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UQ for inverse problems 

•  Example: electrochemical energy conversion 

•  Data are limited in number, noisy, and indirect 
•  Forward model may be computationally intensive 

forward model 
    d =G(x)+ 

observation and model 
errors 



UQ for inverse problems 

•  Example: subsurface flow and transport 

•  Parameter x is high-dimensional—in principle, infinite-dimensional, 
i.e., a function x(s) 

forward model (PDE) 
    d =G(x)+ 

observation/model errors 



UQ for inverse problems 

•  A statistical perspective is essential to uncertainty quantification 
for inverse problems: 
–  To characterize uncertainty in the inverse solution, and to understand 

how this uncertainty depends on observations and other sources of 
information (e.g., prior distributions) 

–  To make probabilistic predictions 
–  To choose “good” observations or experiments (optimal experimental 

design) 
–  To address questions of model error, model validation, and model 

selection 



Bayesian inference 

•  We adopt a Bayesian approach: 
 
 
 
 
Key idea: model parameters x are treated as random variables 

•  Ingredients of Bayes’ rule: 
–  x are model parameters; d are the data (here, assume both to be finite-

dimensional)  
–  p(x) is the prior probability density 
–                         is the likelihood function 
–  p(d) is the evidence or marginal likelihood 
–             is the posterior probability density: a complete description of 

uncertainty in the inverse solution  

   
p(x |d) =

p(d | x)p(x)
p(d)

   L(x)≡ p(d | x)

  p(x |d)



Bayesian inference 

•  Likelihood functions for inverse problems: 
–  In general,            derives from a probabilistic model for the 

data 

–  Examples: 

  p(d | x)

     

d =G(x)+ 

d
i

=G(x,s
i
)+ 

i

d
i

=G(x,s
i
)+ η(s

i
)+ 

i

d
i

=G(x,s
i
;ω)

deterministic model +  
measurement noise 

deterministic model + measurement 
noise (observations indexed by s) 

deterministic model + model 
discrepancy + measurement noise 

more complicated noise structure OR 
stochastic forward model 



Bayesian inference 

•  Prior distributions for inverse problems 
–  For point parameters: subjective priors and expert judgment; 

Jeffreys priors; other reference (‘non-informative’) priors 
–  For distributed parameters: 

•  Gaussian processes with specified covariance kernel 
•  Gaussian Markov random fields [Rue/Held 2005] 
•  Gaussian priors derived from differential operators [Stuart 2010] 
•  Wavelet-based Besov space priors [Lassas 2009] 



Bayesian inference 

•  Prior distributions for inverse problems 
–  Example: stationary Gaussian random fields 

Example: stationary Gaussian random fieldsGaussian process priors 

•! Prior is a stationary Gaussian random field: 

(exponential covariance kernel) (Gaussian covariance kernel) 

 

M(x,!) = µ(x) + "
i
c
i
(!) #

i
(x)

i=1

K

$
(Karhunen-Loève expansion) 

Both are ✓(x,!) : D ⇥ ⌦ ! R, with D = [0, 1]2.
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Bayesian inference 

•  Prior distributions for inverse problems 
–  Hierarchical priors can be very useful 
–  Example: 

Ø  Jointly infer σ2, L, and some finite-dimensional parameterization of 
x (for instance, coefficients of its Karhunen-Loève expansion), e.g. 

     

x(s) ~ GP µ(s),C(s,s ′)( )

C(s, ′s ) = σ2 exp −
1
p

s−s ′

L

p⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

    p(x,σ
2,L |d)∝ p(d | x)p(x | σ2,L)p(σ2)p(L)



Computational challenges 

•  How to simulate from or explore the posterior distribution? 
–  Posterior mode, mean, higher moments; quantiles; credible 

intervals; realizations… 

•  How to make Bayesian inference computationally tractable when 
statistical models contain expensive physical models (e.g., PDEs)? 

•  This lecture will focus on two approaches (out of many) for 
addressing the second question: 
1.  Approximations of the forward model 
2.  Dimension reduction and its relationship to posterior sampling 

schemes 



First: Markov chain Monte Carlo Why Markov chain Monte Carlo (MCMC)?

