$$\|\mathcal{R}\|_{H^{-1}(T)} = \|r\|_{H^{-1}(T)}$$

• Overestimation: Poincaré inequality yields $||r||_{H^{-1}(T)} \preccurlyeq h_T ||r||_{L^2(T)}$

$$\int_{T} rv \le \|r\|_{L^{2}(T)} \|v\|_{L^{2}(T)} \preccurlyeq h_{T} \|r\|_{L^{2}(T)} \|\nabla v\|_{L^{2}(T)}$$

• Pw constant r: Let $\eta \in H^1_0(T)$, $|T| \preccurlyeq \int_T \eta$, $\|\nabla \eta\|_{L^{\infty}(T)} \preccurlyeq h_T^{-1}$. Then

$$\begin{aligned} \|r\|_{L^{2}(T)}^{2} \preccurlyeq \int_{T} r(r\eta) &\leq \|r\|_{H^{-1}(T)} \|r\|_{L^{2}(T)} \|\nabla\eta\|_{L^{\infty}(T)} \\ \preccurlyeq h_{T}^{-1} \|r\|_{H^{-1}(T)} \|r\|_{L^{2}(T)} \Rightarrow h_{T} \|r\|_{L^{2}(T)} \preccurlyeq \|r\|_{H^{-1}(T)} \end{aligned}$$

(a)

Efficiency: Local Lower A Posteriori Bound (n = 1) (Verfürth'89)

• Local dual norms: for $v \in H^1_0(\omega)$ we have

$$\langle \mathcal{R}, v \rangle = \mathcal{B}(u - U, v) \le \alpha_2 \|u - U\|_{\mathbb{V}} \|v\|_{\mathbb{V}} \quad \Rightarrow \quad \|\mathcal{R}\|_{H^{-1}(\omega)} \le \alpha_2 \|u - U\|_{\mathbb{V}}$$

• Interior residual: take $\omega = T \in \mathcal{T}$ and note $\langle \mathcal{R}, v \rangle = \int_T rv$. Then

$$\|\mathcal{R}\|_{H^{-1}(T)} = \|r\|_{H^{-1}(T)}$$

• Overestimation: Poincaré inequality yields $||r||_{H^{-1}(T)} \preccurlyeq h_T ||r||_{L^2(T)}$

$$\int_{T} rv \le \|r\|_{L^{2}(T)} \|v\|_{L^{2}(T)} \preccurlyeq h_{T} \|r\|_{L^{2}(T)} \|\nabla v\|_{L^{2}(T)}$$

• Pw constant r: Let $\eta \in H^1_0(T)$, $|T| \preccurlyeq \int_T \eta$, $\|\nabla \eta\|_{L^{\infty}(T)} \preccurlyeq h_T^{-1}$. Then

$$\begin{aligned} \|r\|_{L^{2}(T)}^{2} \preccurlyeq \int_{T} r(r\eta) &\leq \|r\|_{H^{-1}(T)} \|r\|_{L^{2}(T)} \|\nabla\eta\|_{L^{\infty}(T)} \\ \preccurlyeq h_{T}^{-1} \|r\|_{H^{-1}(T)} \|r\|_{L^{2}(T)} \Rightarrow h_{T} \|r\|_{L^{2}(T)} \preccurlyeq \|r\|_{H^{-1}(T)} \end{aligned}$$

イロト イボト イヨト イヨト

Efficiency: Local Lower A Posteriori Bound (n = 1) (Verfürth'89)

• Local dual norms: for $v \in H^1_0(\omega)$ we have

$$\langle \mathcal{R}, v \rangle = \mathcal{B}(u - U, v) \le \alpha_2 \|u - U\|_{\mathbb{V}} \|v\|_{\mathbb{V}} \quad \Rightarrow \quad \|\mathcal{R}\|_{H^{-1}(\omega)} \le \alpha_2 \|u - U\|_{\mathbb{V}}$$

• Interior residual: take $\omega = T \in \mathcal{T}$ and note $\langle \mathcal{R}, v \rangle = \int_T rv$. Then

$$\|\mathcal{R}\|_{H^{-1}(T)} = \|r\|_{H^{-1}(T)}$$

• Overestimation: Poincaré inequality yields $||r||_{H^{-1}(T)} \preccurlyeq h_T ||r||_{L^2(T)}$

$$\int_{T} rv \le \|r\|_{L^{2}(T)} \|v\|_{L^{2}(T)} \preccurlyeq h_{T} \|r\|_{L^{2}(T)} \|\nabla v\|_{L^{2}(T)}$$

• Pw constant r: Let $\eta \in H^1_0(T)$, $|T| \preccurlyeq \int_T \eta$, $\|\nabla \eta\|_{L^{\infty}(T)} \preccurlyeq h_T^{-1}$. Then

$$\begin{aligned} \|r\|_{L^{2}(T)}^{2} \preccurlyeq \int_{T} r(r\eta) &\leq \|r\|_{H^{-1}(T)} \|r\|_{L^{2}(T)} \|\nabla\eta\|_{L^{\infty}(T)} \\ & \preccurlyeq h_{T}^{-1} \|r\|_{H^{-1}(T)} \|r\|_{L^{2}(T)} \Rightarrow h_{T} \|r\|_{L^{2}(T)} \preccurlyeq \|r\|_{H^{-1}(T)} \end{aligned}$$

0

イロト イボト イヨト イヨト

Lower A Posteriori Bound: Oscillation

• Oscillation of $r: h_T ||r - \bar{r}_T||_{L^2(T)}$ with meanvalue \bar{r}_T . Then

$$h_T \|r\|_{L^2(T)} \preccurlyeq \|\mathcal{R}\|_{H^{-1}(T)} + h_T \|r - \bar{r}_T\|_{L^2(T)}$$

• Data oscillation: if A is pw constant, then r = f and

$$h_T ||_{r-\bar{r}_T} ||_{L^2(T)} = h_T ||_{f-\bar{f}_T} ||_{L^2(T)} = \operatorname{osc}_{\mathcal{T}}(f,T)$$

• Oscillation of j: likewise $h_S || j - \overline{j}_S ||_{L^2(S)}$ with meanvalue \overline{j}_S and

 $h_S^{1/2} \|j\|_{L^2(S)} \preccurlyeq \|\mathcal{R}\|_{H^{-1}(\omega_S)} + h_S^{1/2} \|j - \bar{j}_S\|_{L^2(S)} + h_S \|r\|_{L^2(\omega_S)}$

where $\omega_S = T_1 \cup T_2$ with $T_1 \cap T_2 = S$ and $T_1, T_2 \in \mathcal{T}$.

• Local lower bound: let $\omega_T = \bigcup_{S \in \partial T} \omega_S$ and the local oscillation be $\operatorname{osc}_{\mathcal{T}}(U, \omega_T) := \|h(r - \bar{r})\|_{L^2(\omega_T)} + \|h^{1/2}(j - \bar{j})\|_{L^2(\partial T)}$. Then

 $\mathcal{E}_{\mathcal{T}}(U,T) \preccurlyeq \alpha_2 \|\nabla(u-U)\|_{L^2(\omega_T)} + \operatorname{osc}_{\mathcal{T}}(U,\omega_T).$

・ロト ・回ト ・ヨト ・ヨト

Lower A Posteriori Bound: Oscillation

• Oscillation of $r: h_T ||r - \bar{r}_T||_{L^2(T)}$ with meanvalue \bar{r}_T . Then

$$h_T \|r\|_{L^2(T)} \preccurlyeq \|\mathcal{R}\|_{H^{-1}(T)} + h_T \|r - \bar{r}_T\|_{L^2(T)}$$

• Data oscillation: if A is pw constant, then r = f and

$$h_T || r - \bar{r}_T ||_{L^2(T)} = h_T || f - \bar{f}_T ||_{L^2(T)} = \operatorname{osc}_T(f, T)$$

• Oscillation of j: likewise $h_S ||j - \overline{j}_S||_{L^2(S)}$ with meanvalue \overline{j}_S and

$$h_{S}^{1/2} \|j\|_{L^{2}(S)} \preccurlyeq \|\mathcal{R}\|_{H^{-1}(\omega_{S})} + h_{S}^{1/2} \|j - \bar{j}_{S}\|_{L^{2}(S)} + h_{S} \|r\|_{L^{2}(\omega_{S})}$$

where $\omega_S = T_1 \cup T_2$ with $T_1 \cap T_2 = S$ and $T_1, T_2 \in \mathcal{T}$.

• Local lower bound: let $\omega_T = \bigcup_{S \in \partial T} \omega_S$ and the local oscillation be $\operatorname{osc}_{\mathcal{T}}(U, \omega_T) := \|h(r - \bar{r})\|_{L^2(\omega_T)} + \|h^{1/2}(j - \bar{j})\|_{L^2(\partial T)}$. Then

 $\mathcal{E}_{\mathcal{T}}(U,T) \preccurlyeq \alpha_2 \|\nabla(u-U)\|_{L^2(\omega_T)} + \operatorname{osc}_{\mathcal{T}}(U,\omega_T).$

(a)

Lower A Posteriori Bound: Oscillation

• Oscillation of $r: h_T ||r - \bar{r}_T||_{L^2(T)}$ with meanvalue \bar{r}_T . Then

$$h_T \|r\|_{L^2(T)} \preccurlyeq \|\mathcal{R}\|_{H^{-1}(T)} + h_T \|r - \bar{r}_T\|_{L^2(T)}$$

• Data oscillation: if A is pw constant, then r = f and

$$h_T || r - \bar{r}_T ||_{L^2(T)} = h_T || f - \bar{f}_T ||_{L^2(T)} = \operatorname{osc}_T(f, T)$$

• Oscillation of j: likewise $h_S\|j-\bar{j}_S\|_{L^2(S)}$ with meanvalue \bar{j}_S and

$$h_{S}^{1/2} \|j\|_{L^{2}(S)} \preccurlyeq \|\mathcal{R}\|_{H^{-1}(\omega_{S})} + h_{S}^{1/2} \|j - \bar{j}_{S}\|_{L^{2}(S)} + h_{S} \|r\|_{L^{2}(\omega_{S})}$$

where $\omega_S = T_1 \cup T_2$ with $T_1 \cap T_2 = S$ and $T_1, T_2 \in \mathcal{T}$.

