Stochastic Spectral Methods for Uncertainty Quantification

Olivier Le Maître^{1,2,3}, Omar Knio^{1,2}

1- Duke University, Durham, North Carolina 2- KAUST, Saudi-Arabia 3- LIMSI CNRS, Orsay, France

38th Conf. Dutch-Flemish NA Communities, Woudschoten

O. Le Maître & O. Knio Stochastic Spectral Methods

UQ in numerical simulations Proper Generalized Decompositions

Content :

UQ in numerical simulations

- Numerical Simulation
- Uncertainty propagation
- UQ methods

Polynomial Chaos expansions

- Stochastic discretization
- PC solution methods.
- Examples

Proper Generalized Decompositions

- Optimal Decompositions
- Algorithms
- An example

Numerical Simulation Uncertainty propagation UQ methods

The simulation of a physical system involves the basic steps :

Definition of a mathematical model : express basic physical principles (conservation laws, modeling of elementary processes, formulation, ...)

Prescription of the system investigated : definition of model inputs (geometry, forcing, ICs, BCs, model constants, ...)

Construction & resolution of the numerical model : discretization method, algorithms, approximate solvers, (parallel) implementation, ...

Analysis & post-treatment : recast model output in a format suitable to fair decision making.

Numerical Simulation Uncertainty propagation UQ methods

The simulation of a physical system involves the basic steps :

 Definition of a mathematical model : express basic physical principles (conservation laws, modeling of elementary processes, formulation, ...) Should account for *all* relevant physical processes : Validation

Prescription of the system investigated : definition of model inputs (geometry, forcing, ICs, BCs, model constants, ...) Usually cannot *exactly specified*, *e.g.* because of limited measurements / data, identification procedures, inherent variabilities,...

Construction & resolution of the numerical model : discretization method, algorithms, approximate solvers, (parallel) implementation, ...
 To obtain an *approximation* of the model solution within some prescribed accuracy.
 Verification & error analysis

Analysis & post-treatment : recast model output in a format suitable to fair decision making.
 One should quantify the impact of all sources of errors and uncertainty affecting the numerical predictions.
 Error & uncertainty quantification

Numerical Simulation Uncertainty propagation UQ methods

The simulation of a physical system involves the basic steps :

 Definition of a mathematical model : express basic physical principles (conservation laws, modeling of elementary processes, formulation, ...) Should account for *all* relevant physical processes : Validation

Prescription of the system investigated : definition of model inputs (geometry, forcing, ICs, BCs, model constants, ...) Usually cannot *exactly specified*, *e.g.* because of limited measurements / data, identification procedures, inherent variabilities,...

Construction & resolution of the numerical model : discretization method, algorithms, approximate solvers, (parallel) implementation, ...
 To obtain an *approximation* of the model solution within some prescribed accuracy.
 Verification & error analysis

Analysis & post-treatment : recast model output in a format suitable to fair decision making.

One should quantify the impact of all sources of errors and uncertainty affecting the numerical predictions. Error & uncertainty quantification

Reality : all these basic steps are mixed and strongly interrelated in engineering practice.

Numerical Simulation Uncertainty propagation UQ methods

Input-data uncertainty D

- Inherent variability (e.g. industrial processes, natural systems, variable environments,...)
- Epistemic uncertainty (e.g. incomplete identification/calibration, unobserved quantities, non-measurable model constants,...)

May not be reducible, even theoretically

• Probabilistic treatment of input uncertainty :

D defined on $(\Theta, \mathcal{A}, d\mu)$.

Numerical Simulation Uncertainty propagation UQ methods

Input-data uncertainty D

- Inherent variability (e.g. industrial processes, natural systems, variable environments,...)
- Epistemic uncertainty (*e.g.* incomplete identification/calibration, unobserved quantities, non-measurable model constants,...)

May not be reducible, even theoretically

Probabilistic treatment of input uncertainty :

D defined on $(\Theta, \mathcal{A}, d\mu)$.

Uncertainty propagation

Given the random input $D \in (\Theta, A, d\mu)$, and a model $\mathcal{M}(\cdot|D)$, the objective is to determine the model solution U:

U is random and defined on (Θ, A, dµ) :

 $U = U(\theta \in \Theta).$

• U and D are dependent random quantities, related by the model :

 $\mathcal{M}(U(\theta)|D(\theta)) = 0, \quad \forall \theta \in \Theta.$

Numerical Simulation Uncertainty propagation UQ methods

Input-data uncertainty D

- Inherent variability (e.g. industrial processes, natural systems, variable environments,...)
- Epistemic uncertainty (*e.g.* incomplete identification/calibration, unobserved quantities, non-measurable model constants,...)

May not be reducible, even theoretically

Probabilistic treatment of input uncertainty :

D defined on $(\Theta, \mathcal{A}, d\mu)$.

 $U = U(\theta \in \Theta).$

Uncertainty propagation

Given the random input $D \in (\Theta, A, d\mu)$, and a model $\mathcal{M}(\cdot|D)$, the objective is to determine the model solution U:

- *U* is random and defined on $(\Theta, \mathcal{A}, d\mu)$:
- U and D are dependent random quantities, related by the model :

$$\mathcal{M}(U(\theta)|D(\theta)) = 0, \quad \forall \theta \in \Theta$$

Computational approaches (I) :

Deterministic Methods

- Local sensitivity analysis : adjoint, AD, ...
- Perturbation techniques : limited to low variance of the input.
- Neumann expansions : limited to low expansion order.
- Moments method : limited characterization of S, closure problem (non-Gaussian / non-linear problems).