In general, MCMC provides a means of sampling (“simulating”) from an
arbitrary distribution.

The density ⇡(x) need be known only up to a normalizing constant

Utility in inference and prediction: write both as posterior
expectations, E⇡f .

Then

E⇡f ⇡ 1

n

nX

i

f
⇣
x (i)

⌘

x (i) will be asymptotically distributed according to ⇡

x (i) will not be i.i.d. In other words, we must pay a price!
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Metropolis-Hastings algorithm 

Metropolis-Hastings algorithm

A simple recipe!

1 Draw a proposal y from q (y |x
n

)

2 Calculate acceptance ratio

↵(x
n

, y) = min

⇢
1,

⇡(y)q(x
n

|y)
⇡(x

n

)q(y |x
n

)

�

3 Put

x
n+1

=

⇢
y , with probability ↵(x

n

, y)
x
n

, with probability 1� ↵(x
n

, y)
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With appropriate conditions on the proposal and target, this 
defines the transition kernel of a Markov chain with π as its 
stationary and limiting distribution 



MCMC estimates Metropolis-Hastings algorithm

What about the quality of MCMC estimates?
What is the price one pays for correlated samples?

Compare Monte Carlo (iid) and MCMC estimates of E⇡h:

Monte Carlo

Var
⇥
h̄
n

⇤
=

Var⇡ [h(X )]

n
MCMC

Var
⇥
h̄
n

⇤
=

Var⇡ [h(X )]

n
✓

where

✓ = 1 + 2
1X

s>0

corr (h(X
i

), h(X
i+s

))

is the integrated autocorrelation.
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Some observations 

•  MCMC requires many evaluations of the unnormalized posterior 
density 

•  Achieving “good mixing” (getting closer to i.i.d. sampling) is 
essential. This is an area of enormous effort and innovation 
–  Langevin MCMC 
–  Preconditioned Langevin MCMC, using Hessian information 
–  Differential geometric MCMC (Fisher information metric) 
–  Hamiltonian MCMC 
–  Adaptive Metropolis-Hastings schemes; adaptive Metropolis 

independence samplers 
–  MCMC on function space; discretization invariance [Cotter 2012] 
–  Much more… 



1. Forward model approximations 

•  First idea: approximate the forward model over the prior support 
of the parameters x 

•  How? Stochastic spectral methods are quite useful in this 
context. Exploit regularity in the parameter dependence of the 
forward model. 



Stochastic spectral methods for BIPs 

•  Propagate prior uncertainty through the forward model 
•  Equivalently, solve the stochastic ODE/PDE (with uncertain parameters, 

initial conditions, boundary conditions) determined by the prior 
•  Use your favorite stochastic spectral approach (intrusive, non-intrusive) 
•  Spectral expansion replaces the forward model in the likelihood function.  

No further forward model solutions! 

   x(ξ)
    
G(ξ) = g

α
|α|≤N
∑ Ψ

α
(ξ)forward 

model 



•  Simplest surrogate posterior density (assuming          ), with 
approximation order N 

 

•  Convergence of the forward approximation implies convergence 
of the posterior distribution: 
•  Assume observational error ε is i.i.d. Gaussian 

•  If  
 

 
then                                  for sufficiently large N. 

    
G

i
ξ( )−G

i
N ξ( )

Lp
2
≤CN −α , 1≤ i ≤m, α> 0

     
πN ξ( ) = p


d

i
−G

i
N(ξ)( ) p

ξ
ξ( )

i=1

m

∏

    
D

KL
πN π( )N −α

[M & Najm 2007, M & Xiu 2009] 

Forward model approximation 

   ξ ≡ x



Example: Burgers equation 

•  Example: estimate boundary condition of viscous Burgers equation 
–    

–  Super-sensitivity to perturbation δ	


–  Steady-state solution: 

δ 

x 

noisy observation of 
transition layer location 

    ut
+uu

x
= νu

xx
, x ∈ [−1,1], u(−1) = 1+ δ



posterior density convergence of the forward model and 
the posterior distribution 

(factor of 2 increase in rate for uniform 
priors; Birolleau et al. 2012) 

Example: Burgers equation 
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Speedup 

•  Total computational time vs number of posterior samples 

•  Forward uncertainty 
propagation (red 
line offset) occurs 
offline 

•  Per-sample cost 
reduced by 3–4 
orders of magnitude 



•  Stochastic spectral methods are very useful, but not the only 
option! 