• Local lower bound: let $\omega_T = \bigcup_{S \in \partial T} \omega_S$ and the local oscillation be $\operatorname{osc}_{\mathcal{T}}(U, \omega_T) := \|h(r - \bar{r})\|_{L^2(\omega_T)} + \|h^{1/2}(j - \bar{j})\|_{L^2(\partial T)}$. Then

$$\mathcal{E}_{\mathcal{T}}(U,T) \preccurlyeq \alpha_2 \|\nabla(u-U)\|_{L^2(\omega_T)} + \operatorname{osc}_{\mathcal{T}}(U,\omega_T).$$

イロト イポト イヨト イヨト

Lower A Posteriori Bound (Continued)

- Higher order: we expect $\operatorname{osc}_{\mathcal{T}}(U, \omega_T) \ll \|\nabla(u-U)\|_{L^2(\omega_T)}$ as $h_T \to 0$.
- Marking: if $\mathcal{E}_T(U,T) \preccurlyeq \|\nabla(u-U)\|_{L^2(\omega_T)}$ and $\mathcal{E}_T(U,T)$ is large relative to $\mathcal{E}_T(U)$, then T contains a large portion of the error. To improve the solution U effectively, such T must be split giving rise to a procedure that tries to equidistribute errors.
- Global lower bound: we have $\mathcal{E}_T(U) \preccurlyeq \alpha_2 ||u U||_{\mathbb{V}} + \operatorname{osc}_T(U)$ where
- Discrete local lower bound (Dörfler'96, Morin, N, Siebert'00):

$$\mathcal{E}_{\mathcal{T}}(U,T) \preccurlyeq \alpha_2 \|\nabla (U_* - U)\|_{L^2(\omega_T)} + \operatorname{osc}_{\mathcal{T}}(U,\omega_T).$$

provided the interior of T and each of its sides contain a node of $\mathcal{T}_* \geq \mathcal{T}$ (interior node property).

・ロ・・(型・・(目・・(目・

Lower A Posteriori Bound (Continued)

- Higher order: we expect $\operatorname{osc}_{\mathcal{T}}(U, \omega_T) \ll \|\nabla(u-U)\|_{L^2(\omega_T)}$ as $h_T \to 0$.
- Marking: if $\mathcal{E}_T(U,T) \preccurlyeq \|\nabla(u-U)\|_{L^2(\omega_T)}$ and $\mathcal{E}_T(U,T)$ is large relative to $\mathcal{E}_T(U)$, then T contains a large portion of the error. To improve the solution U effectively, such T must be split giving rise to a procedure that tries to equidistribute errors.
- Global lower bound: we have $\mathcal{E}_{\mathcal{T}}(U) \preccurlyeq \alpha_2 \|u U\|_{\mathbb{V}} + \operatorname{osc}_{\mathcal{T}}(U)$ where

$$\operatorname{osc}_{\mathcal{T}}(U) = \|h(r - \bar{r})\|_{L^{2}(\Omega)} + \|h^{1/2}(j - \bar{j})\|_{L^{2}(\Gamma)}.$$

• Discrete local lower bound (Dörfler'96, Morin, N, Siebert'00):

$$\mathcal{E}_{\mathcal{T}}(U,T) \preccurlyeq \alpha_2 \|\nabla (U_* - U)\|_{L^2(\omega_T)} + \operatorname{osc}_{\mathcal{T}}(U,\omega_T).$$

provided the interior of T and each of its sides contain a node of $\mathcal{T}_* \geq \mathcal{T}$ (interior node property).

(a)

Lower A Posteriori Bound (Continued)

- Higher order: we expect $\operatorname{osc}_{\mathcal{T}}(U, \omega_T) \ll \|\nabla(u-U)\|_{L^2(\omega_T)}$ as $h_T \to 0$.
- Marking: if $\mathcal{E}_T(U,T) \preccurlyeq \|\nabla(u-U)\|_{L^2(\omega_T)}$ and $\mathcal{E}_T(U,T)$ is large relative to $\mathcal{E}_T(U)$, then T contains a large portion of the error. To improve the solution U effectively, such T must be split giving rise to a procedure that tries to equidistribute errors.
- Global lower bound: we have $\mathcal{E}_{\mathcal{T}}(U) \preccurlyeq \alpha_2 \|u U\|_{\mathbb{V}} + \operatorname{osc}_{\mathcal{T}}(U)$ where

$$\operatorname{osc}_{\mathcal{T}}(U) = \|h(r - \bar{r})\|_{L^{2}(\Omega)} + \|h^{1/2}(j - \bar{j})\|_{L^{2}(\Gamma)}.$$

• Discrete local lower bound (Dörfler'96, Morin, N, Siebert'00):

$$\mathcal{E}_{\mathcal{T}}(U,T) \preccurlyeq \alpha_2 \|\nabla (U_* - U)\|_{L^2(\omega_T)} + \operatorname{osc}_{\mathcal{T}}(U,\omega_T).$$

provided the interior of T and each of its sides contain a node of $\mathcal{T}_* \geq \mathcal{T}$ (interior node property).

イロト イポト イヨト イヨト

		Contraction Property		

Outline

Adaptivity: Goals

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

AFEM: Contraction Property

AFEM: Optimality

Extensions and Limitations

4 E.

Adaptive Finite Element Method (AFEM)

 $\begin{array}{rcl} \mathsf{AFEM}: & \mathsf{SOLVE} & \to & \mathsf{ESTIMATE} & \to & \mathsf{MARK} & \to & \mathsf{REFINE} \\ & & k \geq 0 \ \mathsf{loop} \ \mathsf{counter} & \Rightarrow & (\mathcal{T}_k, \mathbb{V}(\mathcal{T}_k), U_k) \end{array}$

• $U_k = \text{SOLVE}(\mathcal{T}_k)$ computes the exact Galerkin solution $U_k \in \mathbb{V}(\mathcal{T}_k)$

- ▶ dealing with L²
- exact linear algebra

• $\mathcal{E}_k = \mathsf{ESTIMATE}(\mathcal{T}_k, U_k, f)$ computes local error indicators e(z)

- ▶ localization of global H^{-1} norms to stars ω_z for $z \in \mathcal{N}_k = \mathcal{N}(\mathcal{T}_k)$
- computation of residuals in weighted L² norms
- $\mathcal{M}_k = \mathsf{MARK}(\mathcal{E}_k, \mathcal{T}_k)$ selects $\mathcal{M}_k \subset \mathcal{T}_k$ using Dörfler marking
 - $\mathcal{E}_k(\mathcal{M}_k) \ge \theta \mathcal{E}_k(\mathcal{T}_k)$ for $0 < \theta < 1$ (bulk chasing)
 - marked set \mathcal{M}_k must be minimal for optimal rates
- - uses $b \ge 1$ newest vertex bisection (Mitchell) for d = 2 to refine each $T \in \mathcal{M}_k$ so that each element $T \in \mathcal{T}_k$ is bisected at least once.

		Contraction Property		
		000000000		

AFEM: Main Results

- Convergence of AFEM: U_k → u as k → ∞ without assuming that meshsize goes to zero, and with minimal assumptions regarding underlying problem and MARK (Morin, Siebert, Veeser '08).
- Contraction property of AFEM: there exist $0 < \alpha < 1$ and $\gamma > 0$ so that

$$|||u - U_{k+1}|||_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2} \le \alpha^{2} \Big(|||u - U_{k}||_{\Omega}^{2} + \gamma \mathcal{E}_{k}^{2} \Big).$$

• Quasi-optimal convergence rates (for total error): if

$$\inf_{\substack{\#\mathcal{T}-\#\mathcal{T}_0\leq N}} \inf_{V\in\mathbb{V}(\mathcal{T})} \left(|||u-V|||_{\Omega} + \operatorname{osc}_{\mathcal{T}}(V,\mathcal{T}) \right) \preccurlyeq N^{-s}$$

$$\Rightarrow |||u-U_k|||_{\Omega} + \operatorname{osc}_{\mathcal{T}_k}(U_k,\mathcal{T}_k) \preccurlyeq (\#\mathcal{T}_k - \#\mathcal{T}_0)^{-s}.$$

• Sufficient conditions on (u, f, A) for total error decay N^{-s} .

Module ESTIMATE: Basic Properties

Reliability: Upper Bounds (Babuška-Miller, Stevenson)

• Upper bound: there exists a constant $C_1 > 0$, depending solely on the initial mesh T_0 and the smallest eigenvalue a_{\min} of A, such that

$$|||u - U|||_{\Omega}^2 \le C_1 \mathcal{E}_{\mathcal{T}}(U, \mathcal{T})^2$$

Localized upper bound: if U_{*} ∈ V(T_{*}) is the Galerkin solution for a conforming refinement T_{*} of T, and R = R_{T→T*} (refined set), then

$$|||U - U_*|||_{\Omega}^2 \le C_1 \mathcal{E}_T (U, \mathcal{R})^2$$

Efficiency: Lower Bound (Babuška-Miller, Verfürth) There exists a constant $C_2 > 0$, depending only on the shape regularity constant of T_0 and the largest eigenvalue a_{\max} , such that

$$C_2 \mathcal{E}_{\mathcal{T}}(U, \mathcal{T})^2 \leq |||u - U|||_{\Omega}^2 + \operatorname{osc}_{\mathcal{T}}(U, \mathcal{T})^2.$$

(日) (同) (三) (三)

- - Reduction of Estimator: For $\lambda = 1 2^{-b/d}$, $\mathcal{T}_* = \mathsf{REFINE}(\mathcal{T}, \mathcal{M})$, and all $V \in \mathbb{V}(\mathcal{T})$ we have

$$\mathcal{E}_{\mathcal{T}_*}^2(V,\mathcal{T}_*) \leq \mathcal{E}_{\mathcal{T}}^2(V,\mathcal{T}) - \lambda \mathcal{E}_{\mathcal{T}}^2(V,\mathcal{M}).$$

• Lipschitz Property: The mapping $V \mapsto \mathcal{E}_{\mathcal{T}}(V, \mathcal{T})$ satisfies

$$|\mathcal{E}_{\mathcal{T}}(V,\mathcal{T}) - \mathcal{E}_{\mathcal{T}}(W,\mathcal{T})| \le C_0 ||V - W||_{\Omega} \qquad \forall V, W \in \mathbb{V}(\mathcal{T})$$

with a constant C_0 depending on \mathcal{T}_0 , A, d and n.

