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UQ for inverse problems

« Example: subsurface flow and transport

= G(&) + ¢

/ \ observation/model errors
forward model (PDE)

« Data are limited in number, noisy, and indirect
« Parameter £ may be infinite-dimensional
« We wish to quantify uncertainty in x



Statistical inverse problems

« Take a Bayesian approach:
m'(z) = p(z | d) o p(d | z) p(z)

« Key strategies for making this computationally tractable:

- Approximations of the forward model: spectral expansions, reduced
order models, interpolation/regression

- Efficient and structure-exploiting sampling schemes to explore the
posterior distribution



Alternatives to MCMC

Yesterday: exploring the posterior distribution with Markov chain
Monte Carlo (MCMC)

Is this the only way?

A few drawbacks of MCMC:
— Generates a stream of correlated samples
— Proposal design is difficult; potential for poor mixing
— No clear convergence criterial
— Requires a large number of forward model evaluations
— Intrinsically serial
— Posterior normalizing constants require additional effort



A different viewpoint
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Optimal transport

« Deterministic coupling of two random variables, & ~ u, Z ~ v
A

T(€)

— /\ > I

§

* Monge problem: mjinfc({, T(f)) dp(€), where T = v

« Exists a unique and monotone solution for quadratic (and other)
transport costs c(z,y) [Brenier 1991, McCann 1995]



Optimal transport

Let = be the target density and p be the density of a reference
random variable &

- Given the ability to (i) sample & and (ii) evaluate = up to a
normalizing constant, one can compute numerical approximations
to the optimal map

- Found through solution of an optimization problem...

- The reference distribution could be the prior, or it could be something
else easy to sample from



Finding the transport map

« Start with the posterior (target) density as

i L(z;d)p(z)
m'(2) = 3

« What if we knew a monotone T such that 7 = T'(¢) ?

« Perform a transformation from the target (posterior) to the
reference (prior) to get a probability density for &

7=1(g

7'(z) mmmmy o6 =r"(T()

« Compare g to p : suggests a variational approach...
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Optimal map schematic
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Formulation details

« For simplicity, just consider pointwise equality of densities:

p(6) = &) = = (T(E)) det | = L<T<5)5‘2p(“5>) et 2
— Take log of both sides and rearrange:
(I)(ZC;T) = log(L o T) + log<p 0 T) + log deta—T —logp =log 3
ox

— Hence, find T such that ¢ is constant in ¢

— As a byproduct of inference, we obtain the posterior normalizing
constant (3

« Same result can be derived by minimizing Kullback-Leibler
divergence or Hellinger distance from p to ¢



Formulation details

« Alternatively, note that

D, (p(©)]| (& D)) = log 8- B, |@(&7)]

— Thus we can maximize E[P] ...



Formulation details

« Simpler optimization objective:

oT

max E5 log(ﬂ e T) deta—£

with additional structure or penalties (transport costs) to ensure
monotonicity of T

« Attributes of the optimization problem:

— We typically seek a “triangular” structure (Knothe-Rosenblatt map),
such that T'(§) =T(&,,...,¢.)

— Jacobian determinant then becomes easy to compute

— This is a stochastic optimization problem; sample from reference
random variable and use sample average approximation (SAA)

— Gradient-based optimization (e.g., quasi-Newton) for SAA problem
— Can remove absolute value above; replace with positivity constraints



Optimal maps in context

Some connections with variational Bayesian methods

Interesting relationship with implicit sampling [Chorin & Tu 2009;
Chorin, Morzfeld, & Tu 2010; Atkins, Morzfeld, & Chorin 2012]:
- Implicit sampling maps £(7 to (¥ via
log 7(z) — const = log p, (&)
- Contrast with the present & equation:

log 7(2) + log —log B =logp,(§), where z=T(§)

det %
23

- Implicit sampling omits Jacobian; yields weighted samples

- Optimal maps seek a global transformation, while implicit sampling
proceeds sample-by-sample



Map representation

 We represent T using an orthogonal polynomial expansion
(e.g., Hermite chaos)

— Orthogonality is with respect to the reference distribution
— Why? Analytical expressions for posterior moments in terms of F

T ( g) :/‘ FT ( 5) « vector of orthogonal

polynomials

matrix of unknown
coefficients

« Typical approach:
— First solve for best linear map

— Enrich polynomial space by iterating over degree; monitor Var|[®]
(proportional to Dy (p||q)) to assess convergence



Properties of the map

* Potential advantages (relative to MCMC):

— Generate arbitrary numbers of independent posterior samples,
without additional forward solves

— Analytical expressions for posterior moments
— Clear convergence criterion
— Key steps are embarrassingly parallel

— Can propagate posterior distribution through subsequent models
(polynomial chaos expansion)

— Compute posterior normalizing constant (marginal likelihood) for use
iIn Bayesian model selection

« Key questions: For which target distributions will the map have
simple/computable structure”? How many degrees of freedom are
needed?



