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UQ for inverse problems 

•  Example: subsurface flow and transport 

•  Data are limited in number, noisy, and indirect 
•  Parameter x may be infinite-dimensional 
•  We wish to quantify uncertainty in x 

forward model (PDE) 
    d =G(x)+ 

observation/model errors 



Statistical inverse problems 

•  Take a Bayesian approach: 

 
•  Key strategies for making this computationally tractable: 

–  Approximations of the forward model: spectral expansions, reduced 
order models, interpolation/regression 

–  Efficient and structure-exploiting sampling schemes to explore the 
posterior distribution 

    π
d(x)≡ p(x |d)∝ p(d | x)p(x)



Alternatives to MCMC 

•  Yesterday: exploring the posterior distribution with Markov chain 
Monte Carlo (MCMC) 

•  Is this the only way?  

•  A few drawbacks of MCMC: 
–  Generates a stream of correlated samples 
–  Proposal design is difficult; potential for poor mixing 
–  No clear convergence criteria! 
–  Requires a large number of forward model evaluations 
–  Intrinsically serial 
–  Posterior normalizing constants require additional effort 



A different viewpoint 

forward model 
+ error model  

+ data 
[i.e., likelihood] 

prior 
knowledge 

posterior 
knowledge 

T   ξ ~ p

    Z =T(ξ)

“prior random 
variable” 

“posterior random 
variable” 

   Z ~ πd



Optimal transport 

•  Deterministic coupling of two random variables,     ξ ~ µ, Z ~ ν
Transport map introduction

Consider a function:

� = T (r)

Change of variables

Minimize some transport
cost, C (r , �)

r � N(0, I ) r

�

T (r)
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•  Monge problem: 

•  Exists a unique and monotone solution for quadratic (and other)  
transport costs c(x,y) [Brenier 1991, McCann 1995] 

     
min

T
c∫ ξ,T(ξ)( )dµ(ξ), whereT µ = ν

Z

ξ	



T(ξ)	





Optimal transport 

•  Let π be the target density and p be the density of a reference 
random variable ξ	


–  Given the ability to (i) sample ξ and (ii) evaluate π up to a 

normalizing constant, one can compute numerical approximations 
to the optimal map 

 

–  Found through solution of an optimization problem… 

–  The reference distribution could be the prior, or it could be something 
else easy to sample from 



Finding the transport map 

•  Start with the posterior (target) density as 

     
πd(z) =

L z;d( )p z( )
β

•  What if we knew a monotone T such that Z = T(ξ) ? 
•  Perform a transformation from the target (posterior) to the  

reference (prior) to get a probability density for ξ 

    
q(ξ) = πd T(ξ)( ) det

∂T
∂ξ   π

d(z)
   
Z =T ξ( )

•  Compare q to p :  suggests a variational approach… 



reference random 
variable ξ	



target random 
variable Z  

π 

p0 q 

find 
transformation 
such that q = p0 

Optimal map schematic 
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Formulation details 

•  For simplicity, just consider pointwise equality of densities: 
 

 
–  Take log of both sides and rearrange: 

–  Hence, find T such that Φ is constant in ξ	


–  As a byproduct of inference, we obtain the posterior normalizing 

constant β	



•  Same result can be derived by minimizing Kullback-Leibler 
divergence or Hellinger distance from p to q 

 

     
Φ x;T( ) = log L T( )+ log p T( )+ log det

∂T
∂x
− log p = logβ

    
p(ξ) = q(ξ) = πd T(ξ)( ) det

∂T
∂ξ

=
L T(ξ);d( )p T(ξ)( )

β
det
∂T
∂ξ



Formulation details 

•  Alternatively, note that 
 

 
–  Thus we can maximize          … 

 

 

     
D

KL
p(ξ) q(ξ;T)( ) = logβ−E

ξ
Φ(ξ;T)⎡
⎣⎢

⎤
⎦⎥

   E[Φ]



Formulation details 

•  Simpler optimization objective: 
 