This implies that for all $\delta > 0$

 $\mathcal{E}_{\mathcal{T}_*}^2(V_*,\mathcal{T}_*) \leq (1+\delta) \left(\mathcal{E}_{\mathcal{T}}^2(V,\mathcal{T}) - \lambda \mathcal{E}_{\mathcal{T}}^2(V,\mathcal{M}) \right) + (1+\delta^{-1}) C_0^2 |\!|\!| V_* - V |\!|\!|_{\Omega}^2.$

- **Dominance:** $\operatorname{osc}_{\mathcal{T}}(U, \mathcal{T}) \leq \mathcal{E}_{\mathcal{T}}(U, \mathcal{T})$
- Pythagoras: $|||u U_*|||_{\Omega}^2 = |||u U|||_{\Omega}^2 |||U U_*|||_{\Omega}^2$

(ロ) (四) (E) (E)

- - Reduction of Estimator: For $\lambda = 1 2^{-b/d}$, $\mathcal{T}_* = \mathsf{REFINE}(\mathcal{T}, \mathcal{M})$, and all $V \in \mathbb{V}(\mathcal{T})$ we have

$$\mathcal{E}_{\mathcal{T}_*}^2(V,\mathcal{T}_*) \leq \mathcal{E}_{\mathcal{T}}^2(V,\mathcal{T}) - \lambda \mathcal{E}_{\mathcal{T}}^2(V,\mathcal{M}).$$

• Lipschitz Property: The mapping $V \mapsto \mathcal{E}_{\mathcal{T}}(V, \mathcal{T})$ satisfies

$$|\mathcal{E}_{\mathcal{T}}(V,\mathcal{T}) - \mathcal{E}_{\mathcal{T}}(W,\mathcal{T})| \le C_0 ||V - W||_{\Omega} \qquad \forall V, W \in \mathbb{V}(\mathcal{T})$$

with a constant C_0 depending on \mathcal{T}_0 , A, d and n.

This implies that for all $\delta > 0$

 $\mathcal{E}_{\mathcal{T}_*}^2(V_*,\mathcal{T}_*) \leq (1+\delta) \left(\mathcal{E}_{\mathcal{T}}^2(V,\mathcal{T}) - \lambda \mathcal{E}_{\mathcal{T}}^2(V,\mathcal{M}) \right) + (1+\delta^{-1}) C_0^2 ||\!| V_* - V |\!|\!|_{\Omega}^2.$

- **Dominance:** $\operatorname{osc}_{\mathcal{T}}(U, \mathcal{T}) \leq \mathcal{E}_{\mathcal{T}}(U, \mathcal{T})$
- Pythagoras: $|||u U_*|||_{\Omega}^2 = |||u U|||_{\Omega}^2 |||U U_*|||_{\Omega}^2$

イロト イポト イヨト イヨト

- - Reduction of Estimator: For $\lambda = 1 2^{-b/d}$, $\mathcal{T}_* = \mathsf{REFINE}(\mathcal{T}, \mathcal{M})$, and all $V \in \mathbb{V}(\mathcal{T})$ we have

$$\mathcal{E}_{\mathcal{T}_*}^2(V,\mathcal{T}_*) \leq \mathcal{E}_{\mathcal{T}}^2(V,\mathcal{T}) - \lambda \mathcal{E}_{\mathcal{T}}^2(V,\mathcal{M}).$$

• Lipschitz Property: The mapping $V \mapsto \mathcal{E}_{\mathcal{T}}(V, \mathcal{T})$ satisfies

$$|\mathcal{E}_{\mathcal{T}}(V,\mathcal{T}) - \mathcal{E}_{\mathcal{T}}(W,\mathcal{T})| \le C_0 ||V - W||_{\Omega} \qquad \forall V, W \in \mathbb{V}(\mathcal{T})$$

with a constant C_0 depending on \mathcal{T}_0 , A, d and n.

This implies that for all $\delta > 0$

 $\mathcal{E}_{\mathcal{T}_*}^2(V_*,\mathcal{T}_*) \leq (1+\delta) \left(\mathcal{E}_{\mathcal{T}}^2(V,\mathcal{T}) - \lambda \mathcal{E}_{\mathcal{T}}^2(V,\mathcal{M}) \right) + (1+\delta^{-1}) C_0^2 ||\!| V_* - V |\!|\!|_{\Omega}^2.$

- **Dominance:** $\operatorname{osc}_{\mathcal{T}}(U, \mathcal{T}) \leq \mathcal{E}_{\mathcal{T}}(U, \mathcal{T})$
- Pythagoras: $|||u U_*|||_{\Omega}^2 = |||u U||_{\Omega}^2 |||U U_*|||_{\Omega}^2$

Module MARK: Dörfler Marking

• Given a mesh \mathcal{T} , indicators $\{\mathcal{E}_{\mathcal{T}}(U_{\mathcal{T}},T)\}_{T\in\mathcal{T}}$, and a parameter $\theta \in (0,1]$, we select a subset \mathcal{M} of \mathcal{T} of marked elements such that

 $\mathcal{E}_{\mathcal{T}}(U,\mathcal{M}) \geq \theta \mathcal{E}_{\mathcal{T}}(U,\mathcal{T})$

• The marked set \mathcal{M} is minimal (this is crucial for optimal cardinality).

Module **REFINE**: Bisection

Binev, Dahmen, DeVore (d = 2), Stevenson (d > 2): If \mathcal{T}_0 has a suitable labeling, then there exists a constant $\Lambda_0 > 0$ only depending on \mathcal{T}_0 and d such that for all $k \ge 1$

$$\#\mathcal{T}_k - \#\mathcal{T}_0 \leq \Lambda_0 \sum_{j=0}^{\kappa-1} \#\mathcal{M}_j.$$

Module SOLVE: Multilevel Solvers

Bramble, Pasciak, Xu,and others; Chen, Nochetto, Xu'10: Optimal multigrid and BPX preconditioners for graded bisection grids, any polynomial degree $n \ge 1$, and any dimension $d \ge 2$, $d \ge 1$, $d \ge 2$

Module MARK: Dörfler Marking

• Given a mesh \mathcal{T} , indicators $\{\mathcal{E}_{\mathcal{T}}(U_{\mathcal{T}},T)\}_{T\in\mathcal{T}}$, and a parameter $\theta \in (0,1]$, we select a subset \mathcal{M} of \mathcal{T} of marked elements such that

 $\mathcal{E}_{\mathcal{T}}(U,\mathcal{M}) \geq \theta \mathcal{E}_{\mathcal{T}}(U,\mathcal{T})$

• The marked set \mathcal{M} is minimal (this is crucial for optimal cardinality).

Module **REFINE**: Bisection

Binev, Dahmen, DeVore (d = 2), Stevenson (d > 2): If \mathcal{T}_0 has a suitable labeling, then there exists a constant $\Lambda_0 > 0$ only depending on \mathcal{T}_0 and d such that for all $k \ge 1$

$$\#\mathcal{T}_k - \#\mathcal{T}_0 \leq \Lambda_0 \sum_{j=0}^{\kappa-1} \#\mathcal{M}_j.$$

Module SOLVE: Multilevel Solvers

Bramble, Pasciak, Xu,and others; Chen, Nochetto, Xu'10: Optimal multigrid and BPX preconditioners for graded bisection grids, any polynomial degree $n \ge 1$, and any dimension $d \ge 2$, $d \ge 1$, $d \ge 2$

Module MARK: Dörfler Marking

• Given a mesh \mathcal{T} , indicators $\{\mathcal{E}_{\mathcal{T}}(U_{\mathcal{T}},T)\}_{T\in\mathcal{T}}$, and a parameter $\theta \in (0,1]$, we select a subset \mathcal{M} of \mathcal{T} of marked elements such that

 $\mathcal{E}_{\mathcal{T}}(U,\mathcal{M}) \geq \theta \mathcal{E}_{\mathcal{T}}(U,\mathcal{T})$

• The marked set \mathcal{M} is minimal (this is crucial for optimal cardinality).

Module **REFINE**: Bisection

Binev, Dahmen, DeVore (d = 2), Stevenson (d > 2): If \mathcal{T}_0 has a suitable labeling, then there exists a constant $\Lambda_0 > 0$ only depending on \mathcal{T}_0 and d such that for all $k \ge 1$

$$\#\mathcal{T}_k - \#\mathcal{T}_0 \leq \Lambda_0 \sum_{j=0}^{\kappa-1} \#\mathcal{M}_j.$$

Module SOLVE: Multilevel Solvers

Bramble, Pasciak, Xu,and others; Chen, Nochetto, Xu'10: Optimal multigrid and BPX preconditioners for graded bisection grids, any polynomial degree $n \ge 1$, and any dimension $d \ge 2$, the set of th

Vanishing Oscillation (Morin, N, Siebert'00) We assume $\operatorname{osc}_{\mathcal{T}_k}(U_k) = 0$. If \mathcal{T}_{k+1} satisfies an interior node property wrt \mathcal{T}_k , then we have the discrete lower bound

 $C_2 \mathcal{E}_k (U_k, \mathcal{M}_k)^2 \le || U_{k+1} - U_k ||_{\Omega}^2$

Therorem 2 (Contraction) For $\alpha := (1 - \theta^2 \frac{C_2}{C_1})^{1/2} < 1$ there holds

 $\|\boldsymbol{u} - \boldsymbol{U}_{k+1}\|_{\Omega} \leq \alpha \|\boldsymbol{u} - \boldsymbol{U}_{k}\|_{\Omega},$

Proof: Recall Pythagoras

$$|||u - U_{k+1}|||_{\Omega}^{2} = |||u - U_{k}||_{\Omega}^{2} - |||U_{k+1} - U_{k}||_{\Omega}^{2}.$$

Combine the discrete lower bound with Dörfler marking and upper bound

$$\| U_{k+1} - U_k \|_{\Omega}^2 \ge C_2 \mathcal{E}_k (U_k, \mathcal{M}_k)^2 \ge C_2 \theta^2 \mathcal{E}_k (U_k)^2 \ge \frac{C_2}{C_1} \theta^2 \| u - U_k \|_{\Omega}^2$$

$$\Rightarrow \quad \| u - U_{k+1} \|_{\Omega}^2 \le \left(1 - \frac{C_2}{C_1} \theta^2 \right) \| u - U_k \|_{\Omega}^2.$$

(日) (同) (三) (三)

Vanishing Oscillation (Morin, N, Siebert'00) We assume $\operatorname{osc}_{\mathcal{T}_k}(U_k) = 0$. If \mathcal{T}_{k+1} satisfies an interior node property wrt \mathcal{T}_k , then we have the discrete lower bound