Stochastic Methods

- Generate at random a sample set of inputs :
- Compute the corresponding sample set of model ouputs :

 $\mathcal{M}(U(\theta_i)|D(\theta_i))=0.$

 $S_D = \{ D(\theta_1), D(\theta_2), \ldots \}$ $S_U = \{ U(\theta_1), U(\theta_2), \ldots \}$

③ Use the sample set S_U to estimate moments, correlations, ...

$$\mathbb{E}\left\{S\right\} = \frac{1}{M}\sum_{i=1}^{M}U(\theta_i),\ldots$$

Robust and generic approach, no assumption regarding to U or D, reuse deterministic codes, but slow convergence of the random estimates with the sample set size (M).

Monte-Carlo

Numerical Simulation Uncertainty propagation UQ methods

Computational approaches (II) :

Solution spaces

We assume that $U(\theta) \in \mathbb{V}$, almost surely. The Hilbert space \mathbb{V} is equipped with the inner product and norm

$$(U, V)_{\mathbb{V}}, \quad \|U\| = (U, U)_{\mathbb{V}}^{1/2} \quad U, V \in \mathbb{V}.$$

Since U is random, ||U|| is a random variable :

We further assume that the solution norm is a second order random variable :

$$\mathbb{E}\left\{ \left\| oldsymbol{U}
ight\|_{\mathbb{V}}^2
ight\} = \int_{\Theta} \left\| oldsymbol{U}(heta)
ight\|_{\mathbb{V}}^2 oldsymbol{d} \mu(heta) < \infty.$$

We denote $L_2(\Theta, d\mu)$ the space of second order random variables defined on $(\Theta, A, d\mu)$, equipped with the inner product and norm

$$\langle u, v \rangle = \mathbb{E} \{ uv \} = \int_{\Theta} u(\theta) v(\theta) d\mu(\theta), \quad \|u\|_{L_2} = \langle u, u \rangle^{1/2} \quad u, v \in L_2(\Theta, d\mu).$$

Functional representation

The stochastic solution can be sought as an element of the tensored Hilbert space $X = L_2(\Theta, d\mu) \otimes \mathbb{V}$:

$$V \in X \Rightarrow V(\theta) = \sum_{\alpha} v_{\alpha}(\theta) V_{\alpha}, \quad v_{\alpha} \in L_{2}(\Theta, d\mu), \ V_{\alpha} \in \mathbb{V}.$$

- $v_{\alpha}(\theta)$ are random variables,
- V_{α} are the deterministic functions.

 $\|U\|_{\mathbb{V}}(\theta)$

Computational approaches (II) :

Functional representation

The stochastic solution can be sought as an element of the tensored Hilbert space $X = L_2(\Theta, d\mu) \otimes \mathbb{V}$:

$$V \in X \Rightarrow V(\theta) = \sum_{\alpha} f_{\alpha}(\theta) v_{\alpha}, \quad f_{\alpha} \in L_{2}(\Theta, d\mu), \ v_{\alpha} \in \mathbb{V}.$$

- $f_{\alpha}(\theta)$ are random variables,
- v_{α} are the deterministic functions.

For computational purposes, we need

- **1** to discretize the abstract probability space $(L_2(\Theta, d\mu))$,
- 2 to discretize the deterministic space V,
- Ito define the functional expansion,
- to introduce computational strategies for its determination.

The interest in the functional expansion comes from

- possibly high convergence with the number of modes : low storage, low computational cost, ...
- explicit mapping $D(\theta) \mapsto U(\theta)$:

detailed UQ, sensitivity analysis

• cheap (re)sampling of the stochastic solution :

surrogate model for subsequent use.

Content :

UQ in numerical simulations

- Numerical Simulation
- Uncertainty propagation
- UQ methods

2 Polynomial Chaos expansions

- Stochastic discretization
- PC solution methods.
- Examples

Proper Generalized Decompositions

- Optimal Decompositions
- Algorithms
- An example

UQ in numerical simulations Stochastic discretization Polynomial Chaos expansions PC solution methods Examples

Representation of Input Uncertainty

We assume the availability of a parametrization of the uncertain inputs in terms of a set of N independent real-valued second order random variables $\boldsymbol{\xi} = (\xi_1, \dots, \xi_N)$ defined on $(\Theta, \mathcal{A}, d\mu)$:

$$D(\theta) = D(\boldsymbol{\xi}(\theta)), \quad p_{\boldsymbol{\xi}}(\boldsymbol{y}) = \prod_{i=1}^{N} p_i(y_i),$$

where p_{ξ} is the joint density function of ξ , with support $\Xi \subseteq \mathbb{R}^{N}$.

- transformation of random variables,
- principal orthogonal decompositions,
- principal component analysis.

Example : Karhunen-Loeve decomposition of a Gaussian random field

$$\kappa(\boldsymbol{x},\theta) \approx \mathbb{E}\left\{\kappa\right\}(\boldsymbol{x}) + \sum_{i=1}^{N} \phi_i(\boldsymbol{x})\xi_i(\theta), \quad \xi_i \sim N(0,1), \quad \mathbb{E}\left\{\xi_i\xi_j\right\} = \delta_{ij}$$

Then, the solution $U(\theta)$ of $\mathcal{M}(U|D(\theta)) = 0$ can be identified with $\tilde{U}(\boldsymbol{\xi})$, the solution of

$$\mathcal{M}(\tilde{U}(\boldsymbol{\xi})|D(\boldsymbol{\xi}))=0.$$

In addition (dropping the tilde),

$$U(\boldsymbol{\xi}) = \sum_{\alpha} \Psi_{\alpha}(\boldsymbol{\xi}) u_{\alpha} \in L_{2}(\Xi, \boldsymbol{p}_{\boldsymbol{\xi}}) \otimes \mathbb{V},$$

where $\Psi_{\alpha}(\boldsymbol{\xi}) \in L_2(\Xi, \boldsymbol{p}_{\boldsymbol{\xi}})$ and $u_{\alpha} \in \mathbb{V}$.

