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Generalized PC expansion

| U() ~ o tvi(€(w)) |
Truncated spectral expansions

Askey scheme [Xiu and Karniadakis, 2003]

Distribution of £; | Polynomial family
Gaussian Hermite
Uniform Legendre
Exponential Laguerre
B-distribution Jacobi

Convention Wy = 1 : mean mode.

Expectation of U : E{U} = [, U(w)du(w) = Sk_o Uk J= Vi (€)p(€)dE = .
Variance of U :

.
VIU = E{U?} ~E{UP ~ > (Wi, W)
k=1

Estimation of other statistics (moment, pdfs, ANOVA) by sampling of &.
Extension to random vectors & stochastic processes :
Uy

P
(w, X, 1) =~ Z (x, 1) Wi (&(w)).
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Piecewise polynomial expansion
Instead of spectral expansion over = one can use piecewise polynomial
approximation on a mesh X of =

@ Stochastic mesh :
== U =sE, Z=seNZ=gg = () for SE#SEI
SEex
@ Associated stochastic space : with dimension
@ We can still construct orthogonal bases for Sy such that

P
UE) =D uVi(€), (Wi, Vi) = (Wi, k) S o
k=0

Possible choices are :

@ Stochastic multi-element method [Deb et al, 20011, [Wang and
Karniadakis, 2005]
Each function W has its support in a unique element =Zg¢ :
Fully decouple the Galerkin problem between elements

@ Stochastic Multiwavelet method [olm et al, 2004]
Hierarchical decomposition on meshes constructed by dyadic partitions, with
some overlapping of the support over different :

Coupled Galerkin problem, but hierarchical approximation well suited for
multiresolution analysis
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Stochastic hyperbolic systems Hyperbolic systems
Galerkin projection
Approximate Roe Solver

Hyperbolic systems :

%’ +V-fu)=0, u(x,t=0)=u’x), BCs

< u e Ay C R™ (conservative variables)

< f: Ay — R™ (flux function)

= if Vyf € R™™is R-diagonalizable on Ay = hyperbolic

< u can develop shocks / discontinuities in finite time
Classical discretization (Finite Volume in 1-D)

up -y u) — T o)

At Ax =0

where u? = [, u(x, t))dx and 1(,) is the numerical flux function (having
had-hoc properties).
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Stochastic hyperbolic systems Hyperbolic systems
Galerkin projection
Approximate Roe Solver

Uncertain hyperbolic problems :
[ Uncertain initial & boundary conditions
[ Uncertain physical parameters in f
1 Treat these uncertainties in a probabilistic framework :

P=(0,%r,du): u— U(x,t 0 € 0)
a Stochastic Hyperbolic Problem
oU(x,t,0)
ot
We assume
® U(x,t,0) € Ay as.
® VyF(U;0) a.s. R-diagonalizable for U € Ay
® all random quantities have finite variance (€ L2(©,dpu)).

+V-FU;0)=0, Ux,t=0,0)=Ux,0) (as.)
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Stochastic hyperbolic systems Hyperbolic systems
Galerkin projection
Approximate Roe Solver

Stochastic spectral basis :

0 Let £(0) = {&1(0),...;&n(0)} a set of N iid random variables with uniform
distribution on = = [0, 1]¥
1 Reformulate the problem on Pe = (Z,BY,1) :
oU(x,1,£)
ot

1 Let {Wo, Vy,...,Vp} the set of orthonormal polynomials in & with
: (fully tensorized)

+V-FU;¢)=0, U(x,t=0,¢)=Ux,¢) (as.)

(o, Ws) = / Vo (E)Ws(€)dE = Gus, 0 < a,f <
O Denote S™ = span{W¥y, ..., Vp}:

lim s™ = [3(2).