Simple linear example

Value

* 100 dimensional problem y(x) = Az, d=y+e€

« Ais randomly generated X - N(O [) e ~ N(O Dy )
Y ) y—,

» (Gaussian posterior:

AeRY™ y deR®
Z~N(p..2,)

- Start iterations from identity map 7'(¢) = ¢

« Convergence to exact solution in 12 iterations

10" 10

= Var[T(X)]
—¥— “K-L
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Reaction kinetics
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Reaction kinetics: map

« 7% order polynomial map
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Log-Gaussian Cox point process

* From Christensen 2005, Girolami 2011 .
« Would like to infer latent intensity field 2 i

::... z L

>

C(“ 7“/) = 0" exp (\r - r’\ / 646) ® SR

OO ) 0.2 0.4 ) 0.6 ) 1
64x64 grid

« Observe number of counts d per grid cell 4096 dimensions

— Poisson distributed with mean mexp(z)

* Posterior density:
1

D (z‘d) X exp(de —ml’ exp(z)) exp [—5 (z = ,u)T > (z = ,u)



Log-Gaussian Cox point process

« This is a challenging problem for most MCMC samplers!

Elz|d] Elexp(z) | d] Vawr[?xp(_@ | d]

-

Langevin (MALA)

RMHMC

[Girolami & Calderhead, JRSSB 2011]



Log-Gaussian Cox process
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Log-Gaussian Cox process

« Comparison with Riemannian manifold MCMC

— Triangular map; polynomial transformation in Karhunen-
Loeve coordinates

method ESS (min, s/min ESS relative speed
med, max)

MALA [GC2011] 31577 (3, 8, 50) 10605 1

MMALA [GC2011] 634 (26, 84,174) 24.1 440

RMHMC [GC2011] 2936  (1951,4545, 1.5 7070
5000)

Map (4096 dims) 1000 5000 0.2 53000




High-dimensional maps

 Why are maps computable (here, even in 4096 dimensions)?

0 T T T T T T T
p=3
100 p=1 |
e « Polynomial terms in final
2000 © SRS 1 map, log-Gaussian Cox
’f*_w B process
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From static to dynamic problems

« Example: atmospheric data assimilation, numerical weather
predICtlon 60°E 75°E 90°E 105°E 120°E 135°E

50°N
45°N
40°N
35°N

30°N —{

NCAR ensemble wind forecasting

25°N

80°E 90°E 100°E 110°E 120°E

= Learn the state given noisy observations; quantify uncertainty
in the state estimate

= An essential step in predictive simulation



Bayesian approach

» Dynamical model f(z, |z, )
— Discretization of an SDE; deterministic model plus noise
— Dynamics typically nonlinear and stochastic

t* th*)
— Observations y sparse in space and time

 Observation operator g(y

* Posterior distribution (filtering)

., ) oy, 1) p(z, | v, )
=g, |z) [ f(z, |2 )l |y, )dz,,

— We wish to estimate or reconstruct the current state of the system
— We wish to quantify uncertainty in this estimate



Filtering algorithms

» How to characterize the posterior distribution p(z, | y,,) in a
recursive fashion?

 Weighted particle approaches (e.g., particle filtering, SMC)

Represent the posterior as a weighted sum of Dirac measures

z,|y,) Zw5

Good proposal dlstrlbutlons are crucial; particles must fall in the
regions of high posterior probability!

Extensive work in this regard: Doucet 2001, Snyder 2008,
VanLeeuwen 2010, Chorin 2009-12

Converge to the Bayesian solutionas N — oo



Filtering algorithms

» How to characterize the posterior distribution p(z, | y,,) in a
recursive fashion?

 Ensemble Kalman filtering (EnKF)

Approximate the prior (i.e., forecast distribution) as Gaussian
Bayesian update proceeds from the Gaussian assumption
Biased; does not converge to the true Bayesian solution

Can have good tracking performance and good computational
efficiency; regularly applied to high-dimensional problems

Yet performs poorly in quantifying uncertainty (e.g., reproducing
covariance of the Bayesian posterior) [Law & Stuart 2012]



Filtering algorithms

Two rather contrasting schemes:

- Continuous versus discrete: sum of a few point masses (PF)
versus Gaussian approximation (EnKF)

- Inference via “local” versus “global” updates

We will propose filtering algorithms that use optimal
transport maps

- Use maps to tackle intrinsic challenges: approximating the prior,
moving from prior to posterior, even smoothing

Key attributes:

- Continuous representation avoids weighted particles (and particle
degeneracy)

- Yet converge to the true Bayesian solution



Optimal maps in filtering

« Use transport maps in two different ways

1. From samples to a map

— Given an arbitrary collection
of samples £

— Prescribe a simple target
measure (Gaussian) for Z

— Find Z = T(¢), then invert it!