 
 
with additional structure or penalties (transport costs) to ensure 
monotonicity of T 

•  Attributes of the optimization problem: 
–  We typically seek a “triangular” structure (Knothe-Rosenblatt map), 

such that  
–  Jacobian determinant then becomes easy to compute 
–  This is a stochastic optimization problem; sample from reference 

random variable and use sample average approximation (SAA) 
–  Gradient-based optimization (e.g., quasi-Newton) for SAA problem 
–  Can remove absolute value above; replace with positivity constraints 
 

      
max

T
E
ξ

log π T( ) det
∂T
∂ξ

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

     Ti
(ξ) =T

i
(ξ

1
,…,ξ

i
)



Optimal maps in context 

•  Some connections with variational Bayesian methods 

•  Interesting relationship with implicit sampling [Chorin & Tu 2009; 
Chorin, Morzfeld, & Tu 2010; Atkins, Morzfeld, & Chorin 2012]: 

–  Implicit sampling maps ξ(i) to z(i) via 

–  Contrast with the present Φ equation: 
 
 

–  Implicit sampling omits Jacobian; yields weighted samples  
–  Optimal maps seek a global transformation, while implicit sampling 

proceeds sample-by-sample 
 
 

    logπ(z)− const = log p
0
(ξ)

    
logπ(z)+ log det

∂z
∂ξ
− logβ = log p

0
(ξ), where z =T(ξ)



Map representation 

•  We represent T using an orthogonal polynomial expansion  
(e.g., Hermite chaos) 
–  Orthogonality is with respect to the reference distribution 
–  Why? Analytical expressions for posterior moments in terms of F 

•  Typical approach: 
–  First solve for best linear map 
–  Enrich polynomial space by iterating over degree; monitor Var[Φ] 

(proportional to DKL(p||q))  to assess convergence 

   
T ξ( ) = FTΨ ξ( ) vector of orthogonal 

polynomials 

matrix of unknown 
coefficients 



Properties of the map 

•  Potential advantages (relative to MCMC): 
–  Generate arbitrary numbers of independent posterior samples,  

without additional forward solves 
–  Analytical expressions for posterior moments 
–  Clear convergence criterion 
–  Key steps are embarrassingly parallel 
–  Can propagate posterior distribution through subsequent models 

(polynomial chaos expansion) 
–  Compute posterior normalizing constant (marginal likelihood) for use 

in Bayesian model selection 

•  Key questions: For which target distributions will the map have 
simple/computable structure? How many degrees of freedom are 
needed? 
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Simple linear example 

•  100 dimensional problem 
•  A is randomly generated 

•  Gaussian posterior: 
    

y(x) = Ax, d = y + 
X ~ N(0,I ),  ~ N(0,Σ

n
)

    
Z ~ N µz ,Σz( )

•  Start iterations from identity map T(ξ) = ξ 
•  Convergence to exact solution in 12 iterations 

    A∈
8×100 y, d ∈8

DKL(p||q) and Var(T) evidence β	
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Reaction kinetics 

•  Five late-time observations of A;  
truth is k1 = 1, k2 = 2 

•  Gaussian prior 
•  Infer k1 and k2    

dA
dt

= −k
1
A + k

2
B

dB
dt

= k
1
A−k

2
B

   

k
2

k
1

≈ 2

convergence: 
DKL < 10-5 
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Reaction kinetics: map 

•  7th order polynomial map 

First component 
of posterior 

Second component of 
posterior 



Log-Gaussian Cox point process 

•  From Christensen 2005, Girolami 2011 
•  Would like to infer latent intensity field z 

 

•  Observe number of counts d per grid cell 
–  Poisson distributed with mean 

•  Posterior density: 

   
m exp z( )

     

z ~ N µ,C(r,r ′)( )
C r,r ′( ) = σ2 exp r −r ′ / 64( )

     
p z d( )∝ exp dTz −m1T exp(z)( )exp −

1
2

z −µ( )T Σ−1 z −µ( )
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
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Log-Gaussian Cox point process 