No— oo
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Stochastic hyperbolic systems Hyperbolic systems
Galerkin projection
Approximate Roe Solver

Stochastic expansion of the solution :
0 Since U € L?(Z) it has a convergent expansion :

U(x,1,8) =D Ua(x,)Wa(€)

O We denote U’ the approximation of U in S™°
1 Stochastic Galerkin projection of the hyperbolic problem : for
a=0,...,P
oUs(x,t)
ot
fo(Uo, ..., up) = (F(U";€),V.)

u,(x,t=0)= <U°(x),\l1a>

+V-fa(U07...,Up)=o

(P + 1)-coupled problems for the solution modes
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Stochastic hyperbolic systems Hyperbolic systems
Galerkin projection
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Galerkin problem : (system form)

P Up fo(uo,...,UP)
AR R 2 : —0
up fp(Uo,...,Up)

ou
Sr YV FU) =0

O u c Rmx(l’+1)

O .F . Rmx(PH) — Rmx(P+1)

1 Is the Galerkin problem hyperbolic ?
3 (VuF R-diagonalizable ?)

1 What is the admissible domain A, ?
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Stochastic hyperbolic systems Hyperbolic systems
Galerkin projection
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Jacobian of the Galerkin problem

Foo - Fop
VuF=| .. i1 |, Fhs=(VuFU"€),V.Vs) e R™"
Fho - Fbp

= If V,F is symmetric (a.s.), Vi, F is R-diagonalizable
< In particular, scalar problems (m = 1) yield hyperbolicity

= If VyF = LD(¢)R, where L and R are deterministic, the Galerkin
problem is hyperbolic

= Properties extend to # truncature rules

= Note that strict hyperbolicity is not to be expected even when VyF has
(a.s.) distinct eigenvalues.

[J. Tryoen et al, JCP 2010]
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Galerkin projection
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General case A
Let {¢7}, and {w"}, i =0,...,P the points and weights of the (fully
tensored) Gauss’ quadrature rule over = :

/ f(&)de (5(' W vf e st
Define

(Vu?), , ZVuF(UP@ €M) v (€7) v (€)W ~ FL

i=0

!

Let {N'(&)}=7, the stochastlc Eigenvalues of VF
{Al = N'(¢7)} are the eigenvalues of Vi, F

For sufficient smoothness, limno—co VuF = VuuF

LUNER VR U

If A'(¢) are known : approximate spectrum of Yy F
[J. Tryoen et al, JCP 2010, JCAM 2010]
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Stochastic hyperbolic systems Hyperbolic systems
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Approximate Roe solver
Ut =ul - = [¢>(u, JUP) = UL, U)]

where the numerical flux ¢ is chosen as

oUL,UR) = % [F(U) + FUR)] — a#

with a € R™P+Dxm(P+1) 3 non-negative upwind matrix

if the hyperbolic problem possesses a stochastic Roe matrix AR
almost surely, and & (U, Ur)a,p = (A%, W, V;) is R-diagonalizable, then
a** is a Roe matrix for the Galerkin problem

i.e. has properties of consistency and conservativity through shocks.
[J. Tryoen et al, JCP 2010]
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Roe solver (continued)
if the stochastic problem possesses a Roe state U‘Zj’,?, such that

AUy, Ug; &) = VyF(UL%) almost surely,

then
3" = (ULR Wa), & (U, Un) = VuF (U™)

so the Galerkin system has also a Roe state. We will take

(UL, Ur) = [f(uL) + F(Ur)] — |VuF( u“"e)| UL

where |A| = |LDR| = L|D| R for a R-diagonalizable matrix
[J. Tryoen et al, JCP 2010]
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Fast approximation of the upwind matrix
Computation of |V, F(14**)| through |A| = |LDR| = L |D| R requires the
decomposition of a matrix of R™®+1)xm(P+1) for each interface and time-step

Instead, use a polynomial transformation :
U recall g(LDR) = Lq(D)R
3 |VuF| = qq (VuF), where qq € Py minimizes

4= 3 [as () - w]
with A ~ A (U (6))

1 In practice d ~ 6 is sufficient
0 Compute directly gq (Vi F) 4854
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Fast approximation of the upwind matrix : illustration

18 T 18

A
16 q(N) 4 16
14 14
12 12

1 1

'
'

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0 XU
-1 -1.5 -1 -0.5 0 0.5 1
I\

Approximation polynomial g4 for d = 2 (left) and d = 6 (right).
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Summary :
Ut =uf - = [cb(u, UT) = $U 1, U]

where
1 oexy UR —U
$ULUR) = 5 [FUL) + FUr)| — qo (VuFU*™)) = 5=
1 Upwinding w.r.t. the actual Galerkin Jacobian waves
1 Applies conditionally to partially tensored stochastic basis
d May need [J. Tryoen et al, JCAM 2010]
1 Assume U(¢) smooth and sufficient stochastic discretization
1 But solutions are not smooth in general !