 $C_2 \mathcal{E}_k (U_k, \mathcal{M}_k)^2 \le || U_{k+1} - U_k ||_{\Omega}^2$

Therefore 2 (Contraction) For $\alpha := (1 - \theta^2 \frac{C_2}{C_1})^{1/2} < 1$ there holds

 $|||u - U_{k+1}|||_{\Omega} \leq \alpha |||u - U_k|||_{\Omega},$

Proof: Recall Pythagoras

$$|||u - U_{k+1}|||_{\Omega}^{2} = |||u - U_{k}||_{\Omega}^{2} - |||U_{k+1} - U_{k}||_{\Omega}^{2}.$$

Combine the discrete lower bound with Dörfler marking and upper bound

$$\begin{aligned} \|U_{k+1} - U_k\|_{\Omega}^2 &\geq C_2 \mathcal{E}_k (U_k, \mathcal{M}_k)^2 \geq C_2 \theta^2 \mathcal{E}_k (U_k)^2 \geq \frac{C_2}{C_1} \theta^2 \|\|u - U_k\|_{\Omega}^2 \\ \Rightarrow \|\|u - U_{k+1}\|_{\Omega}^2 \leq \left(1 - \frac{C_2}{C_1} \theta^2\right) \|\|u - U_k\|_{\Omega}^2. \end{aligned}$$

<ロ> <同> <同> < 回> < 回>

Vanishing Oscillation (Morin, N, Siebert'00) We assume $\operatorname{osc}_{\mathcal{T}_k}(U_k) = 0$. If \mathcal{T}_{k+1} satisfies an interior node property wrt \mathcal{T}_k , then we have the discrete lower bound

 $C_2 \mathcal{E}_k (U_k, \mathcal{M}_k)^2 \le || U_{k+1} - U_k ||_{\Omega}^2$

Therefore 2 (Contraction) For $\alpha := (1 - \theta^2 \frac{C_2}{C_1})^{1/2} < 1$ there holds

$$|||u - U_{k+1}|||_{\Omega} \le \alpha |||u - U_k|||_{\Omega},$$

Proof: Recall Pythagoras

$$|||u - U_{k+1}|||_{\Omega}^{2} = |||u - U_{k}|||_{\Omega}^{2} - |||U_{k+1} - U_{k}|||_{\Omega}^{2}.$$

Combine the discrete lower bound with Dörfler marking and upper bound

$$\| U_{k+1} - U_k \|_{\Omega}^2 \ge C_2 \mathcal{E}_k (U_k, \mathcal{M}_k)^2 \ge C_2 \theta^2 \mathcal{E}_k (U_k)^2 \ge \frac{C_2}{C_1} \theta^2 \| u - U_k \|_{\Omega}^2$$
$$\Rightarrow \| u - U_{k+1} \|_{\Omega}^2 \le \left(1 - \frac{C_2}{C_2} \theta^2 \right) \| u - U_k \|_{\Omega}^2$$

<ロ> (同) (同) (言) (言)

Vanishing Oscillation (Morin, N, Siebert'00) We assume $\operatorname{osc}_{\mathcal{T}_k}(U_k) = 0$. If \mathcal{T}_{k+1} satisfies an interior node property wrt \mathcal{T}_k , then we have the discrete lower bound

 $C_2 \mathcal{E}_k (U_k, \mathcal{M}_k)^2 \le || U_{k+1} - U_k ||_{\Omega}^2$

Therorem 2 (Contraction) For $\alpha := (1 - \theta^2 \frac{C_2}{C_1})^{1/2} < 1$ there holds

$$|||u - U_{k+1}|||_{\Omega} \le \alpha |||u - U_k|||_{\Omega},$$

Proof: Recall Pythagoras

$$|||u - U_{k+1}|||_{\Omega}^{2} = |||u - U_{k}||_{\Omega}^{2} - |||U_{k+1} - U_{k}|||_{\Omega}^{2}.$$

Combine the discrete lower bound with Dörfler marking and upper bound

$$\| U_{k+1} - U_k \|_{\Omega}^2 \ge C_2 \mathcal{E}_k (U_k, \mathcal{M}_k)^2 \ge C_2 \theta^2 \mathcal{E}_k (U_k)^2 \ge \frac{C_2}{C_1} \theta^2 \| \|u - U_k \|_{\Omega}^2$$

$$\Rightarrow \quad \| u - U_{k+1} \|_{\Omega}^2 \le \left(1 - \frac{C_2}{C_1} \theta^2 \right) \| \|u - U_k \|_{\Omega}^2.$$

イロト イポト イヨト イヨト

Vanishing Oscillation (Morin, N, Siebert'00) We assume $\operatorname{osc}_{\mathcal{T}_k}(U_k) = 0$. If \mathcal{T}_{k+1} satisfies an interior node property wrt \mathcal{T}_k , then we have the discrete lower bound

 $C_2 \mathcal{E}_k (U_k, \mathcal{M}_k)^2 \le || U_{k+1} - U_k ||_{\Omega}^2$

Therorem 2 (Contraction) For $\alpha := (1 - \theta^2 \frac{C_2}{C_1})^{1/2} < 1$ there holds

$$|||u - U_{k+1}|||_{\Omega} \le \alpha |||u - U_k|||_{\Omega},$$

Proof: Recall Pythagoras

$$|||u - U_{k+1}|||_{\Omega}^{2} = |||u - U_{k}|||_{\Omega}^{2} - |||U_{k+1} - U_{k}|||_{\Omega}^{2}.$$

Combine the discrete lower bound with Dörfler marking and upper bound

$$\| U_{k+1} - U_k \|_{\Omega}^2 \ge C_2 \mathcal{E}_k (U_k, \mathcal{M}_k)^2 \ge C_2 \theta^2 \mathcal{E}_k (U_k)^2 \ge \frac{C_2}{C_1} \theta^2 \| u - U_k \|_{\Omega}^2$$

$$\Rightarrow \quad \| u - U_{k+1} \|_{\Omega}^2 \le \left(1 - \frac{C_2}{C_1} \theta^2 \right) \| u - U_k \|_{\Omega}^2.$$

イロト イポト イヨト イヨト

General Data: Contracting Quantities

Energy error: ||U_k − u|||_Ω is monotone, but not strictly monotone (e.g. U_{k+1} = U_k).

▶ Residual estimator: $\mathcal{E}_k(U_k, \mathcal{T}_k)$ is not reduced by AFEM, and is not even monotone. But, if $U_{k+1} = U_k$, then $\mathcal{E}_k(U_k, \mathcal{T}_k)$ decreases strictly

 $\mathcal{E}_{k+1}^2(U_{k+1},\mathcal{T}_{k+1}) = \mathcal{E}_{k+1}^2(U_k,\mathcal{T}_{k+1}) \le \mathcal{E}_k^2(U_k,\mathcal{T}_k) - \lambda \mathcal{E}_k^2(U_k,\mathcal{M}_k)$

► Heuristics: the quantity $|||U_k - u|||_{\Omega}^2 + \gamma \mathcal{E}_k(U_k, \mathcal{T}_k)^2$ might contract!

General Data: Contracting Quantities

Energy error: ||U_k − u|||_Ω is monotone, but not strictly monotone (e.g. U_{k+1} = U_k).

▶ Residual estimator: $\mathcal{E}_k(U_k, \mathcal{T}_k)$ is not reduced by AFEM, and is not even monotone. But, if $U_{k+1} = U_k$, then $\mathcal{E}_k(U_k, \mathcal{T}_k)$ decreases strictly

$$\mathcal{E}_{k+1}^2(U_{k+1},\mathcal{T}_{k+1}) = \mathcal{E}_{k+1}^2(U_k,\mathcal{T}_{k+1}) \le \mathcal{E}_k^2(U_k,\mathcal{T}_k) - \lambda \mathcal{E}_k^2(U_k,\mathcal{M}_k)$$

► Heuristics: the quantity $|||U_k - u|||_{\Omega}^2 + \gamma \mathcal{E}_k(U_k, \mathcal{T}_k)^2$ might contract!

General Data: Contracting Quantities

Energy error: ||U_k − u|||_Ω is monotone, but not strictly monotone (e.g. U_{k+1} = U_k).

▶ Residual estimator: $\mathcal{E}_k(U_k, \mathcal{T}_k)$ is not reduced by AFEM, and is not even monotone. But, if $U_{k+1} = U_k$, then $\mathcal{E}_k(U_k, \mathcal{T}_k)$ decreases strictly

$$\mathcal{E}_{k+1}^2(U_{k+1},\mathcal{T}_{k+1}) = \mathcal{E}_{k+1}^2(U_k,\mathcal{T}_{k+1}) \le \mathcal{E}_k^2(U_k,\mathcal{T}_k) - \lambda \mathcal{E}_k^2(U_k,\mathcal{M}_k)$$

► Heuristics: the quantity $|||U_k - u|||_{\Omega}^2 + \gamma \mathcal{E}_k(U_k, \mathcal{T}_k)^2$ might contract!

Contraction Property (Cascón, Kreuzer, Nochetto, Siebert' 08)

Theorem 3. There exist constants $\gamma > 0$ and $0 < \alpha < 1$, depending on the shape regularity constant of T_0 , the eigenvalues of A, and θ , such that

$$|||u - U_{k+1}|||_{\Omega}^{2} + \gamma \, \mathcal{E}_{k+1}^{2} \le \alpha^{2} \left(|||u - U_{k}||_{\Omega}^{2} + \gamma \, \mathcal{E}_{k}^{2} \right).$$

Main ingredients of the proof:

- ▶ Pythagoras: $|||U_{k+1} u|||_{\Omega}^2 = |||U_k u|||_{\Omega}^2 ||U_k U_{k+1}|||_{\Omega}^2$;
- a posteriori upper bound (not lower (or discrete lower) bound);
- reduction of the estimator;
- Dörfler marking (for estimator).

(a)

Contraction Property (Cascón, Kreuzer, Nochetto, Siebert' 08)

Theorem 3. There exist constants $\gamma > 0$ and $0 < \alpha < 1$, depending on the shape regularity constant of T_0 , the eigenvalues of A, and θ , such that

$$\| u - U_{k+1} \|_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2} \le \alpha^{2} \left(\| u - U_{k} \|_{\Omega}^{2} + \gamma \mathcal{E}_{k}^{2} \right).$$

Main ingredients of the proof:

- ▶ Pythagoras: $|||U_{k+1} u|||_{\Omega}^2 = |||U_k u|||_{\Omega}^2 |||U_k U_{k+1}|||_{\Omega}^2$;
- a posteriori upper bound (not lower (or discrete lower) bound);
- reduction of the estimator;
- Dörfler marking (for estimator).