•  This is a challenging problem for most MCMC samplers!  
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   E[z |d ]   Var[ exp(z) |d ]   E[ exp(z) |d ]

[Girolami & Calderhead, JRSSB 2011] 



Log-Gaussian Cox process 
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Log-Gaussian Cox process 

•  Comparison with Riemannian manifold MCMC 
–  Triangular map; polynomial transformation in Karhunen-

Loève coordinates 

method time ESS (min, 
med, max) 

s/min ESS relative speed 

MALA [GC2011] 31577 (3, 8, 50) 10605 1 
MMALA [GC2011] 634 (26, 84, 174) 24.1 440 
RMHMC [GC2011] 2936 (1951, 4545, 

5000) 
1.5 7070 

Map (4096 dims) 1000 5000 0.2 53000 



High-dimensional maps 

•  Why are maps computable (here, even in 4096 dimensions)? 
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map, log-Gaussian Cox 
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–  Consider coefficients 
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corresponding terms? 
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•  Example: atmospheric data assimilation, numerical weather 
prediction 
 

⇒  Learn the state given noisy observations; quantify uncertainty 
in the state estimate 

⇒ An essential step in predictive simulation 

From static to dynamic problems 

N
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Bayesian approach 

•  Dynamical model 
–  Discretization of an SDE; deterministic model plus noise 
–  Dynamics typically nonlinear and stochastic 

•  Observation operator 
–  Observations y sparse in space and time 

•  Posterior distribution (filtering) 

–  We wish to estimate or reconstruct the current state of the system 
–  We wish to quantify uncertainty in this estimate 

   f (xt
| x

t−1
)

   
g(y

t∗
| x

t∗
)

   

p x
t
y

1:t( )∝ g(y
t
| x

t
)p(x

t
|y

1:t−1
)

= g(y
t
| x

t
) f∫ (x

t
| x

t−1
)p(x

t−1
|y

1:t−1
)dx

t−1



Filtering algorithms 

•  How to characterize the posterior distribution                 in a 
recursive fashion? 

•  Weighted particle approaches (e.g., particle filtering, SMC) 
–  Represent the posterior as a weighted sum of Dirac measures 

 
–  Good proposal distributions are crucial; particles must fall in the 

regions of high posterior probability! 
–  Extensive work in this regard: Doucet 2001, Snyder 2008, 

VanLeeuwen 2010, Chorin 2009–12 
–  Converge to the Bayesian solution as 

  p(xt
|y

1:t
)

    
p(x

t
|y

1:t
)≈ w

i
i

N

∑ δ
Xt

i(xt
)

  N →∞



Filtering algorithms 

•  How to characterize the posterior distribution                 in a 
recursive fashion? 

 

•  Ensemble Kalman filtering (EnKF) 
–  Approximate the prior (i.e., forecast distribution) as Gaussian 
–  Bayesian update proceeds from the Gaussian assumption 
–  Biased; does not converge to the true Bayesian solution 
–  Can have good tracking performance and good computational 

efficiency; regularly applied to high-dimensional problems 
–  Yet performs poorly in quantifying uncertainty (e.g., reproducing 

covariance of the Bayesian posterior) [Law & Stuart 2012] 

  p(xt
|y

1:t
)



Filtering algorithms 

•  Two rather contrasting schemes: 
–  Continuous versus discrete: sum of a few point masses (PF)  

versus Gaussian approximation (EnKF) 
–  Inference via “local” versus “global” updates 

•  We will propose filtering algorithms that use optimal  
transport maps 
–  Use maps to tackle intrinsic challenges: approximating the prior, 

moving from prior to posterior, even smoothing 

•  Key attributes: 
–  Continuous representation avoids weighted particles (and particle 

degeneracy) 
–  Yet converge to the true Bayesian solution 



Optimal maps in filtering 

1.  From samples to a map 
–  Given an arbitrary collection 

of samples ξ(i) 