Call for piecewise polynomial approximations to allow for
discontinuities at the stochastic level
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. " . Multi-resolution system
Multi-resolution-analysis 4

Application to Euler equations

@ Non-linearities : need large polynomial orders for global approximation
over full uncertainty range.

@ Discontinuous solutions w.r.t. uncertain parameters prevent spectral

convergence.
® Gibbs phenomenon due to oscillating character of the spectral
polynomials
Multi-Resolution System
v Piecewise polynomial. v Discontinuous dependences.
v Convergence in polynomial order and v Local control of the resolution.
resolution level. v Adaptive strategy.

Wiener-type orthogonal expansion (multiwavelets)

[olm, Knio, Najm and Ghanem, JCPs 2004)].
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. . . Multi-resolution system
Multi-resolution-analysis 4

Application to Euler equations

1-D Multi-resolution space
ForNo=0,1,... and k =0,1,..., VX° is the space of piecewise
polynomial functions f: £ € [0,1] — R :

Vie = {f - the restriction of f on (27%1,27%(/ + 1)) € Pxo

forlzo,...,zk—1},
where Py, is the space of polynomials with degree < No.
We have :

@ Dim(V}°) = (No + 1)(2%),
eViecVieC...cVicC...
0 VY =, Vi is dense in L*([0, 1]) with the inner product

(f.g) = / F(£)g(€)de.
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. . . Multi-resolution system
Multi-resolution-analysis 4

Application to Euler equations

Multi-wavelet space
Let us denote WX°, k = 0,1,2,.. ., the orthogonal complement of V}° in
Vi .

VI e WY = Vit WYLV

S0
Vo D Wi = L([0,1]).
k>0
Let {10, 1, ..., 1¥no} be an orthonormal basis of W)° :

Wi(€),%i(§)) = 6,

and since W5° L V5° we have

(4,€) =0, 0<ij<No.
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. . . Multi-resolution system
Multi-resolution-analysis 4

Application to Euler equations

Multi-wavelet space
The v, are the generating functions of the MRA system.
No =1 No=2

2 T T

Wi (x)

~
i

05 | 1
|

TR

L ! I I ! I 1 I ! I
0 010203040506070809 1 0 01 020304050607 0809 1
X X
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. . . Multi-resolution system
Multi-resolution-analysis 4

Application to Euler equations

Multi-wavelet space
The ¢; are the generating functions of the MRA system.

Multi-wavelets v

V(€)= 22y 2% — 1), j=0,...,No, and /=0,...,2" 1.

® Supp(¢f) = [27K1, 27 (1 +1)].
° <¢;7,1/}/§r,7> = 0j6imOkk’ -

| \

Basis of V}° Legendre polynomials

¢’(£):%7 i:0717"'7N07

(¢i(£), #i(§)) = g for i,j=0,...,No.
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. . . Multi-resolution system
Multi-resolution-analysis 4

Application to Euler equations

Projection on VX°
Let us denote NN the projection of f on VX? :

No Nr—12K—1 / No
fNo,Nr(g) = PII\\IIS [f] — Z f,(ﬁ/(f) —+ Z (Z (5",?'(/%’;(5)) )
i=0 k=0 =0 i=0

where

fi = {f,0) and oif = (,0f).

For f € L?([0, 1]), the projection error can be made arbitrarily small by
increasing the expansion order No and/or resolution level Nr.
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Multi-resolution system
Application to Euler equations

Multi-resolution-analysis

Application of MRA to UQ

One-dimensional case

@ ¢ : RV with density with uniform density on [0, 1].

@ U(¢) € L([0,1]) = U(€) = 32 Ui Wk(&).
Wy elements of the orthonormal 1-D MRA system.

N-dimensionnal case
@ Proceed by (sparse) tensorization of 1-D MRA system.