		Contraction Property	
		0000000000	

Proof of Theorem 3

Error orthogonality $|||u - U_{k+1}|||_{\Omega}^2 = |||u - U_k|||_{\Omega}^2 - |||U_k - U_{k+1}|||_{\Omega}^2$ yields $|||u - U_{k+1}|||_{\Omega}^2 + \gamma \mathcal{E}_{k+1}^2(U_{k+1}, \mathcal{T}_{k+1}) \le |||u - U_k||_{\Omega}^2 - |||U_k - U_{k+1}|||_{\Omega}^2 + \gamma \mathcal{E}_{k+1}^2(U_{k+1}, \mathcal{T}_{k+1})$

Estimator reduction property implies

 $\begin{aligned} \| u - U_{k+1} \|_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2} (U_{k+1}, \mathcal{T}_{k+1}) &\leq \| u - U_{k} \|_{\Omega}^{2} - \| U_{k} - U_{k+1} \|_{\Omega}^{2} \\ + \gamma (1+\delta) \left(\mathcal{E}_{k}^{2} (U_{k}, \mathcal{T}_{k}) - \lambda \mathcal{E}_{k}^{2} (U_{k}, \mathcal{M}_{k}) \right) + \gamma (1+\delta^{-1}) C_{0}^{2} \| U_{k} - U_{k+1} \|_{\Omega}^{2}. \end{aligned}$

Choose $\gamma := \frac{1}{(1+\delta^{-1})C_0^2}$ to cancel $|||U_k - U_{k+1}|||_{\Omega}$:

 $\|u - U_{k+1}\|_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2}(U_{k+1}, \mathcal{T}_{k+1}) \leq \||u - U_{k}\|_{\Omega}^{2}$ $+ \gamma (1 + \delta) \mathcal{E}_{k}^{2}(U_{k}, \mathcal{T}_{k}) - \gamma (1 + \delta) \lambda \mathcal{E}_{k}^{2}(U_{k}, \mathcal{M}_{k}).$

<ロ> <同> <同> < 回> < 回>

		Contraction Property		
		0000000000		

Proof of Theorem 3

Error orthogonality
$$|||u - U_{k+1}|||_{\Omega}^2 = |||u - U_k|||_{\Omega}^2 - |||U_k - U_{k+1}|||_{\Omega}^2$$
 yields
 $|||u - U_{k+1}|||_{\Omega}^2 + \gamma \mathcal{E}_{k+1}^2(U_{k+1}, \mathcal{T}_{k+1}) \le |||u - U_k||_{\Omega}^2 - |||U_k - U_{k+1}|||_{\Omega}^2 + \gamma \mathcal{E}_{k+1}^2(U_{k+1}, \mathcal{T}_{k+1})$

Estimator reduction property implies

$$\begin{aligned} \| u - U_{k+1} \|_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2} (U_{k+1}, \mathcal{T}_{k+1}) &\leq \| u - U_{k} \|_{\Omega}^{2} - \| U_{k} - U_{k+1} \|_{\Omega}^{2} \\ + \gamma (1+\delta) \left(\mathcal{E}_{k}^{2} (U_{k}, \mathcal{T}_{k}) - \lambda \mathcal{E}_{k}^{2} (U_{k}, \mathcal{M}_{k}) \right) + \gamma (1+\delta^{-1}) C_{0}^{2} \| U_{k} - U_{k+1} \|_{\Omega}^{2}. \end{aligned}$$

Choose $\gamma := \frac{1}{(1+\delta^{-1})C_0^2}$ to cancel $|||U_k - U_{k+1}|||_{\Omega}$:

$$\|u - U_{k+1}\|_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2}(U_{k+1}, \mathcal{T}_{k+1}) \leq \|\|u - U_{k}\|_{\Omega}^{2} + \gamma (1+\delta) \mathcal{E}_{k}^{2}(U_{k}, \mathcal{T}_{k}) - \gamma (1+\delta) \lambda \mathcal{E}_{k}^{2}(U_{k}, \mathcal{M}_{k}).$$

(a)

		Contraction Property		
		0000000000		

Proof of Theorem 3

Error orthogonality
$$|||u - U_{k+1}|||_{\Omega}^2 = |||u - U_k|||_{\Omega}^2 - |||U_k - U_{k+1}|||_{\Omega}^2$$
 yields
 $|||u - U_{k+1}|||_{\Omega}^2 + \gamma \mathcal{E}_{k+1}^2(U_{k+1}, \mathcal{T}_{k+1}) \leq |||u - U_k||_{\Omega}^2 - |||U_k - U_{k+1}|||_{\Omega}^2 + \gamma \mathcal{E}_{k+1}^2(U_{k+1}, \mathcal{T}_{k+1})$

Estimator reduction property implies

$$\begin{split} \| u - U_{k+1} \|_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2} (U_{k+1}, \mathcal{T}_{k+1}) &\leq \| u - U_{k} \|_{\Omega}^{2} - \| U_{k} - U_{k+1} \|_{\Omega}^{2} \\ + \gamma (1+\delta) \Big(\mathcal{E}_{k}^{2} (U_{k}, \mathcal{T}_{k}) - \lambda \mathcal{E}_{k}^{2} (U_{k}, \mathcal{M}_{k}) \Big) + \gamma (1+\delta^{-1}) C_{0}^{2} \| U_{k} - U_{k+1} \|_{\Omega}^{2}. \end{split}$$

Choose $\gamma := \frac{1}{(1+\delta^{-1})C_0^2}$ to cancel $|||U_k - U_{k+1}|||_{\Omega}$:

$$|||u - U_{k+1}|||_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2}(U_{k+1}, \mathcal{T}_{k+1}) \leq |||u - U_{k}|||_{\Omega}^{2} + \gamma (1 + \delta) \mathcal{E}_{k}^{2}(U_{k}, \mathcal{T}_{k}) - \gamma (1 + \delta) \lambda \mathcal{E}_{k}^{2}(U_{k}, \mathcal{M}_{k}).$$

(ロ) (四) (E) (E)

Proof of Theorem 3 (Continued)

Dörfler marking $\mathcal{E}_k(U_k, \mathcal{M}_k) \geq \theta \mathcal{E}_k(U_k, \mathcal{T}_k)$ yields

$$|||u - U_{k+1}|||_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2}(U_{k+1}, \mathcal{T}_{k+1}) \leq |||u - U_{k}||_{\Omega}^{2} - \frac{1}{2}\gamma(1+\delta)\lambda\theta^{2}\mathcal{E}_{k}^{2}(U_{k}, \mathcal{T}_{k}) + \gamma(1+\delta)\mathcal{E}_{k}^{2}(U_{k}, \mathcal{T}_{k}) - \frac{1}{2}\gamma(1+\delta)\lambda\theta^{2}\mathcal{E}_{k}^{2}(U_{k}, \mathcal{T}_{k}).$$

Applying the Upper Bound $|||u - U_k|||_{\Omega}^2 \leq C_1 \mathcal{E}_k^2(U_k, \mathcal{T}_k)$ gives

$$\| u - U_{k+1} \|_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2} (U_{k+1}, \mathcal{T}_{k+1}) \leq \left(1 - \frac{1}{2} \gamma (1+\delta) \frac{\lambda \theta^{2}}{C_{1}} \right) \| u - U_{k} \|_{\Omega}^{2} + (1+\delta) \left(1 - \frac{\lambda \theta^{2}}{2} \right) \gamma \mathcal{E}_{k}^{2} (U_{k}, \mathcal{T}_{k}).$$

Choosing $\delta > 0$ sufficiently small so that

$$\alpha^2 := \max\left\{1 - \frac{1}{2}\gamma(1+\delta)\frac{\lambda\theta^2}{C_1}, (1+\delta)\left(1 - \frac{\lambda\theta^2}{2}\right)\right\} < 1,$$

we finally obtain the desired estimate

$$|||u - U_{k+1}|||_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2}(U_{k+1}, \mathcal{T}_{k+1}) \leq \alpha^{2} \Big(|||u - U_{k}||_{\Omega}^{2} + \gamma \mathcal{E}_{k}^{2}(U_{k}, \mathcal{T}_{k}) \Big).$$

Proof of Theorem 3 (Continued)

Dörfler marking $\mathcal{E}_k(U_k, \mathcal{M}_k) \geq \theta \mathcal{E}_k(U_k, \mathcal{T}_k)$ yields

$$\begin{aligned} \| u - U_{k+1} \|_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2} (U_{k+1}, \mathcal{T}_{k+1}) &\leq \| u - U_{k} \|_{\Omega}^{2} - \frac{1}{2} \gamma (1+\delta) \lambda \theta^{2} \mathcal{E}_{k}^{2} (U_{k}, \mathcal{T}_{k}) \\ &+ \gamma (1+\delta) \mathcal{E}_{k}^{2} (U_{k}, \mathcal{T}_{k}) - \frac{1}{2} \gamma (1+\delta) \lambda \theta^{2} \mathcal{E}_{k}^{2} (U_{k}, \mathcal{T}_{k}). \end{aligned}$$

Applying the Upper Bound $|||u - U_k|||_{\Omega}^2 \leq C_1 \mathcal{E}_k^2(U_k, \mathcal{T}_k)$ gives

$$\begin{aligned} \| u - U_{k+1} \|_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2} (U_{k+1}, \mathcal{T}_{k+1}) &\leq \left(1 - \frac{1}{2} \gamma (1+\delta) \frac{\lambda \theta^{2}}{C_{1}} \right) \| u - U_{k} \|_{\Omega}^{2} \\ &+ (1+\delta) \left(1 - \frac{\lambda \theta^{2}}{2} \right) \gamma \mathcal{E}_{k}^{2} (U_{k}, \mathcal{T}_{k}). \end{aligned}$$

Choosing $\delta > 0$ sufficiently small so that

$$\alpha^2 := \max\left\{1 - \frac{1}{2}\gamma(1+\delta)\frac{\lambda\theta^2}{C_1}, (1+\delta)\left(1 - \frac{\lambda\theta^2}{2}\right)\right\} < 1$$

we finally obtain the desired estimate

$$|||u - U_{k+1}|||_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2}(U_{k+1}, \mathcal{T}_{k+1}) \le \alpha^{2} \Big(|||u - U_{k}||_{\Omega}^{2} + \gamma \mathcal{E}_{k}^{2}(U_{k}, \mathcal{T}_{k}) \Big).$$
Proof of Theorem 3 (Continued)