•  Projection-based reduced order models: POD and reduced-basis 
methods for parameterized PDEs 
–  Again, ensure accuracy over the prior distribution; greedy snapshot 

selection procedures 
–  Nguyen/Patera 2010, Lieberman/Willcox 2010 

•  Delayed acceptance MCMC schemes add a second stage to the 
Metropolis scheme [Christen & Fox 2005, Cui 2011] 
–  Use the full forward model to screen proposals that are accepted 

using the reduced model 
–  Ensure sampling from the exact posterior distribution 
–  At a price: continual evaluations of the forward model during MCMC 

Other approximation approaches 



•  The statistics community often takes a very different perspective: 
Gaussian process regression 
–  Roots in ‘design and analysis of computer experiments’ (Sacks et al. 

1989), emulation of computer models (Kennedy & O’Hagan 2001) 
–  At any input parameter value, the forward model output is a random 

variable (Bayesian perspective); contributes to posterior uncertainty… 

–  Requires experimental design to choose model evaluation points 

Other approximation approaches 



•  Constructing an accurate surrogate over the entire parameter 
space is still somewhat wasteful 
–  Posterior concentrates on a small fraction of the prior support; 

particularly for high-dimensional problems 
–  Localizing a surrogate mitigates the impact of nonlinearity 

•  Can we construct a surrogate only over the support of the posterior? 
How to do this before characterizing the posterior?  

Adaptive approx for inference 



•  Constructing an accurate surrogate over the entire parameter 
space is still somewhat wasteful 
–  Posterior concentrates on a small fraction of the prior support; 

particularly for high-dimensional problems 
–  Localizing a surrogate mitigates the impact of nonlinearity 

•  Can we construct a surrogate only over the support of the posterior? 
How to do this before characterizing the posterior?  

•  Adaptive approach, based on the cross-entropy method and 
importance sampling: 
–  Construct a sequence of “cheap” surrogates and biasing 

distributions that converges to the posterior 
–  Surrogates (e.g., polynomial chaos expansions) remain local and 

low-order 

Adaptive approx for inference 



•  Overall procedure: 
–  Seek a biasing distribution that is close to the posterior 
–  Pick biasing distribution q(x) from a simple family of distributions, 

parameterized by v 
 

•  Iterative approach: 
–  Estimates of                                                     based on naïve sampling 

from the prior have enormous variance   
–  Instead use sequential importance sampling to estimate D(v) via a 

sequence of biasing distributions q(x;vm) 

–  Maximization problem at each step can be solved easily 

     min
v

D
KL
πd(x)‖q(x;v)( ) ↔ max

v
L∫ (x)p(x)logq(x;v)dx

    π
d(x)∝ L(x)p(x)

   
v

m+1
= argmax

v

1
n

L
i=1

n

∑ (x (i))logq(x (i),v)
p(x (i))

q(x (i),v
m
)
, with x (i) ~ q(x (i),v

m
)

Adaptive approx for inference 

   
D(v) = L∫ (x)logq(x,v)p(x)dx



•  Iterative approach (cont.): 

 
 
–  At each iteration use a localized surrogate for the forward model, based 

on q(x,vm), to evaluate the likelihood function  
–  Can further accelerate convergence via a tempering approach, replacing 

likelihood with 

•  Convergence: if forward approximations                      in          
as              then 

•  Example: Gaussian biasing distributions and Hermite 
polynomial chaos surrogates 
 