© U(€)=U(&s,. - &N) = g Ug MY g (&1, - -, EN).
© MW (&) = Wi (&) X - X Wi (én).

Summary

@ Expansion in terms of random variables £ ~ U(0, 1)N.
@ Piecewise polynomial approximation.
@ Error reduction through p (No) or h (Nr) refinement.

@ Fast increase with No, Nr and N of approximation space’s dimension (calls
for adaptive techniques).
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Multi-resolution system
Application to Euler equations

Multi-resolution-analysis

Euler equations (Sod Shock Tube)

pP=1 P =0.125
P=1 P =0.125
OU L OFY) o, U=(pq.E)T

ot ox
F(U) = (pv,pv® + p,v(E + p))”

P:(v—1)(E—%pV2)

vV =

o Q

7€) =14+02¢ &~U0,1]]
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. " . Multi-resolution system
Multi-resolution-analysis 4

Application to Euler equations

Computation of Galerkin flux and Jacobian matrix

Use pseudo-spectral approximations
[Debusschere et al, 04]

@ Spectral product a* b = >-F _ (a* b)a W, with
P

(a*xb)a = Z agbyMagy, Magy = <\|"<v-,‘U;3‘Uw>
3,6=0

@ 1/a~ a * obtained by solving ax a=* = 1
@ \/a~ a*/2 obtained by solving (a*/2) x (a*/2) = a
® Example p* = (v — 1) = (E — ((g = q) * p~*)/2)
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Mean and standard devia

Multi-resolution-analysis

of density

Multi-resolution system
Application to Euler equations

Expected density

Standard deviation

25

15 time

05

Computations with Nr = 3, No = 2, and N; = 250

0. Le Maitre
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Multi-resolution-analysis

Multi-resolution system
Application to Euler equations

t=0.75s

o8

Stochastic density as a function of (x, &)

Le Maitre

s Nr

=3andNo =2

MRA for Uncertain Conservation Laws

t=125s




Multi-resolution system
Application to Euler equations

Multi-resolution-analysis

Convergence assessment

Nr=3 No = 1
0.025 T — T 0.06 T
No=0 ——
No=1
0.02 No=2 —------- b
No=3 o
0.015 1
& & 4
0.01 1
0.005 p b 4
/
- |
0 | R e e e O 0 (U 1 G S W T TR DU S O
0 0102030405060.70809 1 0 01020304050.60.70809 1
X X

Stochastic error ex(x, t = 6.5) for various No and Nr; N; = 250

M 1/2
1 5 . 2
Eh(X, t) = M Z (pI;]IO’Nr(Xz t7£(l)) - p]i\;lC(X’ t, f(l)))

i=1
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. " . Multi-resolution system
Multi-resolution-analysis 4

Application to Euler equations

Euler equations with sonic points

p=14 ——P=0:042

P =005 P = 0.0004
Ma') Ma%,
0 0.25 1
Mz0(€) x € [0,1/4)
Mal(x, &) = L ’ ~ U0, 1
(x,8) {Ma%(&) xe (141 Ul

3 sonic points for ¢ € [0, 0.6]
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. " . Multi-resolution system
Multi-resolution-analysis 4

Application to Euler equations

Entropy corrector

@ Adaptation of non-parametrized entropy corrector proposed by [Dubois &
Mehlmann 96] for Roe solvers in deterministic case

@ Use approximate eigenvalues and eigenvectors of aR"e(u,.", uy)

@ Mean-value averaged criterium to improve CPU times
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Multi-resolution system

Multi-resolution-analysis - .
uith ut yst Application to Euler equations

7
A

Stochastic density p(x, t,£) at t = 1 obtained without (left) and with (right) entropy
corrector ; Nr = 3 and No = 2
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Multi-resolution system

Multi-resolution-analysis - .
uith ut yst Application to Euler equations

Accuracy assessment

14 j Corr‘\puled ‘mean c‘)fp L B 014 Fat ‘Compt‘lled slv‘d-dev éf [ L
: MC mean of p ! 1 MC std-dev of p
0.12 | I B
12 q |
: oL ‘ i
i § 1 /
% 0.08 - f 4
08 | 3 il |
06 L | 006 [ / 1
04 , 004 1 “’ I 1
i 3 | [
02| 9 0.02 - L / \ ]
0 L L L L L L L L L 0 L “\ L L L L L L L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X
Comparison of mean and standard deviation of density at t = 1, computed with
Galerkin (using Nr = 3 and No = 2) and MC methods
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Stochastic adaptation Traffic equation