Dörfler marking $\mathcal{E}_k(U_k, \mathcal{M}_k) \geq \theta \mathcal{E}_k(U_k, \mathcal{T}_k)$ yields

$$\begin{split} \| u - U_{k+1} \|_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2} (U_{k+1}, \mathcal{T}_{k+1}) &\leq \| u - U_{k} \|_{\Omega}^{2} - \frac{1}{2} \gamma (1+\delta) \lambda \theta^{2} \mathcal{E}_{k}^{2} (U_{k}, \mathcal{T}_{k}) \\ &+ \gamma (1+\delta) \mathcal{E}_{k}^{2} (U_{k}, \mathcal{T}_{k}) - \frac{1}{2} \gamma (1+\delta) \lambda \theta^{2} \mathcal{E}_{k}^{2} (U_{k}, \mathcal{T}_{k}). \end{split}$$

Applying the Upper Bound $|||u - U_k|||_{\Omega}^2 \leq C_1 \mathcal{E}_k^2(U_k, \mathcal{T}_k)$ gives

$$\begin{split} \| u - U_{k+1} \|_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2} (U_{k+1}, \mathcal{T}_{k+1}) &\leq \left(1 - \frac{1}{2} \gamma (1+\delta) \frac{\lambda \theta^{2}}{C_{1}} \right) \| u - U_{k} \|_{\Omega}^{2} \\ &+ (1+\delta) \left(1 - \frac{\lambda \theta^{2}}{2} \right) \gamma \mathcal{E}_{k}^{2} (U_{k}, \mathcal{T}_{k}). \end{split}$$

Choosing $\delta > 0$ sufficiently small so that

$$\alpha^2 := \max\left\{1 - \frac{1}{2}\gamma(1+\delta)\frac{\lambda\theta^2}{C_1}, (1+\delta)\left(1 - \frac{\lambda\theta^2}{2}\right)\right\} < 1,$$

we finally obtain the desired estimate

$$|||u - U_{k+1}|||_{\Omega}^{2} + \gamma \mathcal{E}_{k+1}^{2}(U_{k+1}, \mathcal{T}_{k+1}) \leq \alpha^{2} \Big(|||u - U_{k}||_{\Omega}^{2} + \gamma \mathcal{E}_{k}^{2}(U_{k}, \mathcal{T}_{k}) \Big).$$

			Optimality	

Outline

Adaptivity: Goals

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

AFEM: Contraction Property

AFEM: Optimality

Extensions and Limitations

The Total Error

- AFEM controls the new error quantity $|||u U_k|||_{\Omega}^2 + \gamma \mathcal{E}_k^2(U_k, \mathcal{T}_k).$
- Since estimator dominates oscillation

$$\operatorname{osc}_k(U_k, \mathcal{T}_k) \leq \mathcal{E}_k(U_k, \mathcal{T}_k)$$

and there is a global lower bound,

$$C_2 \mathcal{E}_k^2(U_k, \mathcal{T}_k) \le |||u - U_k|||_{\Omega}^2 + \operatorname{osc}_k^2(U_k, \mathcal{T}_k)$$

 $|||u - U_k|||_{\Omega}^2 + \gamma \mathcal{E}_k^2(U_k, \mathcal{T}_k)$ is equivalent to total error and error estimator:

$$|||u - U_k|||_{\Omega}^2 + \gamma \mathcal{E}_k^2(U_k, \mathcal{T}_k) \approx |||u - U_k|||_{\Omega}^2 + \operatorname{osc}_k^2(U_k, \mathcal{T}_k) \approx \mathcal{E}_k^2(U_k, \mathcal{T}_k)$$

• Total error:
$$E_{\mathcal{T}}(u, A, f; U) := \left(\| u - U \|_{\Omega}^2 + \operatorname{osc}_{\mathcal{T}}^2(U, \mathcal{T}) \right)^{1/2}$$

(日)

The Total Error: Quasi-Best Approximation

• Operator with pw constant A (eg Laplace) and polynomial degree n = 1:

$$E_{\mathcal{T}}^{2}(u, A, f; U) = |||u - U|||_{\Omega}^{2} + ||h(f - P_{0}f)||_{\Omega}^{2}$$

• Quasi-Best Approximation: There exists a constant D > 0 only depending on oscillation of A on \mathcal{T}_0 and on \mathcal{T}_0 such that

$$E_{\mathcal{T}}(u, A, f; U) \le D \inf_{V \in \mathbb{V}(\mathcal{T})} E_{\mathcal{T}}(u, A, f; V).$$

< ロ > < 同 > < 三 > < 三

The Total Error: Quasi-Best Approximation

• Operator with pw constant A (eg Laplace) and polynomial degree n = 1:

$$E_{\mathcal{T}}^{2}(u, A, f; U) = |||u - U|||_{\Omega}^{2} + ||h(f - P_{0}f)||_{\Omega}^{2}$$

• Quasi-Best Approximation: There exists a constant D > 0 only depending on oscillation of A on \mathcal{T}_0 and on \mathcal{T}_0 such that

$$E_{\mathcal{T}}(u, A, f; U) \le D \inf_{V \in \mathbb{V}(\mathcal{T})} E_{\mathcal{T}}(u, A, f; V).$$

• • • • • • • • • • • • •

Approximation Class (for Total Error)

The set of all conforming triangulations with at most N elements more than in \mathcal{T}_0 is denoted

$$\mathbb{T}_N := \left\{ \mathcal{T} \in \mathbb{T} \mid \#\mathcal{T} - \#\mathcal{T}_0 \le N \right\}.$$

The quality of the best approximation to the total error in \mathbb{T}_N is

$$\sigma_N(u; A, f) := \inf_{\mathcal{T} \in \mathbb{T}_N} \inf_{V \in \mathbb{V}(\mathcal{T})} E_{\mathcal{T}}(u, A, f; V)$$

For $0 < s \leq n/d$ the approximation class is finally given as

$$\mathbb{A}_s := \left\{ (u, A, f) \mid |u, A, f|_s := \sup_{N \ge 0} \left(N^s \sigma_N(u; A, f) \right) < \infty \right\}.$$

Approximation of data is explicitly included in the definition of the class A_s :

$$r(V) - P_{n-1}r(V)$$
 where $r(V) = \operatorname{div}(A\nabla V) + f$,

with $n \geq 1$. Nonlinear coupling between A and $abla \mathcal{U}_{\mathbf{k}}$ yia escillation ,

Approximation Class (for Total Error)

The set of all conforming triangulations with at most N elements more than in \mathcal{T}_0 is denoted

$$\mathbb{T}_N := \left\{ \mathcal{T} \in \mathbb{T} \mid \#\mathcal{T} - \#\mathcal{T}_0 \le N \right\}.$$

The quality of the best approximation to the total error in \mathbb{T}_N is

$$\sigma_N(u; A, f) := \inf_{\mathcal{T} \in \mathbb{T}_N} \inf_{V \in \mathbb{V}(\mathcal{T})} E_{\mathcal{T}}(u, A, f; V)$$

For $0 < s \leq n/d$ the approximation class is finally given as

$$\mathbb{A}_s := \left\{ (u, A, f) \mid |u, A, f|_s := \sup_{N \ge 0} \left(N^s \sigma_N(u; A, f) \right) < \infty \right\}.$$

Approximation of data is explicitly included in the definition of the class \mathbb{A}_s :

$$r(V) - P_{n-1}r(V)$$
 where $r(V) = \operatorname{div}(A\nabla V) + f$,

with $n \ge 1$. Nonlinear coupling between A and ∇U_n via oscillation I_n , $I_n \to \infty$ Convergence Rates for AFEM: General Theory Ricardo H. Nochetto

Characterization of Approximation Class

• For A pw constant over \mathcal{T}_0 , $n \geq 1$, $d \geq 2$, we have the equivalence

$$|u, f, A|_s \approx |u|_{\mathcal{A}_s} + |f|_{\mathcal{B}_s}$$

where

$$\begin{aligned} \mathcal{A}_s: \quad |v|_{\mathcal{A}_s} &:= \sup_{N>0} \left(N^s \inf_{\mathcal{T} \in \mathbb{T}_N} \inf_{V \in \mathbb{V}(\mathcal{T})} \| v - V \|_{\Omega} \right) < \infty, \\ \mathcal{B}_s: \quad |g|_{\mathcal{B}_s} &:= \sup_{N>0} \left(N^s \inf_{\mathcal{T} \in \mathbb{T}_N} \| h_{\mathcal{T}}(g - P_{n-1}g) \|_{L^2(\Omega)} \right) < \infty \end{aligned}$$

- Characterization of class A_s is open for variable A (nonlinear interaction between A and V in osc_T(V, T)).
- Sufficient condition (dimension d = 2, u ∈ H¹₀(Ω) ∩ W²_p(Ω; T₀) with p > 1, f ∈ L²(Ω), A pw Lipschitz, and polynomial degree n = 1, imply optimal decay rate s = 1/2, and

$$|u, f, A|_{1/2} \lesssim \|D^2 u\|_{L^p(\Omega; \mathcal{T}_0)} + \|A\|_{W^1_{\infty}(\Omega; \mathcal{T}_0)} + \|f\|_{L^2(\Omega)}.$$

 \Rightarrow s = 1/2 for checkerboard discontinuous coefficients (Kellogg)

Stevenson's insight: any marking strategy that reduces the energy error relative to the current value must contain a substantial portion of $\mathcal{E}_{\mathcal{T}}(U,\mathcal{T})$, and so it can be related to Dörfler Marking.