Adaptive approx for inference 

   
v

m+1
= argmax

v

1
n

L
i=1

n

∑ (x (i))logq(x (i),v)
p(x (i))

q(x (i),v
m
)
, with x (i) ~ q(x (i),v

m
)

    L(x;λ) = L1/λ(x)

   Gm
N(x)→G(x)

  
L

q(x ,vm )
2

  N →∞

     v
∗ → argminD

KL
πd(x)‖q(x,v)( ) as λ→ 1, n→∞,N →∞

[Li & M 2013] 



•  Example: 2-D source inversion problem  
(model evaluation points and posterior density contours) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x
2

 

 

Iteration 1

Iteration 2

Iteration 3

Final

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x
2

 

 

adaptive surrogate global surrogate 

•  Sparse grids used to construct polynomial chaos surrogates in both cases  
•  Number of model evaluations/polynomial order selected to achieve comparable 

accuracy!  

Adaptive approximations 



a
1

b
1

1.3 1.4 1.5 1.6 1.7 1.8
1.2

1.3

1.4

1.5

1.6

1.7

1.8

•  Example: nonlinear inverse heat conduction problem 
–  Infer boundary heat flux from internal temperature  

measurements; temperature-dependent  
conductivity c(u)=1/(1+u2) 

–  Heat flux parameterized with Fourier modes (11 dimensions) 
 

(thick solid line) full model 
(thin solid line) adaptive surrogate 

(dotted line) global surrogate 

   

∂u
∂t

=
∂
∂x

c(u)
∂u
∂x

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

# 
model 
evals 

 
poly order 

global 
surrogate 35929 5 8.37 

adaptive 
surrogate 5763 2 0.0032 

    DKL π‖πsurr( )

Adaptive approximations 
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Independent sampler
DRAM

•  Final biasing distribution also provides a good foundation for efficient 
MCMC sampling (e.g., use as proposal in an independence sampler) 

 

•  This approach is not limited to polynomial chaos surrogates or 
Gaussian biasing distributions: 
–  Projection-based reduced order models 
–  Mixtures of exponential family distributions (e.g., for multi-modal 

posteriors) 

Adaptive approximations 



Computational challenges 

•  How to simulate from or explore the posterior distribution? 
–  Posterior mode, mean, higher moments; quantiles; credible 

intervals; realizations… 

•  How to make Bayesian inference computationally tractable when 
statistical models contain expensive physical models (e.g., PDEs)? 

•  This lecture will focus on two approaches (out of many!) for 
addressing the second question: 
1.  Approximations of the forward model 
2.  Dimension reduction and its relationship to posterior sampling 

schemes 



2. Dimension reduction 

•  Suppose the object of inversion is a function x(s) endowed with a 
Gaussian process prior  

•  What is a convenient finite-dimensional parameterization of x ? 

•  Karhunen-Loève expansion: 
 
 
 
where 

•  If C is smoothing, one may truncate expansion at            terms (where n is 
some grid/discretization size); one thus has an uncorrelated and lower-
dimensional parameterization based on the prior 

    x ~ GP(µ,C)

    
x(s,ω) = µ(s)+ λ

k
k=1

∞

∑ c
k
(ω)φ

k
(s)

    
C

D∫ (s
1
,s

2
)φ

k
(s

2
)ds

2
= λ

k
φ

k
(s

1
), c

k
~ N(0,1)

  K  n



Dimension reduction 
Karhunen-Loève expansion
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Dimension reduction 

•  Can we go further? What controls the “intrinsic dimensionality” of 
the inference problem? 
1.  Smoothing from the prior distribution (e.g., correlation) 
2.  How many observations are used 
3.  How much the forward model “filters” the parameters (ill-

posedness) 
–  More formally, #2 and #3 contribute to low rank of the data misfit 

Hessian  

•  A priori dimension reduction (via K-L expansion of the prior) will not always 
work: 
–  Non-smooth priors 
–  Important information in high-index modes (truth not drawn from prior) 

•  Low dimensionality instead lies in the change from prior to 
posterior… 

   H(x) =−∇
x

2 log p(d | x)