— This is regularized density
estimation with a map

Ogé)' >

2.

From a probability density to

samples

Given a complex target
measure 7

Choose a simple reference
measure (e.g., Gaussian) for &

Construct a map from £ to target

Use the map to generate
iIndependent samples

© =



Filtering via maps

« Two algorithms: one that separates forecast/analysis, one that
tackles them jointly

 “Double map” algorithm

) o 90y, 1) p(, |y, )
=g, |=) [ f(, | vy, ,)d,

p(z,

Step 1: construct a “forecast map” X, |y, , . = Tf(f)

- Generate samples of X, | y, .., and map them to a target
Gaussian

- The inverse of this map is T
- Now the inference problem can be transformed to &-space...



Filtering via maps

« Step 2: construct an “inference map”
- Write the posterior density in terms of ¢

mt = p(ely,. ) p(u| 7)) p.(©)

- Complex prior and simple likelihood now transformed to a simple
prior and complex likelihood: the target density

- Construct a map T, from another (Gaussian) reference to this
posterior

TCL
gt ” 7T§ <€ €~p£
T
v/ v Tf
X, 1Y, XY

- Finalmapis 1" = Tf oT



Double-map algorithm

« Comments on the algorithm:

When both maps are linear, algorithm reduces to the EnKF!

Increasing the polynomial order generalizes the EnKF to non-
Gaussian distributions

Use this freedom to balance computational cost with accuracy

Infrequent observations: intermediate-time states are marginalized
away

Forecast distribution is estimated from samples, but the estimate (via
map T}) is continuous; approximate information is “filled in” over the
entire space

Posterior may concentrate where there are no forecast samples



Numerical examples

« Example 1: Lorenz-63

- Observe every 20 steps (z and z), timestep At = 0.01; Gaussian initial
condition, stochastic forcing

- Compare sampling-importance-resampling (SIR) with locally optimal
proposal, EnKF, and double map; versus a “gold-standard” SIR
posterior

- Note: we are comparing to the true Bayesian solution, not
evaluating tracking error



Numerical examples

Example 1: Lorenz-63 (errors over 1200 timesteps)

10_1 ¥
O dm(1,1)
c + dm(3,3)
g 10_2 % * XK ’3 x % O dm(3,5)
. S X dm(5,3)
= T TN dm(5,5)
g . 4R 00 <l dm(7,3)
Q _3 > * o > dm(7,5)
5 ¥ SIR-lopt
o Y EnKF
¥
10_4 ‘2 ‘4 6
10 10 10
N

EnKF does not converge as N — oo
Maps approach the Bayesian solution as polynomial degree is refined



Numerical examples

Example 1: Lorenz-63 (errors over 1200 timesteps)

10" va
*
3 > ¢ dm(1,1)
S * + dm(3,3)
% 8 O # * O dm(3,5)
s O Xk Zx B E % dm(5,3)
= [ 10‘1,, O SO A dm(5,5)
2 ® & < dm(7.9)
g Q@ 0 o > dm(7,5)
o 2 x dm(7,7)
= > % % * SIR-lopt
ko Y EnKF
o P
10° 10* 10°

N
EnKF does not converge as N — oo

Maps approach the Bayesian solution as polynomial degree is refined



Numerical examples

« Example 2: Lorenz 95

40-dimensional problem, F'=8 (strongly chaotic), stochastic forcing
Observe every 20 timesteps, odd states only; timestep At = 0.01

Considered a challenging test configuration for filtering (Bengtsson
2003, van Leeuwen 2010, Lei & Bickel 2011)

Compare EnKF, double map, and SIR-lopt



Numerical examples

« Example 2: Lorenz 95 (state tracking performance, 256 particles)

10

_5F |
—truth
— SIR-lopt
| — EnKF
-10 ——dm(3,3)
15 16 17 18 19

time

20

observed state x,,



Numerical examples

« Example 2: Lorenz 95 (state tracking performance, 256 particles)

| —truth

— SIR-lopt
EnKF
——dm(3,3)
_1 I | | |
(%5 16 17 18 19 20

time

unobserved state x,,



Numerical examples

« Example 2: Lorenz 95 (state tracking performance, 256 particles)