Polynomial Chaos expansions (I) PC expansion corresponds to the case where, in

$$U(\boldsymbol{\xi}) = \sum_{lpha} \Psi_{lpha}(\boldsymbol{\xi}) u_{lpha},$$

the stochastic functions Ψ_{α} are orthogonal multivariate polynomials in $\boldsymbol{\xi}$. For i = 1, ..., N, consider the family of orthogonal polynomials $\{\psi_0^i, \psi_1^i, ...\}$ such that

$$\left\langle \psi_{\alpha}^{i},\psi_{\beta}^{i}\right\rangle _{i}=\int\psi_{\alpha}^{i}(\mathbf{y})\psi_{\beta}^{i}(\mathbf{y})\mathbf{p}_{i}(\mathbf{y})d\mathbf{y}=\left\langle \psi_{\alpha}^{i},\psi_{\alpha}^{i}\right\rangle \delta_{\alpha,\beta},\quad\psi_{\alpha}^{i}\in\mathsf{\Pi}_{\alpha}(\mathbb{R}).$$

Classical distributions [Xiu and Karniadakis, 2002]

p_i Gaussian : Hermite polynomials,

- p_i Uniform : Legendre polynomials,
- p_i Exponential : Laguerre polynomials.

Let $\boldsymbol{\alpha} = (\alpha_1 \dots \alpha_N) \in \mathbb{N}^N$ be a multi-index, and define

$$\Psi_{\boldsymbol{\alpha}}(\boldsymbol{\xi}) = \prod_{i=1}^{N} \psi^{i}_{\alpha_{i}}(\xi_{i}),$$

such that

$$\left\langle \Psi_{\boldsymbol{\alpha}}, \Psi_{\boldsymbol{\beta}} \right\rangle = \left\langle \Psi_{\boldsymbol{\alpha}}, \Psi_{\boldsymbol{\alpha}} \right\rangle \delta_{\boldsymbol{\alpha}\boldsymbol{\beta}} = \prod_{i=1}^{N} \left\langle \psi_{\alpha_{i}}^{i}, \psi_{\alpha_{i}}^{i} \right\rangle \delta_{\alpha_{i}\beta_{i}}.$$

Then,

$$L_2(\Xi, p_{\boldsymbol{\xi}}) = \operatorname{span}\{\Psi_{\boldsymbol{\alpha}}, \ \boldsymbol{\alpha} \in \mathbb{N}^N\} \quad \text{and} \quad U(\boldsymbol{\xi}) = \sum_{\boldsymbol{\alpha} \in \mathbb{N}^N} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{\xi}) U_{\boldsymbol{\alpha}}.$$

[Wiener,38], [Cameron and Martin,47]

UQ in numerical simulations Polynomial Chaos expansions Proper Generalized Decompositions Examples Stochastic discretization PC solution methods

Polynomial Chaos expansions (II)

In practice, the PC expansion must be truncated

$$U(\boldsymbol{\xi}) = \sum_{\boldsymbol{\alpha} \in \mathbb{N}^{\mathbb{N}}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{\xi}) u_{\boldsymbol{\alpha}} \approx \sum_{\boldsymbol{\alpha} \in \mathcal{A}} \Psi_{\boldsymbol{\alpha}}(\boldsymbol{\xi}) u_{\boldsymbol{\alpha}} = U^{|\mathcal{A}|}(\boldsymbol{\xi}) \in \mathbb{S}^{\mathcal{A}} \otimes \mathbb{V} \subset L_{2}(\Xi, p_{\boldsymbol{\xi}}) \otimes \mathbb{V}.$$

Classical choice for the finite multi-index set \mathcal{A} are

- partial degree truncation
- total degree truncation
- hyperbolic cross truncation

the objective being to control the increase of the basis dimension with both the expansion order ${\rm No}$ and ${\rm N}$:

$$|\mathcal{A}_{N_{O}}^{p}| = \left(N_{O}+1\right)^{N} \geq |\mathcal{A}_{N_{O}}^{p}| = \frac{(N_{O}+N)!}{N_{O}!N!} \geq |\mathcal{A}_{N_{O},q<1}^{h}|.$$

Having Defined the stochastic basis, it remains to determine the deterministic functions U_{α} , $\alpha \in A$. HINT :

- Minimize L_2 -distance $\mathbb{E}\left\{ \| U(\boldsymbol{\xi}) U^{|\mathcal{A}|}(\boldsymbol{\xi}) \|_{\mathbb{V}}^2 \right\}$ NISP, "Regression"
- Verify $||U(\boldsymbol{\xi}) U^{|\mathcal{A}|}(\boldsymbol{\xi})||_{\mathbb{V}} = 0$ over a set of selected points

O. Le Maître & O. Knio

Collocation

• Reformulate model equations for the U_{α}

Stochastic Galerkin projection

 $\mathcal{A}_{N_{0}}^{p} = \{ \boldsymbol{\alpha} \in \mathbb{N}^{N}, \max_{i} \alpha_{i} \leq N_{0} \},\$ $\mathcal{A}_{N_{0}}^{t} = \{ \boldsymbol{\alpha} \in \mathbb{N}^{N}, |\boldsymbol{\alpha}| = \sum_{i} \alpha_{i} < N_{0} \},\$

 $\mathcal{A}^{h}_{\mathrm{No},q} = \{ \boldsymbol{\alpha} \in \mathbb{N}^{\mathrm{N}}, \sum_{i} \alpha^{q}_{i} \leq \mathrm{No}^{q} \},\$

Stochastic Spectral Methods

Stochastic discretization PC solution methods Examples

Non-intrusive methods

Use code as a black-box

- Compute/estimate spectral coefficients via a set of deterministic model solutions
- Requires a deterministic solver only

2 Let $s^{(i)}$ be the solution of the deterministic problem $\mathcal{M}\left(U^{(i)}|D(\xi^{(i)})\right) = 0$

3 $S_U \equiv \{U^{(1)}, \ldots, U^{(m)}\}$ sample set of model solutions

- Estimate expansion coefficients u_{α} from this sample set.
- Complex models, reuse of determinsitic codes, planification, ...
- Error control and computational complexity (curse of dimensionality), ...