Content :

o Stochastic hyperbolic systems
@ Hyperbolic systems
@ Galerkin projection
@ Approximate Roe Solver

o Multi-resolution-analysis
@ Multi-resolution system
@ Application to Euler equations

0 Stochastic adaptation
@ Tree data structure
@ Adaptive scheme
@ Traffic equation

0. Le Maitre MRA for Uncertain Conservation Laws



Tree data structure
Adaptive scheme
Stochastic adaptation Traffic equation

Binary trees for piecewise polynomial space S = S(7)

@ Dyadic partitions of a node along a prescribe directiond : p — (c—, c™)
@ Piecewise-polynomial with fixed order No on each leaf of T.

@ Union of local modal basis : SE-basis

[Deb et al, 2001], [Karniadakis et al]

@ Hierarchical global basis over = : MW-Basis
[OLM et al, 2004]
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Tree data structure
Adaptive scheme
Stochastic adaptation Traffic equation

Adaptivity
stochastic adaptivity
@ Incomplete and anisotropic binary trees

Operators for multi-resolution analysis :
@ Prediction operator : define the solution in a stochastic space larger than the
current one (add new leafs and L2-injection).

@ Restriction operator : define the solution in a stochastic space smaller one the
current one (remove leafs and L2-projection).

@ Rely on recursive application of , full
exploitation of the tree structure.

a=1 a=2 a=23 a=4

Mother wavelets Wd, for N = 2, No = 1 in direction d = 1.
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Tree data structure
Adaptive scheme
Stochastic adaptation Traffic equation

Adaptivity :

@ Each spatial cell carries its own adapted stochastic discretization
@ Flux computation,

ot ) = T F )

with /g and U, known on different stochastic spaces

| &R (U, Ug)| B u,:, UL

@ Union operator : given two stochastic spaces, construct the minimal stochastic

space containing the two :

AL KA KA AN
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Tree data structure
Adaptive scheme
Stochastic adaptation Traffic equation

Adaptive Algorithm :
@ Loop over all interfaces of the spatial mesh :

Construct the union space of the left and right cells
Enrich this space

Predict left and right states of the interface
Evaluate the numerical flux (App. Roe scheme)

@ Loop over all cells of the spatial mesh :

Construct the union space of the cell’s interfaces

o Predict cell’s fluxes on the union space

o Compute fluxes difference and update cell’s solution
o Restrict cell's solution by thresholding

© Repeat for the next time step
Two indicators needed : based on multiwavelet details of nodes.
@ for Enrichment : anticipate emergence of new stochastic details,
@ for Thresholding : remove unnecessary/negligible details.
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Tree data structure
Adaptive scheme
Stochastic adaptation Traffic equation

Thresholding criterion :
Let us denote

@ T abinary tree and S(T) the corresponding stochastic approximation space
@ n € N(T) a node of the tree, and AV(T) set set of nodes having children
@ Nr the maximal depth allowed in a direction
@ T[Ny the maximal tree given Nr
We define for U € S(T|xnq) @nd 7 > 0 the subset of V(Tpug)
D(r) = {n € Mg |60 < 27122

where " := (%)<, <p are the MW coefficients of n.

Then
HUT[NNr] — Ui\ o H <.

Coarsening strategy :
Two sisters leafs (c—, ct) of a parent p(c~) are removed from the discretization if

@), <o-lnl/2_1
|| HEQ = \/W

Note : the coarsening is applied to the class of equivalent trees.
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Tree data structure
Adaptive scheme
Stochastic adaptation Traffic equation

Enrichment strategy :
Enrichment is necessary to anticipate emergence of new-stochastic details.

@ 1-D enrichment criterion : if U is (locally) smooth enough &2, of a generic node n
can be bounded as

|l | = pemt U= P) Vo)l < CIS() N[ Ull ot 5y

where |S(n)| = 2~ 11l is the volume of the node.