Lemma 3 (Dörfler Marking). Let $\theta < \theta_* = \sqrt{\frac{C_2}{C_1}}$, and $\mu = 1 - \frac{\theta^2}{\theta_*^2}$. Let \mathcal{T}_* be a conforming refinement of \mathcal{T} , and $U_* \in \mathbb{V}(\mathcal{T}_*)$ satisfy

$$||| u - U_* |||_{\Omega}^2 \le \mu ||| u - U |||_{\Omega}^2.$$

Then the refinement set $\mathcal{R} = \mathcal{R}_{\mathcal{T} \to \mathcal{T}_*}$ satisfies Dörfler marking with θ

 $\mathcal{E}_{\mathcal{T}}(U,\mathcal{R}) \geq \theta \mathcal{E}_{\mathcal{T}}(U,\mathcal{T}).$

Proof: Use lower bound followed by Pythagoras equality

$$\begin{split} (1-\mu)C_2 \mathcal{E}_{\mathcal{T}}^2(U,\mathcal{T}) &\leq (1-\mu) ||\!| u - U ||\!|_{\Omega}^2 \\ &\leq ||\!| u - U ||\!|_{\Omega}^2 - ||\!| u - U_* ||\!|_{\Omega}^2 = ||\!| U - U_* ||\!|_{\Omega}^2 \end{split}$$

Finally, resort to the discrete lower bound

$$(1-\mu)C_2\mathcal{E}_T^2(U,T) \le |||U-U_*|||_{\Omega}^2 \le C_1\mathcal{E}_T^2(U,\mathcal{R}).$$

< ロ > < 同 > < 三 > < 三

Stevenson's insight: any marking strategy that reduces the energy error relative to the current value must contain a substantial portion of $\mathcal{E}_{\mathcal{T}}(U,\mathcal{T})$, and so it can be related to Dörfler Marking.

Lemma 3 (Dörfler Marking). Let $\theta < \theta_* = \sqrt{\frac{C_2}{C_1}}$, and $\mu = 1 - \frac{\theta^2}{\theta_*^2}$. Let \mathcal{T}_* be a conforming refinement of \mathcal{T} , and $U_* \in \mathbb{V}(\mathcal{T}_*)$ satisfy

$$|||u - U_*|||_{\Omega}^2 \le \mu |||u - U|||_{\Omega}^2.$$

Then the refinement set $\mathcal{R} = \mathcal{R}_{\mathcal{T} \to \mathcal{T}_*}$ satisfies Dörfler marking with θ

 $\mathcal{E}_{\mathcal{T}}(U,\mathcal{R}) \geq \theta \mathcal{E}_{\mathcal{T}}(U,\mathcal{T}).$

Proof: Use lower bound followed by Pythagoras equality

$$\begin{split} (1-\mu)C_2 \mathcal{E}_{\mathcal{T}}^2(U,\mathcal{T}) &\leq (1-\mu) ||\!| u - U ||\!|_{\Omega}^2 \\ &\leq ||\!| u - U ||\!|_{\Omega}^2 - ||\!| u - U_* ||\!|_{\Omega}^2 = ||\!| U - U_* ||\!|_{\Omega}^2 \end{split}$$

Finally, resort to the discrete lower bound

$$(1-\mu)C_2\mathcal{E}_T^2(U,T) \le |||U-U_*|||_{\Omega}^2 \le C_1\mathcal{E}_T^2(U,\mathcal{R}).$$

(a)

Stevenson's insight: any marking strategy that reduces the energy error relative to the current value must contain a substantial portion of $\mathcal{E}_{\mathcal{T}}(U,\mathcal{T})$, and so it can be related to Dörfler Marking.

Lemma 3 (Dörfler Marking). Let $\theta < \theta_* = \sqrt{\frac{C_2}{C_1}}$, and $\mu = 1 - \frac{\theta^2}{\theta_*^2}$. Let \mathcal{T}_* be a conforming refinement of \mathcal{T} , and $U_* \in \mathbb{V}(\mathcal{T}_*)$ satisfy

$$|||u - U_*|||_{\Omega}^2 \le \mu |||u - U|||_{\Omega}^2.$$

Then the refinement set $\mathcal{R} = \mathcal{R}_{\mathcal{T} \to \mathcal{T}_*}$ satisfies Dörfler marking with θ

 $\mathcal{E}_{\mathcal{T}}(U,\mathcal{R}) \geq \theta \mathcal{E}_{\mathcal{T}}(U,\mathcal{T}).$

Proof: Use lower bound followed by Pythagoras equality

$$\begin{split} (1-\mu)C_2 \mathcal{E}_{\mathcal{T}}^2(U,\mathcal{T}) &\leq (1-\mu) \| u - U \|_{\Omega}^2 \\ &\leq \| u - U \|_{\Omega}^2 - \| u - U_* \|_{\Omega}^2 = \| U - U_* \|_{\Omega}^2. \end{split}$$

Finally, resort to the discrete lower bound

$$(1-\mu)C_2\mathcal{E}_T^2(U,\mathcal{T}) \le |||U-U_*|||_{\Omega}^2 \le C_1\mathcal{E}_T^2(U,\mathcal{R}).$$

(a)

Stevenson's insight: any marking strategy that reduces the energy error relative to the current value must contain a substantial portion of $\mathcal{E}_{\mathcal{T}}(U,\mathcal{T})$, and so it can be related to Dörfler Marking.

Lemma 3 (Dörfler Marking). Let $\theta < \theta_* = \sqrt{\frac{C_2}{C_1}}$, and $\mu = 1 - \frac{\theta^2}{\theta_*^2}$. Let \mathcal{T}_* be a conforming refinement of \mathcal{T} , and $U_* \in \mathbb{V}(\mathcal{T}_*)$ satisfy

$$|||u - U_*|||_{\Omega}^2 \le \mu |||u - U|||_{\Omega}^2.$$

Then the refinement set $\mathcal{R} = \mathcal{R}_{\mathcal{T} \to \mathcal{T}_*}$ satisfies Dörfler marking with θ

 $\mathcal{E}_{\mathcal{T}}(U,\mathcal{R}) \geq \theta \mathcal{E}_{\mathcal{T}}(U,\mathcal{T}).$

Proof: Use lower bound followed by Pythagoras equality

$$\begin{split} (1-\mu)C_2 \mathcal{E}_{\mathcal{T}}^2(U,\mathcal{T}) &\leq (1-\mu) \| \!\| u - U \|_{\Omega}^2 \\ &\leq \| \!\| u - U \| \!\|_{\Omega}^2 - \| \!\| u - U_* \| \!\|_{\Omega}^2 = \| \!\| U - U_* \| \!\|_{\Omega}^2 \end{split}$$

Finally, resort to the discrete lower bound

$$(1-\mu)C_2\mathcal{E}_{\mathcal{T}}^2(U,\mathcal{T}) \leq |||U-U_*|||_{\Omega}^2 \leq C_1\mathcal{E}_{\mathcal{T}}^2(U,\mathcal{R}).$$

イロト イポト イヨト イヨト

Quasi-Optimal Cardinality: Vanishing Oscillation (Continued)

Lemma 4 (Cardinality of M_k) If Dörfler marking chooses minimal set, and $u \in A_s$, then the k-th marked set M_k generated by AFEM satisfy

$$#\mathcal{M}_k \preccurlyeq |u|_s^{\frac{1}{s}} |||u - U_k|||_{\Omega}^{-\frac{1}{s}}.$$

Proof: Let $\varepsilon^2 = \mu ||\!| u - U_k ||\!|_{\Omega}^2$. Since $u \in \mathcal{A}_s$ there exist $\mathcal{T}_{\varepsilon} \in \mathbb{T}$ and $U_{\varepsilon} \in \mathbb{V}(\mathcal{T}_{\varepsilon})$ such that

$$|||u - U_{\varepsilon}|||_{\Omega}^{2} \leq \varepsilon^{2}, \qquad \#\mathcal{T}_{\varepsilon} - \#\mathcal{T}_{0} \preccurlyeq |u|_{s}^{\frac{1}{s}} \varepsilon^{-\frac{1}{s}}.$$

We introduce the overlay $\mathcal{T}_* = \mathcal{T}_\varepsilon \oplus \mathcal{T}_k$, and exploit that $\mathcal{T}_* \geq \mathcal{T}_\varepsilon$ to get

$$||\!| u - U_* ||\!|_{\Omega}^2 \leq ||\!| u - U_{\varepsilon} ||\!|_{\Omega}^2 \leq \varepsilon^2 = \mu ||\!| u - U ||\!|_{\Omega}^2.$$

This implies $\mathcal{R} = \mathcal{R}_{T \to T_*}$ satisfies Dörfler marking with $\theta < \theta_*$. Since \mathcal{M}_k is minimal, we conclude

$$#\mathcal{M}_k \le #\mathcal{R} \le #\mathcal{T}_* - #\mathcal{T}_k \le #\mathcal{T}_{\varepsilon} - #\mathcal{T}_0 \preccurlyeq |u|^{\frac{1}{s}} \varepsilon^{-\frac{1}{s}}.$$

(a)

Quasi-Optimal Cardinality: Vanishing Oscillation (Continued)

Lemma 4 (Cardinality of M_k) If Dörfler marking chooses minimal set, and $u \in A_s$, then the k-th marked set M_k generated by AFEM satisfy

$$#\mathcal{M}_k \preccurlyeq |u|_s^{\frac{1}{s}} |||u - U_k|||_{\Omega}^{-\frac{1}{s}}.$$

Proof: Let $\varepsilon^2 = \mu ||\!| u - U_k ||\!|_{\Omega}^2$. Since $u \in \mathcal{A}_s$ there exist $\mathcal{T}_{\varepsilon} \in \mathbb{T}$ and $U_{\varepsilon} \in \mathbb{V}(\mathcal{T}_{\varepsilon})$ such that

$$||\!| u - U_{\varepsilon} ||\!|_{\Omega}^2 \le \varepsilon^2, \qquad \# \mathcal{T}_{\varepsilon} - \# \mathcal{T}_0 \preccurlyeq |u|_s^{\frac{1}{s}} \varepsilon^{-\frac{1}{s}}.$$

We introduce the overlay $\mathcal{T}_* = \mathcal{T}_\varepsilon \oplus \mathcal{T}_k$, and exploit that $\mathcal{T}_* \geq \mathcal{T}_\varepsilon$ to get

$$||\!| u - U_* ||\!|_{\Omega}^2 \leq ||\!| u - U_{\varepsilon} ||\!|_{\Omega}^2 \leq \varepsilon^2 = \mu ||\!| u - U ||\!|_{\Omega}^2.$$

This implies $\mathcal{R} = \mathcal{R}_{\mathcal{T} \to \mathcal{T}_*}$ satisfies Dörfler marking with $\theta < \theta_*$. Since \mathcal{M}_k is minimal, we conclude

$$#\mathcal{M}_k \le #\mathcal{R} \le #\mathcal{T}_* - #\mathcal{T}_k \le #\mathcal{T}_{\varepsilon} - #\mathcal{T}_0 \preccurlyeq |u|^{\frac{1}{s}} \varepsilon^{-\frac{1}{s}}.$$

イロト イポト イヨト イヨト

Quasi-Optimal Cardinality: Vanishing Oscillation (Continued)