Basics

Least square fit

"Regression" [Bervillier et al, 2006]

• Best approximation is defined by minimizing a (weighted) sum of squares of residuals :

$$R^{2}\left(\left\{U_{\boldsymbol{\alpha}},\boldsymbol{\alpha}\in\mathcal{A}\right\}\right)\equiv\sum_{i=1}^{m}w_{i}\left\|U^{(i)}-\sum_{\boldsymbol{\alpha}\in\mathcal{A}}u_{\boldsymbol{\alpha}}\Psi_{\boldsymbol{\alpha}}\left(\boldsymbol{\xi}^{(i)}\right)\right\|_{\mathbb{V}}^{2}.$$

Advantages/issues

- Stability with ratio *m* to |A|
- Convergence with number of regression points m
- Selection of the regression points and "regressors" $\Psi_{oldsymbol{lpha}}$
- Error estimate, ...
- \Rightarrow current trend toward Bayesian identification of the U_{α} : regularized version of the least square problem [Rizzi et al, 2012]

Non intrusive spectral projection : Exploit the orthogonality of the spectral basis : NISP [OLM et al, 2001]

$$\mathbb{E}\left\{\Psi_{\boldsymbol{\alpha}}^{2}\right\}u_{\boldsymbol{\alpha}}=\langle U,\Psi_{\boldsymbol{\alpha}}\rangle=\int_{\Xi}U(\boldsymbol{\xi})\Psi_{\boldsymbol{\alpha}}(\boldsymbol{\xi})\rho_{\boldsymbol{\xi}}(\boldsymbol{\xi})d\boldsymbol{\xi}.$$

Estimate integrals from a random sample sets (MC and variants) :

$$\langle U, \Psi_{\boldsymbol{\alpha}} \rangle \approx \frac{1}{m} \sum_{i=1}^{m} U(\boldsymbol{\xi}^{(i)}) \Psi_{\boldsymbol{\alpha}}(\boldsymbol{\xi}^{(i)})$$

- Convergence rate
- Error estimate
- Optimal sampling strategy

Non intrusive projection

Approximate integrals by N-dimensional guadratures :

$$\langle U, \Psi_{\boldsymbol{\alpha}} \rangle \approx \sum_{i=1}^{N_{\boldsymbol{Q}}} w^{(i)} U^{(i)} \Psi_{\boldsymbol{\alpha}} \left(\boldsymbol{\xi}^{(i)} \right).$$

Owing to the product structure of \equiv the quadrature points $\boldsymbol{\xi}^{(i)}$ and weights $\boldsymbol{w}^{(i)}$ can be obtained by

full tensorization of n points 1-D quadrature (i.e. Gauss) :

ted 1-D quadrature formula (Féjer, Clenshaw-Curtis) using Smolyak formula : [Smolyak, 63]

The partial tensorization results in so-called Sparse-Grid cubature formula, that can be constructed adaptively to the integrants (anisotropic formulas) in order to account for variable behaviors along the stochastic directions Gerstner and Griebel, 2003]

Deterministic Quadratures

PC solution methods

$$N_Q = n^N$$

 $N_O << n^N$

Stochastic discretization PC solution methods Examples

Non intrusive projection

- Important development of sparse-grid methods
- Anisotropy and adaptivity
- Also (sparse grid) collocation methods (N-dimensional interpolation) Hussaini, 2003], [Nobile et al, 2008]

[Mathelin and

Galerkin projection

- Weak solution of the stochastic problem $\mathcal{M}(U(\xi); D(\xi)) = 0$
- Needs adaptation of deterministic codes
- Potentially more efficient than NI techniques.

Let $\mathbb{S}^{\mathbb{P}} \subset L^2(\Xi, p_{\xi})$ defined as

$$\mathbb{S}^P = \text{span}\{\Psi_0,\ldots,\Psi_P\},$$

where the { Ψ_k } are orthogonal functionals in $\boldsymbol{\xi}$, *e.g.* a PC basis truncated to an order No. We seek for the approximate stochastic model solution in $\mathbb{V} \otimes \mathbb{S}^P$.

$$U(\boldsymbol{\xi}) \approx U^{\mathrm{P}}(\boldsymbol{\xi}) = \sum_{k=0}^{\mathrm{P}} u_k \Psi_k(\boldsymbol{\xi}).$$

Inserting $U^{\mathbb{P}}$ in the weak formulation yields the stochastic residual $\mathcal{R}(U^{\mathbb{P}}) = \mathcal{M}(U^{\mathbb{P}}(\boldsymbol{\xi})|D(\boldsymbol{\xi})) \in \mathbb{V}'$.

Galerkin projection

[Ghanem & Spanos, 1991]

In general, one cannot find $U^{\mathbb{P}} \in \mathbb{V} \otimes \mathbb{S}^{\mathbb{P}}$ such that

$$\mathcal{R}(U^{\mathbb{P}}) = 0$$

It is then required that $\mathcal{R}(\textit{U}^{P})$ is orthogonal to the stochastic approximation space :

$$\left\langle \left\langle \mathcal{M}(U^{\mathrm{P}}(\boldsymbol{\xi})|D(\boldsymbol{\xi})),v\right\rangle _{\mathbb{V}^{\prime}},eta(\boldsymbol{\xi})
ight
angle =0 \hspace{1em} oralleta\in\mathbb{S}^{\mathrm{P}} ext{ and }v\in\mathbb{V}.$$

- This weak formulation corresponds to the stochastic Galerkin formulation.
- $\bullet~$ The actual formulation is obtained in practice by projecting all model equations on $\mathbb{S}^{P}.$

The Galerkin projection results in a set of P + 1 coupled problems for the stochastic modes u_k of the solution.