@ Therefore
[8°]] 2 ~ 2= M+ D) @) | o,

and a leaf 1 is refined if
@22 > 2Not12-111/2 //Nr and [1] < Nr.
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Tree data structure
Adaptive scheme
Stochastic adaptation Traffic equation

Enrichment strategy :
Extension of to the N-dimensional case :

@ Isotropic enrichment is not an option for N > 2,3
@ Using the decay estimation

B5] = 0ot (U= P ve)] < Caiam(S(@) [ Ul

@ Aleaf 1 is partitioned in direction d if

diam(S(p9(1))) "

“Pd(l) >
R D)

2=11/27/\/NNr and  |S(1)]q > 27

@ Requires construction of the virtual sister and parent of 1 in arbitrary direction d

]

@ A sharper directional criterion has been proposed using N families of 1-d analysis
functions [Tryoen, LM and Ern, SISC; 2012].
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Tree data structure
Adaptive scheme

Stochastic adaptation Traffic equation
Burgers equation

oU  9oF(U) U?

— =0, FWU)=—

ot ox W) 2

Uncertain initial condition U°(x, ¢) :
Xi2=0140.1&, Xp3=03+0.1&, &,& ~U[0,1]
2 stochastic dimensions.

1.2
1
0.8 N
E
2 06 E
>
0.4 i
SE reallizations
0.2 <U(x,t=0)>
a(U(x,t=0)) ——
O Il
0.6 0.8 1
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Stochastic adaptation

Tree data structure
Adaptive scheme

Traffic equation

Burgers equation

U OFW) _ o py U2
- ——= =0, -
ot ox 2
12 12
1 1
0.8 B 08
] ]
2 06 4 2 o6
i 4
0.4 B 04
- MW realizations
02 <'e(ax"z_a"%’)‘§ E 02 <Ukt=0.4)>
o(Uxt=0.2)) —— o(U(x,t=0.4))
0 . . . i 0 .
[ 0.2 0.4 0.6 0.8 1 [ 0.2
X
1.2 1.2
1
0.8
] ]
2 06 2
> >
0.4
SE realizations
02} <U(xt=0.6)> 4
o(U(x,t=0.6)) ——
0 I I
0 0.2 0.4 0.6 0.8 1
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Tree data structure
Adaptive scheme

Stochastic adaptation Traffic equation

Burgers equation
oU  9oF(U)
—+——=0, FU)=—
ot + ox S 2
N\

2

>

2

Le Maitre MRA for Uncertain Conservation Laws




Tree data structure
Adaptive scheme
Stochastic adaptation Traffic equation

2nd test case
Continuous initial conditions : two constants stochastic states

U=U"=140.05 x < 1/3,
U=U =-1+041 x> 2/83,

and affine variation in between. Ut > U~ a.s. and UT and U~ independent with uniform
distribution : UT (&), U™ (&)-

15 T T L
SE realizations
1 <U(x,t=0)> 7
05 | o(U(x,t=0)) — |
g
s 0 7
>
-05 -
-1 -
_15 1 1 1
0 0.25 0.5 0.75 1

Ut (&) + U (&) #0as.
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Tree data structure
Adaptive scheme

Stochastic adaptation Traffic equation

2nd test case

1.5
= UE©)
3 <U>
z L U) ——
£ os o)
s 0 \ 1
° .05} \ R
K \
S 4L A\
v
15 . . . .
035 04 0.45 05 055 06 065
15 . . —
= U(Ew)
z %K <U>
b U) ——
g osf o)
s 0 1
° 05| B
E) I —
v ar
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035 0.4 045 05 055 06 065
1.5 T T L E—
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0 _/< k T |
0 |
2 4 6 8 10 12
05 - B}
a4 -———
15 . . . .
035 04 045 05 055 06 065

Solution with x at different times.
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Complexity

10° 30000

102 25000
10t 20000

10° 15000

10000

0 5000

t 0

Evolution of the # of dof in space and time (left), and time only (right).
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Mean-squared error with (final) # of dof (MC estimate)