–  Prescribe a simple target 
measure (Gaussian) for Z 

–  Find Z = T(ξ), then invert it! 
–  This is regularized density 

estimation with a map 

2.  From a probability density to 
samples 
–  Given a complex target 

measure π	


–  Choose a simple reference 

measure (e.g., Gaussian) for ξ	


–  Construct a map from ξ to target  
–  Use the map to generate 

independent samples 

•  Use transport maps in two different ways 



Filtering via maps 

•  Two algorithms: one that separates forecast/analysis, one that 
tackles them jointly 

•  “Double map” algorithm 

Step 1: construct a “forecast map”  
–  Generate samples of                and map them to a target 

Gaussian 
–  The inverse of this map is Tf 
–  Now the inference problem can be transformed to ξ-space… 

   

p x
t
y

1:t( )∝ g(y
t
| x

t
)p(x

t
|y

1:t−1
)

= g(y
t
| x

t
) f∫ (x

t
| x

t−1
)p(x

t−1
|y

1:t−1
)dx

t−1

    
X

t
|y

1 :t−1
=T

f
(ξ)

   
X

t
|y

1 :t−1



Filtering via maps 

•  Step 2: construct an “inference map”  
–  Write the posterior density in terms of ξ	



–  Complex prior and simple likelihood now transformed to a simple 
prior and complex likelihood: the target density 

–  Construct a map Ta from another (Gaussian) reference to this 
posterior 

–  Final map is   

    
π
ξ
t ≡ p ξ y

1:t( )∝ p y
t
T

f
(ξ)( ) p

ξ
(ξ)

   
ξ ~ p

ξ

   
X

t
|y

1:t−1

    
ξ
t
~ π

ξ
t

  
X

t
|y

1:t

Tf 
Tf 

Ta 

   
T =T

f
T

a



Double-map algorithm 

•  Comments on the algorithm: 
–  When both maps are linear, algorithm reduces to the EnKF! 
–  Increasing the polynomial order generalizes the EnKF to non-

Gaussian distributions 
–  Use this freedom to balance computational cost with accuracy 
–  Infrequent observations: intermediate-time states are marginalized 

away 
–  Forecast distribution is estimated from samples, but the estimate (via 

map Tf ) is continuous; approximate information is “filled in” over the 
entire space 

–  Posterior may concentrate where there are no forecast samples 



Numerical examples 

•  Example 1: Lorenz-63 
–  Observe every 20 steps (x and z), timestep Δt = 0.01; Gaussian initial 

condition, stochastic forcing 
–  Compare sampling-importance-resampling (SIR) with locally optimal 

proposal, EnKF, and double map; versus a “gold-standard” SIR 
posterior 
–  Note: we are comparing to the true Bayesian solution, not 

evaluating tracking error 
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•  Example 1: Lorenz-63 (errors over 1200 timesteps) 
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•  EnKF does not converge as  
•  Maps approach the Bayesian solution as polynomial degree is refined 
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Numerical examples 

•  Example 1: Lorenz-63 (errors over 1200 timesteps) 
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•  EnKF does not converge as  
•  Maps approach the Bayesian solution as polynomial degree is refined 
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Numerical examples 

•  Example 2: Lorenz 95 
–  40-dimensional problem, F=8 (strongly chaotic), stochastic forcing 
–  Observe every 20 timesteps, odd states only; timestep Δt = 0.01 

–  Considered a challenging test configuration for filtering (Bengtsson 
2003, van Leeuwen 2010, Lei & Bickel 2011) 

–  Compare EnKF, double map, and SIR-lopt 



Numerical examples 

•  Example 2: Lorenz 95 (state tracking performance, 256 particles) 
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Numerical examples 

•  Example 2: Lorenz 95 (state tracking performance, 256 particles) 
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Numerical examples 

•  Example 2: Lorenz 95 (state tracking performance, 256 particles) 
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Numerical examples 

•  Example 2: Lorenz 95 (state tracking performance, 256 particles) 
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Numerical examples 

•  Example 2: Lorenz 95 (state tracking performance, 256 particles) 