15

A 4 —truth
" —mean
——trajectories

observed state x,,

15 16 17 18 19 20



Numerical examples

« Example 2: Lorenz 95 (state tracking performance, 256 particles)

15

i —truth
R |~ mean
1074, ¥ [\ JRRS —trajectories|

unobserved state x,,

15 16 17 18 19 20
time



Numerical examples

Example 2: Lorenz 95 (state tracking performance, 256 particles)

15

—truth

R |~ mean

JAR —trajectories

16

time

19

20

Relative tracking
errors (RMSE, 100
twin experiments)

« EnKF: 26.5%
. dm(3,3): 25.0%
. SIR-lopt: 112.5%



Numerical examples

« Example 2: Lorenz 95

- What about convergence to the true posterior? Are we
obtaining meaningful uncertainty information in the state?

- Must restrict attention to a single assimilation step; reference
Bayesian solution obtained via exhaustive importance sampling

- Relative errors (percent) in mean and covariance (Frobenius norm),
4096 particles

SIR- EnKF dm dm dm

lopt 3,3) (53) (7,7)

| mean | 128 28 27 21 17

covar | 7215 i 31 22 20 18




Numerical examples

« Example 2: Lorenz 95

- Computational cost (wallclock time for 10 assimilation steps) and map
degrees of freedom (DOF); 512 particles

- Here, model integration is cheap; cost is dominated by optimization!

- Yet optimization iterations do not require further evaluation of the
dynamical model

EnKF  dm(1,1) dm(3,3) dm(55) dm(7,7)

time[s] |1 7 215 1950 4945

map DOFs | - 194 1329 3635 5197




From double map to joint map

 The Lorenz 95 problem is challenging, but the the observations are in a
sense typical. Simple approximations of the forecast distribution can
succeed. Marginalization supports computational efficiency.

« What about rare events? Now one needs to capture the tail of the prior
distribution. (The prior and likelihood are mutually singular!)

» Directly approximating the tail of the prior is completely impractical,;
instead we must abandon marginalization and turn to an all-at-once
approach



Joint map

* Algorithm 2: Joint map

Idea: map to the joint distribution of state trajectories between
observations; no forecast/analysis subdivision

More robust (no prior approximation), but more expensive!
Key steps:
- Rewrite joint distribution

p(xt’xt—l ‘ yl:t) X p(yt | xt)p(xt ‘ xt—l)p(xt—l ‘ yl:t—l)
using map from previous observation step:

p(z,&ly,,) <y, |z )p(z, | T_ (£))p(§)

- Find a map from reference (1, n,) to (z,, £)
- Triangular map structure recovers marginal on z,

Generalize directly to occasional observations; now we are locally
smoothing the trajectory between ¢-7 and ¢

Computational cost grows with the number of intermediate states...



Numerical examples

« Example 3: particle in a Mueller-Brown potential
- Small noise, rare transition (1 in 10°); observe x, every 100 steps

- Joint map: posterior mean versus true trajectory; local smoothing
2

™ potential
—truth
—jm(1)
——jm(3)

1.5¢

SAA with

256 samples
0.5

15 1 05 0 0.5



Numerical examples

« Example 3: particle in a Mueller-Brown potential
- Small noise, rare transition (1 in 10°); observe x, every 100 steps
- Compare double map with joint map; filtering distributions

1.6

1.4

1.2

T

T

T

T

] truth

@&dm(1,1)
* truth @ tO

v truth @ t1
’ truth @ t2
® truth @ t3




Numerical examples

 Example 3: particle in a Mueller-Brown potential
- Small noise, rare transition (1 in 10°); observe x, every 100 steps
- Compare double map with joint map; filtering distributions

1.6

1.4

1.2

T

T

T

T

] truth

©jm(1)
x uth @t

v truth @ t1
‘ truth @ t2
® truth @ t3




Conclusions

« Bayesian inference with optimal transport maps

— Characterize and simulate from the posterior by solving an
optimization problem

— Clear convergence criterion; evidence computed as a byproduct
— Favorable performance comparisons with MCMC

A map-based approach to Bayesian filtering
— Based on the construction of transport maps from a reference measure
— Two algorithms: double map and joint map
— Both involve the solution of optimization problems
— Double map generalizes EnKF
— Continuous representations; convergence to the true Bayesian solution



Conclusions

« Many open issues:

More efficient optimization approaches

Which DOFs are needed? Better adaptive parameterization and
enrichment schemes

Dimension reduction (ideas from yesterday): using Hessian information
to identify directions that change from prior to posterior

Filtering: understanding the role of regularization in representing the
prior; constructing improved regularization schemes in the context of
maps
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