Find $\{u_k, k = 0, \dots, P+1\} \in \mathbb{V}^{P+1}$ such that

$$\left\langle \left\langle \mathcal{M}\left(\sum_{k=0}^{P} u_{k} \Psi_{k}(\boldsymbol{\xi}) | D(\boldsymbol{\xi})\right), v \right\rangle_{\mathbb{V}'}, \Psi_{l}(\boldsymbol{\xi}) \right\rangle = 0, \quad \forall v \in \mathbb{V} \text{ and } l = 0, \dots, P.$$

- The size of the Galerkin problem increases with the stochastic basis dimension P + 1.
- Recall that $P + 1 = (N + N_0)!/N!N_0!$ for polynomial truncation at order No.
- This can be costly for complex problems requiring large parametrization and large expansion order.
- $P + 1 < N_Q$ so complexity potentially less than for NISP and other non-intrusive approaches.
- Galerkin solvers and algorithms targeting a complexity scaling with P + 1, whenever possible.
- Projections on the Ψ_l of the model equations can be problematic for **non-linear models**.

PC solution methods Examples

Case of linear modelsLinear problems are of practical importance in scientific computing, whether as stand-alone mathematical problems or as ingredients of numerical methods (*e.g.* iterative techniques for the resolution of non-linear problems).

We analyze the structure of the Galerkin problem arising from the projection of linear models, and examine implications regarding suitable solution strategies.

Consider a linear problem discretized at the deterministic level and recast in the matrix form

$$[A](\boldsymbol{\xi})\boldsymbol{U}(\boldsymbol{\xi})=\boldsymbol{B}(\boldsymbol{\xi}).$$

Seeking the solution $U(\boldsymbol{\xi})$ in $\mathbb{R}^m \otimes \mathbb{S}^P$, the Galerkin projection gives :

$$\sum_{i=0}^{\mathsf{P}} \langle \Psi_k, [A] \Psi_i \rangle \, \boldsymbol{u}_i = \langle \Psi_k, \boldsymbol{B} \rangle \,, \quad k \in \{0, \ldots, \mathsf{P}\}.$$

equivalent to the larger (block) system of linear equations

$$\begin{bmatrix} [A]_{00} & \dots & [A]_{0P} \\ \vdots & \ddots & \vdots \\ [A]_{P0} & \dots & [A]_{PP} \end{bmatrix} \begin{pmatrix} \boldsymbol{u}_0 \\ \vdots \\ \boldsymbol{u}_P \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_0 \\ \vdots \\ \boldsymbol{b}_P \end{pmatrix}$$

 $[A]_{ij}$ the $(m \times m)$ matrix given by $[A]_{ij} := \langle \Psi_i, [A] \Psi_j \rangle$, and $\boldsymbol{b}_i := \langle \Psi_i, \boldsymbol{B} \rangle$.

- The linear Galerkin problem couples all the stochastic modes *u_i* ∈ ℝ^{*m*} of the stochastic solution.
- It is not possible in general to compute independently the components **u**_i.
- The size of the spectral problem is large : $m \times \dim \mathbb{S}^{\mathbb{P}} = m \times (\mathbb{P} + 1)$.
- Resolution of the linear Galerkin system can be demanding.
- An understanding of the block structured system is instructive to design and apply well-suited numerical methods.

In general, the matrix [A] has a PC expansion

$$[\mathbf{A}](\boldsymbol{\xi}) = \sum_{i=0}^{P} [\mathbf{A}]_{i} \Psi_{i}(\boldsymbol{\xi}) \implies [\mathbf{A}]_{ij} = \left\langle \Psi_{i}, [\mathbf{A}] \Psi_{j} \right\rangle = \sum_{k=0}^{P} [\mathbf{A}]_{k} \left\langle \Psi_{i}, \Psi_{j} \Psi_{k} \right\rangle,$$

and the Galerkin system can be conveniently recast as

$$\begin{bmatrix} [\overline{A}]_{00} & \dots & [\overline{A}]_{0P} \\ \vdots & \ddots & \vdots \\ [\overline{A}]_{P0} & \dots & [\overline{A}]_{PP} \end{bmatrix} \begin{pmatrix} \boldsymbol{u}_{0} \\ \vdots \\ \boldsymbol{u}_{P} \end{pmatrix} = \begin{pmatrix} \overline{\boldsymbol{b}}_{0} \\ \vdots \\ \overline{\boldsymbol{b}}_{P} \end{pmatrix},$$

where $\overline{m{b}}_i:=\left< B, \Psi_i \right> / \left< \Psi_i^2 \right>$ and

$$[\overline{A}]_{ij} := \sum_{k=0}^{P} [A]_k C_{kji}, \quad C_{ijk} := \frac{\left\langle \Psi_i \Psi_j \Psi_k \right\rangle}{\left\langle \Psi_k \Psi_k \right\rangle}.$$

The third-order tensor *C_{ijk}* plays a fundamental role in stochastic Galerkin methods, especially in non-linear problems.

- C_{ijk} is symmetric w.r.t. the two first indices, C_{ijk} = C_{jik}.
- It induces block-symmetry in the spectral problem, $[\overline{A}]_{ij} = [\overline{A}]_{ji}$
- Many of the $(P + 1)^3$ entries are zero with many simplifications.
- For instance the first block of the Galerkin system reduces to

$$[\overline{A}]_{00} = \sum_{k=0}^{P} [A]_k C_{k00} = [A]_0$$

and the sum for the upper-right block (and lower-left block) actually reduces to $[\overline{A}]_{0P} = [A]_{P} / \langle \Psi_{P}^{2} \rangle$.

Many other simplifications occur.