Relative tracking 
errors (RMSE, 100 
twin experiments) 
•  EnKF: 26.5% 
•  dm(3,3): 25.0% 
•  SIR-lopt: 112.5% 
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Numerical examples 

•  Example 2: Lorenz 95 
–  What about convergence to the true posterior? Are we 

obtaining meaningful uncertainty information in the state? 
–  Must restrict attention to a single assimilation step; reference 

Bayesian solution obtained via exhaustive importance sampling 

–  Relative errors (percent) in mean and covariance (Frobenius norm), 
4096 particles 

 

 

SIR-
lopt 

EnKF dm 
(3,3) 

dm 
(5,5) 

dm 
(7,7) 

mean 12.8 
 

2.8 2.7 2.1 1.7 

covar 7215 31 22 20 18 



Numerical examples 

•  Example 2: Lorenz 95 

–  Computational cost (wallclock time for 10 assimilation steps) and map 
degrees of freedom (DOF); 512 particles 

–  Here, model integration is cheap; cost is dominated by optimization! 
–  Yet optimization iterations do not require further evaluation of the 

dynamical model 

 

 

EnKF dm(1,1) dm(3,3) dm(5,5) dm(7,7) 

time [s] 1 
 

7 215 1950 4945 

map DOFs   – 194 1329 3635 5197 



From double map to joint map 

•  The Lorenz 95 problem is challenging, but the the observations are in a 
sense typical. Simple approximations of the forecast distribution can 
succeed. Marginalization supports computational efficiency. 

•  What about rare events? Now one needs to capture the tail of the prior 
distribution. (The prior and likelihood are mutually singular!) 

•  Directly approximating the tail of the prior is completely impractical; 
instead we must abandon marginalization and turn to an all-at-once 
approach 



Joint map 

•  Algorithm 2: Joint map 
–  Idea: map to the joint distribution of state trajectories between 

observations; no forecast/analysis subdivision 
–  More robust (no prior approximation), but more expensive! 
–  Key steps: 

–  Rewrite joint distribution 
 
 

using map from previous observation step: 

–  Find a map from reference (η1, η2) to (xt, ξ) 
–  Triangular map structure recovers marginal on xt  

–  Generalize directly to occasional observations; now we are locally 
smoothing the trajectory between t-1 and t 

–  Computational cost grows with the number of intermediate states… 
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Numerical examples 

•  Example 3: particle in a Mueller-Brown potential 
–  Small noise, rare transition (1 in 106); observe x2 every 100 steps 
–  Joint map: posterior mean versus true trajectory; local smoothing 

SAA with 
256 samples 



Numerical examples 

•  Example 3: particle in a Mueller-Brown potential 
–  Small noise, rare transition (1 in 106); observe x2 every 100 steps 
–  Compare double map with joint map; filtering distributions 
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Numerical examples 

•  Example 3: particle in a Mueller-Brown potential 
–  Small noise, rare transition (1 in 106); observe x2 every 100 steps 
–  Compare double map with joint map; filtering distributions 
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Conclusions 

•  Bayesian inference with optimal transport maps 
–  Characterize and simulate from the posterior by solving an 

optimization problem 
–  Clear convergence criterion; evidence computed as a byproduct 
–  Favorable performance comparisons with MCMC 

•  A map-based approach to Bayesian filtering 
–  Based on the construction of transport maps from a reference measure 
–  Two algorithms: double map and joint map 
–  Both involve the solution of optimization problems 
–  Double map generalizes EnKF 
–  Continuous representations; convergence to the true Bayesian solution 

 



Conclusions 

•  Many open issues: 
–  More efficient optimization approaches 
–  Which DOFs are needed? Better adaptive parameterization and 

enrichment schemes 
–  Dimension reduction (ideas from yesterday): using Hessian information 

to identify directions that change from prior to posterior 
–  Filtering: understanding the role of regularization in representing the 

prior; constructing improved regularization schemes in the context of 
maps 
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