Lemma 4 (Cardinality of M_k) If Dörfler marking chooses minimal set, and $u \in A_s$, then the k-th marked set M_k generated by AFEM satisfy

$$#\mathcal{M}_k \preccurlyeq |u|_s^{\frac{1}{s}} |||u - U_k|||_{\Omega}^{-\frac{1}{s}}.$$

Proof: Let $\varepsilon^2 = \mu ||\!| u - U_k ||\!|_{\Omega}^2$. Since $u \in \mathcal{A}_s$ there exist $\mathcal{T}_{\varepsilon} \in \mathbb{T}$ and $U_{\varepsilon} \in \mathbb{V}(\mathcal{T}_{\varepsilon})$ such that

$$|||u - U_{\varepsilon}|||_{\Omega}^{2} \leq \varepsilon^{2}, \qquad \#\mathcal{T}_{\varepsilon} - \#\mathcal{T}_{0} \preccurlyeq |u|_{s}^{\frac{1}{s}} \varepsilon^{-\frac{1}{s}}.$$

We introduce the overlay $\mathcal{T}_* = \mathcal{T}_\varepsilon \oplus \mathcal{T}_k$, and exploit that $\mathcal{T}_* \geq \mathcal{T}_\varepsilon$ to get

$$||\!| u - U_* ||\!|_{\Omega}^2 \leq ||\!| u - U_{\varepsilon} ||\!|_{\Omega}^2 \leq \varepsilon^2 = \mu ||\!| u - U ||\!|_{\Omega}^2.$$

This implies $\mathcal{R} = \mathcal{R}_{\mathcal{T} \to \mathcal{T}_*}$ satisfies Dörfler marking with $\theta < \theta_*$. Since \mathcal{M}_k is minimal, we conclude

$$#\mathcal{M}_k \le #\mathcal{R} \le #\mathcal{T}_* - #\mathcal{T}_k \le #\mathcal{T}_\varepsilon - #\mathcal{T}_0 \preccurlyeq |u|_s^{\frac{1}{s}}\varepsilon^{-\frac{1}{s}}.$$

イロト イポト イヨト イヨト

Quasi-Optimal Cardinality: Vanishing Oscillation (Continued)

Lemma 4 (Cardinality of M_k) If Dörfler marking chooses minimal set, and $u \in A_s$, then the k-th marked set M_k generated by AFEM satisfy

$$#\mathcal{M}_k \preccurlyeq |u|_s^{\frac{1}{s}} |||u - U_k|||_{\Omega}^{-\frac{1}{s}}.$$

Proof: Let $\varepsilon^2 = \mu ||\!| u - U_k ||\!|_{\Omega}^2$. Since $u \in \mathcal{A}_s$ there exist $\mathcal{T}_{\varepsilon} \in \mathbb{T}$ and $U_{\varepsilon} \in \mathbb{V}(\mathcal{T}_{\varepsilon})$ such that

$$|||u - U_{\varepsilon}|||_{\Omega}^{2} \leq \varepsilon^{2}, \qquad \#\mathcal{T}_{\varepsilon} - \#\mathcal{T}_{0} \preccurlyeq |u|_{s}^{\frac{1}{s}} \varepsilon^{-\frac{1}{s}}.$$

We introduce the overlay $\mathcal{T}_* = \mathcal{T}_\varepsilon \oplus \mathcal{T}_k$, and exploit that $\mathcal{T}_* \geq \mathcal{T}_\varepsilon$ to get

$$||\!| u - U_* ||\!|_{\Omega}^2 \leq ||\!| u - U_{\varepsilon} ||\!|_{\Omega}^2 \leq \varepsilon^2 = \mu ||\!| u - U ||\!|_{\Omega}^2.$$

This implies $\mathcal{R} = \mathcal{R}_{\mathcal{T} \to \mathcal{T}_*}$ satisfies Dörfler marking with $\theta < \theta_*$. Since \mathcal{M}_k is minimal, we conclude

$$#\mathcal{M}_k \le #\mathcal{R} \le #\mathcal{T}_* - #\mathcal{T}_k \le #\mathcal{T}_{\varepsilon} - #\mathcal{T}_0 \preccurlyeq |u|_s^{\frac{1}{s}} \varepsilon^{-\frac{1}{s}}.$$

Quasi-Optimal Cardinality: General Data (Cascón, Kreuzer, Nochetto, Siebert' 08)

Lemma 5 (Dörfler Marking) Let $\theta < \theta_* = \sqrt{\frac{C_2}{1+C_1(1+C_3)}}$, with C_3 explicitly depending on A and \mathcal{T}_0 , and $\mu = \frac{1}{2}(1 - \frac{\theta^2}{\theta_*^2})$. Let $\mathcal{T}_* \leq \mathcal{T}$ and $U_* \in \mathbb{V}(\mathcal{T}_*)$ satisfy

$$|||u - U_*|||_{\Omega}^2 + \operatorname{osc}_{\mathcal{T}_*}^2(U_*, \mathcal{T}_*) \le \mu \Big(|||u - U|||_{\Omega}^2 + \operatorname{osc}_{\mathcal{T}}^2(U, \mathcal{T}) \Big).$$

Then the refinement set $\mathcal{R} = \mathcal{R}_{\mathcal{T} \to \mathcal{T}_*}$ satisfies Dörfler marking with θ

 $\mathcal{E}_{\mathcal{T}}(U,\mathcal{R}) \geq \theta \mathcal{E}_{\mathcal{T}}(U,\mathcal{T}).$

Lemma 6 (Cardinality of \mathcal{M}_k). If Dörfler marking chooses a minimal set \mathcal{M}_k , and $(u, A, f) \in \mathbb{A}_s$, then the k-th mesh \mathcal{T}_k and marked set \mathcal{M}_k generated by AFEM satisfy

$$\#\mathcal{M}_k \preccurlyeq |(u, A, f)|_s^{\frac{1}{s}} \left(\| U_k - u \|_{\Omega}^2 + \operatorname{osc}_k^2(U_k, \mathcal{T}_k) \right)^{-\frac{1}{2s}}.$$

Theorem 4 (Quasi-Optimal Cardinality of AFEM)

If $(u, A, f) \in \mathbb{A}_s$ for s > 0, then AFEM produces a sequence $\{\mathcal{T}_k, U_k\}_{k=0}^{\infty}$ of conforming bisection meshes and discrete solutions such that

$$\left(\| U_k - u \|_{\Omega}^2 + \operatorname{osc}_k^2(U_k, \mathcal{T}_k) \right)^{1/2} \preccurlyeq |u, A, f|_s \left(\# \mathcal{T}_k - \# \mathcal{T}_0 \right)^{-1/s}$$

• Counting DOF (Binev, Dahmen, DeVore '04, Stevenson '06):

$$\#\mathcal{T}_{k} - \#\mathcal{T}_{0} \preccurlyeq \sum_{j=0}^{k-1} \#\mathcal{M}_{j} \preccurlyeq \sum_{j=0}^{k-1} \left(\| U_{j} - u \|_{\Omega}^{2} + \operatorname{osc}_{j}^{2}(U_{j}, \mathcal{T}_{j}) \right)^{-\frac{1}{2s}}$$

• Contraction Property of AFEM:

$$|||U_k - u|||_{\Omega}^2 + \gamma \mathcal{E}_k^2(U_k, \mathcal{T}_k) \le \alpha^{2(k-j)} \Big(|||U_j - u|||_{\Omega}^2 + \mathcal{E}_j^2(U_j, \mathcal{T}_j) \Big),$$

whence

$$\#\mathcal{T}_{k} - \#\mathcal{T}_{0} \preccurlyeq \left(\| U_{k} - u \|_{\Omega}^{2} + \gamma \underbrace{\mathcal{E}_{k}^{2}(U_{k}, \mathcal{T}_{k})}_{\geq \operatorname{osc}_{k}^{2}(U_{k}, \mathcal{T}_{k})} \right)^{-\frac{1}{2s}} \underbrace{\sum_{j=0}^{k} \alpha^{j}}_{\leqslant (1 - \alpha^{\frac{1}{s}})^{-1}} \cdot \sum_{j=0}^{k} \alpha^{j} \cdot \sum_{j=0}^{k} \alpha^{j}$$

				Extensions

Outline

Adaptivity: Goals

Piecewise Polynomial Interpolation in Sobolev Spaces

Model Problem and FEM

FEM: A Posteriori Error Analysis

AFEM: Contraction Property

AFEM: Optimality

Extensions and Limitations

Extensions

- Non-Residual Estimators (Cascón, Nochetto; Kreuzer, Siebert' 10).
- Non-conforming meshes (Bonito, Nochetto' 10).
- Adaptive dG (interior penalty) (Bonito, Nochetto' 10).
- Adaptive HDG (Cockburn, Nochetto, Zhang '13).
- Raviart-Thomas mixed methods (Chen, Holst, Xu' 09).
- Edge elements for Maxwell (Zhong, Chen, Shu, Wittum, Xu' 10).
- Local H^1 -norm and L^2 -norm (Demlow, Stevenson' 10).
- H^{-1} -data (Cohen, DeVore, Nochetto' 11).
- Laplace-Beltrami on parametric surfaces (Bonito, Cascón, Mekchay, Morin, Nochetto '12).
- Discontinuous coefficients (Bonito, DeVore, Nochetto '12).
- Instance optimality of the adaptive maximum strategy (Diening, Kreuzer, Stevenson' 13).

Limitations

- Pythagoras or variants: does not apply to saddle point problems
- Other norms such as $L^{\infty}, L^{p}, W^{1}_{\infty}$.

・ロト ・回ト ・ヨト ・ヨト

				Extensions
			00000000	00
_				

Surveys

- R.H. NOCHETTO Adaptive FEM: Theory and Applications to Geometric PDE, Lipschitz Lectures, Haussdorff Center for Mathematics, University of Bonn (Germany), February 2009 (see www.hausdorff-center.uni-bonn.de/event/2009/lipschitz-nochetto/).
- R.H. NOCHETTO, K.G. SIEBERT AND A. VEESER, *Theory of adaptive finite element methods: an introduction*, in *Multiscale, Nonlinear and Adaptive Approximation*, R. DeVore and A. Kunoth eds, Springer (2009), 409-542.
- R.H. NOCHETTO AND A. VEESER, Primer of adaptive finite element methods, in Multiscale and Adaptivity: Modeling, Numerics and Applications, CIME Lectures, eds R. Naldi and G. Russo, Springer (to appear).

▲ @ ▶ ▲ ≥ ▶ ▲