Stochastic discretization PC solution methods Examples

$$N = 4$$
-dim $S^{P} = 35$ - $S = 0.58$ $N = 6$ -dim $S^{P} = 84$ - $S = 0.41$

$$N = 8$$
-dim $S^P = 165$ - $S = 0.31$ $N = 10$ -dim $S^P = 286$ - $S = 0.23$

Illustration of the sparse structure of the matrices of the linear spectral problem for different dimensions, N, with No = 3. Matrix blocks $[\overline{A}]_{ij}$ that are generally non-zero appear as black squares.

UQ in numerical simulations Stochastic discretization Polynomial Chaos expansions PC solution methods Proper Generalized Decompositions Examples

No = 2-dim
$$S^P$$
 = 21-S = 0.52 No = 3-dim S^P = 56-S = 0.49

No = 4-dim
$$S^P$$
 = 126-S = 0.54 No = 5-dim S^P = 252-S = 0.55

Illustration of the sparse structure of the matrices of the linear spectral problem for different expansion orders No, with N = 5. Matrix blocks $[\bar{A}]_{ij}$ that are generally non-zero appear as black squares.

- The main difficulty in solving discrete linear spectral problems is the size of the system.
- The structure and sparsity of the linear Galerkin problem suggests iterative solution strategies.
- Iterative solvers (e.g. conjugate gradient techniques for symmetric systems, and Krylov subspace methods) can be used.
- The efficiency of iterative solvers depends on the availability of appropriate preconditioners which need be adapted to the Galerkin problem.
- Construction of preconditioners to exploit the structure of the linear Galerkin problem.

Convection dispersion equation

Proposed by : J.-M. Martinez (CEA/DEN/DM2S/LGLS) and A. Cartalade (CEA/DEN/DM2S).

Stochastic discretization PC solution methods Examples

1-D Convection dispersion

Model equation

- Concentration C(x, t)
- IC and BC :
- Parameters: q > 0 the Darcy velocity (1m/day), φ the fluid fraction (given in]0, 1[), D₀ the molecular diffusivity (<< 1), and λ uncertain the hydrodynamic dispersion coefficient.

Uncertainty model

- λ follows an uncertain power-law :
- a and b independent random variables.
- log₁₀(a) ∼ U[-4, -2] and b ∼ U[-3.5, -1].

$$a(\xi_1) = \exp(\mu_1 + \sigma_1\xi_1), \quad b = \mu_2 + \sigma_2\xi_2, \quad \xi_1, \xi_2 \sim U[-1, 1].$$

 $\lambda(\xi_{1},\xi_{2}) = \exp(\mu_{1} + \sigma_{1}\xi_{1})\phi^{\mu_{2}+\sigma_{2}\xi_{2}} \approx \sum_{k} \lambda_{k}\Psi_{k}(\xi_{1},\xi_{2})$

[Debusschere et al, 2004]

A. Cartalade (CEA)

 $\phi \frac{\partial C}{\partial t} = -\frac{\partial}{\partial x} \left[qy - (\phi D_0 + \lambda |q|) \frac{\partial C}{\partial x} \right].$

C(x, t = 0) = 0, C(x = 0, t) = 1.

$$\lambda = \mathbf{a}\phi^{\mathbf{b}}$$

Stochastic discretization PC solution methods Examples

Convection dispersion equation

Solution method

- Wiener-Legendre expansion and Galerkin projection : $C(x, t, \xi_1, \xi_2) = \sum_{k=0}^{p} C_k(x, t) \Psi_k(\xi_1, \xi_2).$
- Finite volume deterministic discretization $\mathcal{O}(\Delta x^2)$.
- Implicit time scheme $\mathcal{O}(\Delta t^2)$ (block tri-diagonal system, mean operator preconditionner).
- upwind stabilization of convection term (velocity is certain).

Expectation & standard deviation at x = 0.5

Stochastic discretization PC solution methods Examples

Convection dispersion equation

Convergence of pdfs at x = 0.5

Stochastic discretization PC solution methods Examples

results

Convection dispersion equation

Stochastic discretization PC solution methods Examples

Stochactic spectral solvers for incompressible Navier-Stokes equations

Stochastic Navier-Stokes equations with uncertain viscosity and source term :

$$\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{U} \nabla \boldsymbol{U} = -\nabla \boldsymbol{P} + \boldsymbol{\nu} \nabla^2 \boldsymbol{U} + \boldsymbol{F}$$
$$\nabla \cdot \boldsymbol{U} = 0.$$

PC expansion of the solution :

$$(\boldsymbol{U},\boldsymbol{P})\approx(\boldsymbol{U}^{\mathrm{P}},\boldsymbol{P}^{\mathrm{P}})=\sum_{k=0}^{\mathrm{P}}(\boldsymbol{u}_{k},\boldsymbol{p}_{k})\Psi_{k}.$$

And the Galerkin projection on Ψ_{α} gives

$$\begin{aligned} \frac{\partial \boldsymbol{u}_{k}}{\partial t} + \sum_{i,j=0}^{P} \boldsymbol{C}_{kij} \boldsymbol{u}_{i} \boldsymbol{\nabla} \boldsymbol{u}_{j} &= -\boldsymbol{\nabla} \boldsymbol{p}_{k} + \sum_{i=0}^{P} \frac{\langle \boldsymbol{\nu} \boldsymbol{\Psi}_{i}, \boldsymbol{\Psi}_{k} \rangle}{\langle \boldsymbol{\Psi}_{k}, \boldsymbol{\Psi}_{k} \rangle} \nabla^{2} \boldsymbol{u}_{i} + \frac{\langle \boldsymbol{F}, \boldsymbol{\Psi}_{k} \rangle}{\langle \boldsymbol{\Psi}_{k}, \boldsymbol{\Psi}_{k} \rangle} \\ \boldsymbol{\nabla} \cdot \boldsymbol{u}_{k} &= 0. \end{aligned}$$

UQ in numerical simulations Stochastic discretization Polynomial Chaos expansions PC solution methods Examples