Dimension reduction 

•  Why is reducing dimension useful? 
–  Achieve complexity that is independent of grid/discretization 
–  More efficient posterior sampling (dimension scaling issues in 

MCMC)  
–  Rao-Blackwellization will reduce the variance in the Monte 

Carlo estimate of any posterior expectation 

•  Quick overview: 
–  Introduce ideas in the linear-Gaussian case 
–  Develop algorithms for nonlinear statistical inverse problems 
–  Numerical demonstrations (elliptic PDE inverse problem) 



Linear-Gaussian problem 

•  Begin with the simple linear-Gaussian model: 

 
•  Consider the generalized Rayleigh quotient: 

–  When quotient is large, likelihood limits variability in the w direction 
more strongly than the prior 

–  When quotient is small, prior is more constraining (e.g., smoothing 
prior and/or a rough mode w to which the forward model is insensitive) 

    
d =Gx + , x ~ N(0,Γ

pr
),  ~ N(0,Γ

obs
); H ≡G

TΓ
obs

−1
G

   

w
T
Hw

w
TΓ

pr

−1
w



Linear-Gaussian problem 

•  This motivates a generalized eigenvalue problem: 

–   H is symmetric and Γ is symmetric positive definite 
–  Solutions simultaneously diagonalize the log-likelihood Hessian  

and the prior: 

–  Can equivalently solve “prior-preconditioned Hessian” eigenproblem: 
 
 
where                  and                (put          ) 

–  Analogy with balanced truncation 

    
Hw = λΓ

pr

−1
w

    

W
T
HW = diag(h

1
,…,h

n
)

W
TΓ

pr

−1
W = diag(g

1
,…,g

n
)

λ
i

= h
i
/ g

i

   L
T
HLz = λz

  
Γ

pr
= LLT

  W = LZ    gi
= 1



Linear-Gaussian problem 

•  Solution of this generalized eigenproblem yields a low-rank 
expression for the change between prior and posterior covariance 

•  Basis W appropriately combines information from likelihood and 
prior (alignment of eigenspaces, low-rank structure of each) 
–  Large λ is likelihood-dominated; and vice-versa 
–  λ=1 is roughly balanced (Rayleigh quotient) 

•  Conjecture: in linear-Gaussian problems, W yields the best possible 
rank-r approximation of the posterior (e.g., in Hellinger distance) 

    

Γ
post

= Γ
pr
−WΣWT ≈ Γ

pr
−W

r
Σ

r
W

r
T

where Σ= diag …,
λ

i

1+λ
i

,…
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟



Dimension reduction 

•  Example: deconvolution problem, smoothing prior 
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Dimension reduction 

•  Example: deconvolution problem, smoothing prior 
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Dimension reduction 

•  Example: deconvolution problem, rough prior 
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Dimension reduction 

•  Example: deconvolution problem, rough prior 
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Nonlinear problems 

•  OK, but can we apply this idea to nonlinear inverse problems? 
–  Key challenge: log-likelihood Hessian H(x) now varies over the 

parameter space 

•  Simple idea: combine locally important directions, over the support 
of the posterior, to yield a global reduced basis 



Nonlinear problems 

•  Suppose we have posterior samples  
–  Solve eigenproblem at each sample 

–  Truncate and collect local dominant directions in matrix M 

–  Take SVD                        to get global reduced basis 

–  Thresholds: if local truncation is at eigenvalue λ*, truncate global SVD 
at  

   

M =
1

K
Z

r ,1
Λ

r ,1
1/2 …

1

K
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r ,K
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r ,K
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⎡
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, Λ
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r
S
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V
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     s
∗ = O( λ∗ )



Nonlinear problems 

•  How to obtain samples xi? 
•  Algorithm: 

–  Compute posterior mode via deterministic optimization 
–  Compute local reduced basis at x1=xmap 

–  for k=2…K do 
•  subchain: perform several steps of MCMC in current global reduced 

basis span(Ur) 
•  perturb: propose from the prior in complementary dirs; Metropolize 
•  local eigenproblem: collect xk at end of MCMC subchain; compute 

local reduced basis Zr,k, Λr,k 

•  update: update the global reduced basis via svd(M1:k) 
•  Project sample onto new global reduced basis 