1
' ' €ox ad'aptive AN
£y UNiform —s<—
€qtsq Adaptive —x—
Eqtsg UNiform —e—
0.1 ¢ .
0.01 F E
0001 bt ol
le+02 1e+03 1e+04 1e+05 1le+06 1le+07
Ne M dof
Ax i . N 2
=g > <U,<(§(’)) — U™(x, 5”)) w.r.t. exact sol.
i=1 j=1
Ne M
AX & ; () 2
Eq= o > (Ui(g(f)) - U,S"d(g(’))) w.r.t. semi-discrete sol.
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Trafic equation in periodic [0, 1]-domain

F(U&): &) = AL)UE)(1 — U(&)) 1-Periodic BC.

U°(x, £) =0.25 + 0.01¢; — Ijp.1.04(x)(0.2 + 0.015¢2)
+ Tjo.3,0.51(X)(0.1 + 0.015&3) — Tj0.5,0.71(X) (0.2 4- 0.015¢4)

° A(€) =1 +0.1¢
@ 5-dimensional problem (&1, ..., &) ~ U0, 1]°.

Uxt=02%)

o

20 realizations of the initial condition (left) and solution at t = 0.4 (middle)
and t = 0.9 (right) : 2 shocks and 2 rarefaction waves.
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Space-time diagrams of the solution mean (left), standard deviation (center)
and average depth of the leafs (right) :

14

0 1 0 1
x x

Averaged number of partitions in each direction D; and anisotropy factor p :

Dy D Ds D, Ds P

6
4
2
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Hoeffding decomposition.

N N N
U, ..., &) :Uo+ZUi1(fi1)+Z Z Uy (&, €) + -

iy =1 iy=1 lp=ij+1
+ U1,.4.,N(€I‘1 PRI 7£iN)7
Sobol ANOVA (analysis of the variance)

N N N
V(U) = Z Vi, +Z Z Viip +---+ Vi, N,

ir=1 iy=1 ly=iy +1

@ First order sensitivity indexes : S; = V;/V

o Total sensitivity indexes : Ti = Yot ) Vu/V
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Space-time diagrams of the 1-st order sensitivity indexes S; and contribution
of higher order indexes.
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1F T, 3 1F, 3
0 /h 0 P
1F T E 1FT, E
0 A/—\ 0 AA
1F T4 1F, E
o o A
1 1

TS

0

Total sensitivity indices as a function of x e [0,1] att = 0.4 (left) and t = 0.9
(right).
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L2-norm of stochastic error for different values of n € [1072,107°] and
polynomial degrees No

102 ‘ 10° \
No=2 —+— No=2 —+—
N No=3 No=3
3 No=4 —x— | 3 \ No=4 —x— |
10 %' S No=5 B 10 KOFTLTT Noss —a—
1 ~ e
10 ‘ . 10 i
- o - &
& < \

7 .

10 10

10° 10* 10° 10° 10° 10° 107 10®
Total number of SE Total number of DoF

Left : error as a function of the total number of leafs in the final discretization
(t" = 0.5). Right : error as a function of the total number of degrees of
freedom (number of leafs times the dimension of the local polynomial basis).
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CPU-TIME per Iteration CPU-TIME per Iteration

100 — —
" ////
10 b 1 } 1
2 2
= =
S E
> >
§ F @ i 0§ E
= N E
© Total @ ° Total @
O(#leafs) ——— O(#leafs)
01k Flux (total) & 4 Flux (total) &
Integration Integration
x5 Coarsening 2 Coarsening 4
= Enrichment 4 Enrichment 4
Flux (Union) v Flux (Union) v
Flux (Evaluation) Flux (Evaluation)
0.01 L L 0.01 L L
10000 100000 1e+06 10000 100000
# of leafs #of leafs

Computational time (per time-iteration) as a function of the stochastic
discretization (total number of leafs) ; left : No =2 and n = 1073; right :
No=3andn=10""%.

1e+06
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Extension & future works

@ Extension to higher-order flux approximation, limiters, . ..
h — p adaptation at the stochastic level.
Spatial adaptation : FV mesh function of time and ¢!
Adaptivity for systems of conservation laws.
Higher spatial dimension.
Parallel implementation,
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