Galerkin projection of the Navier-Stokes Equation :

$$\frac{\partial \boldsymbol{u}_k}{\partial t} + \sum_{l,m} C_{klm} \boldsymbol{u}_l \nabla \boldsymbol{u}_m = -\nabla \boldsymbol{p}_k + \sum_{l,m} C_{klm} \boldsymbol{\nu}_l \nabla^2 \boldsymbol{u}_m + \boldsymbol{f}_k, \quad \nabla \cdot \boldsymbol{u}_k = 0$$

where $C_{klm} := \frac{\langle \Psi_l \Psi_m, \Psi_k \rangle}{\langle \Psi_k, \Psi_k \rangle}$ **Deterministic viscosity** and explicit treatment of the non-linearity Decoupling!

$$\frac{1}{\Delta t}\boldsymbol{u}_{k}^{n+1} - \nu \nabla^{2}\boldsymbol{u}_{k}^{n+1} + \boldsymbol{\nabla}\boldsymbol{p}_{k}^{n+1} = \frac{1}{\Delta t}\boldsymbol{u}_{k}^{n} - \sum_{i,j=0}^{P} C_{kjj}\boldsymbol{u}_{i}^{n}\boldsymbol{\nabla}\boldsymbol{u}_{j}^{n} + \frac{\langle \boldsymbol{F}, \boldsymbol{\Psi}_{k} \rangle}{\langle \boldsymbol{\Psi}_{k}, \boldsymbol{\Psi}_{k} \rangle} \\ \boldsymbol{\nabla} \cdot \boldsymbol{u}_{k}^{n+1} = 0.$$

Other treatments of the convective part :

- semi-implicit, $u_l^n \nabla u_m^{n+1}$, \longrightarrow set of linear non-symmetric coupled problems : stabilization,?
- alternative semi-implicit form :

$$\left(\sum_{l,m} C_{klm} \boldsymbol{u}_l \boldsymbol{\nabla} \boldsymbol{u}_m\right)^{n+1} \approx \boldsymbol{u}_0^n \boldsymbol{\nabla} \boldsymbol{u}_k^{n+1} + \sum_{l>0,m} C_{klm} \boldsymbol{u}_l^n \boldsymbol{\nabla} \boldsymbol{u}_m^n$$

 \rightarrow mean-flow based stabilization (*e.g. upwinding*).

Steady problem

Solve the nonlinear set of equations

$$\sum_{l,m} C_{klm} \left(\boldsymbol{u}_l \boldsymbol{\nabla} \boldsymbol{u}_m - \nu_l \boldsymbol{\nabla}^2 \boldsymbol{u}_m \right) + \boldsymbol{\nabla} \boldsymbol{p}_k = \boldsymbol{f}_k, \quad \boldsymbol{\nabla} \cdot \boldsymbol{u}_k = 0.$$

- Large problem
- Iterative approach mandatory (Newton-like)
- Construction of approximate tangent operator (matrix-free)
- Derive appropriate preconditioners, *e.g.* based on time-stepper [olm, 2009]

Steady Flow around a circular cylinder - Vorticity formulation

Uncertain Reynolds : $\text{Re} = \text{Re}(\xi) \sim LN$ (Median above critical value) stochastic basis :

0.05

Numerical Method :

Wiener-Hermite

Newton Iterations (with Unstd. stoch. Stokes prec.) $\psi - \omega$ formulation + influence matrix for BCs

$$\boldsymbol{u}(\xi)\boldsymbol{\nabla}\omega(\xi)-rac{1}{\operatorname{Re}(\xi)}\nabla^{2}\omega(\xi)=0.$$

Centered Finite differences $O(\Delta x^2)$ Uniform mesh (512 × 360) and direct FFT-based solvers

Stochastic discretization PC solution methods Examples

Convergence of Newton iterates

 $\boldsymbol{u}(\xi)\boldsymbol{\nabla}\omega(\xi)-rac{1}{\operatorname{Re}(\xi)}\nabla^{2}\omega(\xi)=0.$

Convergence of the mean mode : (first 4 iterations)

Stochastic discretization PC solution methods Examples

First 4 stoch. modes :

$$\omega(\mathbf{x},\xi) = \sum_{k} \omega_k(\mathbf{x}) \Psi_k(\xi)$$

Near wake statistics :

Examples

Content :

UQ in numerical simulations

- Numerical Simulation
- Uncertainty propagation
- UQ methods

Polynomial Chaos expansions

- Stochastic discretization
- PC solution methods.
- Examples

Proper Generalized Decompositions

- Optimal Decompositions
- Algorithms
- An example

UQ in numerical simulations	Optimal Decompositions
Polynomial Chaos expansions	Algorithms
Proper Generalized Decompositions	

Functional expansions

Recall that the stochastic solution is sought in $L_2(\Xi, p_{\xi}) \otimes \mathbb{V}$:

$$U(\boldsymbol{\xi}) = \sum_{\alpha} f_{\alpha}(\boldsymbol{\xi}) u_{\alpha}(\boldsymbol{\xi}), \quad f_{\alpha} \in L_{2}(\Xi, p_{\boldsymbol{\xi}}) \text{ and } u_{\alpha} \in \mathbb{V}.$$

The PC methods consist in :

① Discretization of $L_2(\Xi, p_{\xi})$ introducing a subspace $\mathbb{S}^{|\mathcal{A}|}$ spanned by a basis $\{\Psi_{\alpha}, \alpha \in \mathcal{A}\},\$

2 Determination of the "best" approximation $U^{|\mathcal{A}|}$ of $U(\xi)$ in the subspace $\mathbb{S}^{|\mathcal{A}|} \otimes \mathbb{V}$.

The *a priori* selection of the stochastic basis yields the question of the optimality of the PC approximation. Can we do better?