•  Useful features: 
–  Good initial proposal covariance for MCMC subchain is  
–  Global modes Wr=Γpr

1/2Ur are approximately uncorrelated 
   diag(…,1/(1+ s

i
2),…)



Posterior decomposition 

•  Posterior after dimension reduction: 

 where  
 
•  Alternatively, think of decomposing x: 

    

p(x |d)∝ L(x)p(x)
≈ L(Px)p(x)
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Posterior decomposition 

•  Posterior after dimension reduction: 

 where  
 
•  Alternatively, think of decomposing x: 

    

p(x |d)∝ L(x)p(x)
≈ L(Px)p(x)

condition on data independent of data 

    
P = Γ
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Posterior decomposition 

•  Posterior after dimension reduction: 

 where  
 
•  Alternatively, think of decomposing x: 

    

p(x |d)∝ L(x)p(x)
≈ L(Px)p(x)

    
P = Γ

pr
1/2U

r
U

r
TΓ

pr
−1/2

   

x = Γ
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1/2U

r
c

r
+Γ
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r
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r
⊥

= Γ
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1/2U

r
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r
+Γ
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1/2(I −U

r
U

r
T )z, z ~ N(0,I )



Numerical examples 

•  Elliptic PDE in two spatial dimensions 

–  Estimate κ from noisy observations of u 
–  Log-normal prior on κ(s) with an exponential covariance kernel 

–  Use Lc = 0.25, discretize problem on a 40x40 or 80x80 grid 

    
∇⋅ κ(s)∇u( ) =−f (s)

    

logκ ~GP 0,C( )

C s
1
,s

2( ) = σ2 exp −
s

1
−s

2

L
c

⎛
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Numerical examples 

•  Truncation based on the prior is insufficient for this problem 
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Subspace construction 
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Full-dimensional problem 

•  Now compare with MCMC on the full (1600-dimensional) problem: 
–  Use Metropolis-adjusted Langevin (MALA), preconditioned by 

Hessian at the MAP 

•  Two “performance” questions: 
1.  How well does the reduced-dimension chain mix (versus the full-

dimensional chain)? 
2.  How accurately do we estimate posterior expectations? 



Chain mixing 

•  Autocorrelation of log-posterior values 
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Chain mixing 

•  Autocorrelation of projection onto first mode! 
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Posterior estimates 

•  Estimating posterior expectations: 
–  Variance reduction due to Rao-Blackwellization is key! 
–  Recall law of total variance (for some MCMC estimate   ) 

–  We can entirely eliminate the second term above! 
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Var[ĥ ] = Var

cr
E
cr
⊥ ĥ(c
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Elliptic PDE inverse problem 
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Elliptic PDE inverse problem 
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Next steps 

•  Formal error estimates 
•  Full-dimensional but likelihood-informed and discretization-invariant 

MCMC: 
–  Need not eliminate prior-dominated directions entirely; can 

instead employ different proposals (e.g., Metropolis-within-
Gibbs) 

–  Integrate global reduced basis with discretization-invariant pCN 
approach of Stuart et al. [joint work with T. Cui and K. Law] 

–  Resulting samplers are exact yet very efficient 
 



Conclusions 

•  A broad overview of Bayesian computation for inverse problems 

•  Approximations of the forward model: 
–  Stochastic spectral methods and other approaches 
–  Construct approximations with respect to the prior; or instead, 

adaptively construct posterior-focused approximations 

•   Dimensionality reduction: 
–  Change from prior to posterior confined to a smaller number of 

directions 
–  This is the “intrinsic dimensionality” of the problem; shows grid-

independence 
–  Capture with a global basis 
–  Improved MCMC mixing, plus Rao-Blackwellization in complementary 

directions 
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•  Note definition of weighted subspace residual: 

–  Evaluated at different lags between subspaces (U1, S1) and (U2, S2) 
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