Instead, we could consider the stochastic subspace space $\mathbb{S}^{|\mathcal{A}|},$ and define the generic separated representation as

$$U^{|\mathcal{A}|}(\boldsymbol{\xi}) pprox U^{m}(\boldsymbol{\xi}) = \sum_{lpha=1}^{m} f_{lpha}(\boldsymbol{\xi}) u_{lpha}(\boldsymbol{\xi}), \quad f_{lpha} \in \mathbb{S}^{|\mathcal{A}|} \text{ and } u_{lpha} \in \mathbb{V},$$

where known of the U_{α} and λ_{α} are selected *a priori*, and we expect $m \ll |\mathcal{A}|$ if the approximation is reducible.

The reduced solution $U^m(\xi)$ is called the rank-*m* approximation, while $\{\lambda_1, \ldots, \lambda_m\}$ and $\{u_1, \ldots, u_m\}$ are the stochastic and deterministic reduced bases. The questions are then :

- how to define the (deterministic or stochastic) reduced basis?
- how to compute the reduced basis and the *m*-th order PGD of *U*?

Optimal *L*²-spectral decomposition :

If we define the rank-m approximation as the minimizer of

$$\mathcal{R}^2(\mathcal{U}^m(oldsymbol{\xi})) = \mathbb{E}\left\{ \left\| \mathcal{U}(oldsymbol{\xi}) - \sum_{lpha=1}^m \lambda_lpha(oldsymbol{\xi}) u_lpha
ight\|_{\mathbb{V}}^2
ight\},$$

POD, KL decomposition

it is well known that the optimum is the KL decomposition of U, that is the u_{α} are the *m* dominant eigenmodes of correlation operator of U, $C : \mathbb{V} \mapsto \mathbb{V}$ (symmetric positive operator) :

$$\forall \boldsymbol{v} \in \mathbb{V}, \quad (\boldsymbol{C}\boldsymbol{u}_{\alpha}, \boldsymbol{v})_{\mathbb{V}} = \gamma_{\alpha} \left(\boldsymbol{u}_{\alpha}, \boldsymbol{v}\right), \quad \lambda_{\alpha}(\boldsymbol{\xi}) \|\boldsymbol{u}_{\alpha}\|_{\mathbb{V}}^{2} = (\boldsymbol{U}, \boldsymbol{u}_{\alpha})_{\mathbb{V}}.$$

But the solution is needed to perform the decomposition !

- Solve the Galerkin problem in $\mathbb{V} \otimes \mathbb{S}^{|\mathcal{A}'|}$, with $|\mathcal{A}'| < |\mathcal{A}|$, to construct a deterministic basis $\{u_{\alpha}, \alpha = 1, \dots, m\}$; then solve the reduced problem for the $\{\lambda_{\alpha=1,\dots,m} \in \mathbb{S}^{|\mathcal{A}|}\}$.
- Solve the Galerkin problem in V^H ⊗ S^{|A|} to construct {λ_{α=1,...,m}}; then solve the reduced problem for the {u_{α=1,...,m} ∈ V^h} with dim V^H ≪ dim V^h.

See works by the groups of Ghanem and Matthies.

Observe : the above approaches mix L₂ and Galerkin optimality definitions !

An alternative definition of the optimality

Consider the family of variational problems : given $\xi \in \Xi$, find $u \in \mathbb{V}$ such that

$$a(u, v|\boldsymbol{\xi}) = b(v|\boldsymbol{\xi}) \quad \forall v \in \mathbb{V},$$

where the bilinear form $a(\cdot, \cdot | \boldsymbol{\xi})$ is a.s. symmetric and positive definite. Example : elliptic equation with random coefficient : $\mathbb{V} = H_0^1$

$$a(u, v | \boldsymbol{\xi}) = \int_{\Omega} k(\boldsymbol{\xi}) \nabla u \nabla v \, dx, \quad \epsilon < k(\xi) < \infty \ a.s. \text{ in } \Omega.$$

The Galerkin problem becomes : Find $U(\xi) \in L_2(\Xi, \rho_{\xi}) \otimes \mathbb{V}$ such that

$$A(U, V) = \mathbb{E} \{ a(U, V | \boldsymbol{\xi}) \} = B(V) = \mathbb{E} \{ b(V | \boldsymbol{\xi}) \} \quad \forall V \in L_2(\Xi, p_{\boldsymbol{\xi}}) \otimes \mathbb{V}.$$

Clearly, the bilinear form $A : (L_2(\Xi, \rho_{\xi}) \otimes \mathbb{V}) \times (L_2(\Xi, \rho_{\xi}) \otimes \mathbb{V}) \mapsto \mathbb{R}$ is symmetric positive definite, so the solution *U* is the minimizer of the energy functional

$$\mathcal{J}(V) \equiv \frac{1}{2}A(V, V) - B(V)$$

Introducing the reduced solution, U^m can be defined as

$$\mathcal{J}(\boldsymbol{U}^{m}) = \frac{1}{2}\boldsymbol{A}(\boldsymbol{U}^{m},\boldsymbol{U}^{m}) - \boldsymbol{B}(\boldsymbol{U}^{m}) = \min_{\left\{\boldsymbol{u}_{\alpha=1,\ldots,m}\right\}, \left\{\boldsymbol{\lambda}_{\alpha=1,\ldots,m}\right\}} \mathcal{J}\left(\sum_{\alpha=1}^{m} \boldsymbol{u}_{\alpha}\boldsymbol{\lambda}_{\alpha}\right).$$

(detailed analysis for elliptic problems in [Nouy and Falco, 2012])

The rank-m solution U^m is defined by

$$\mathcal{J}(U^m) = \frac{1}{2}A(U^m, U^m) - B(U^m) = \min_{\{u_{\alpha=1}, \dots, m\}, \{\lambda_{\alpha=1}, \dots, m\}} \mathcal{J}\left(\sum_{\alpha=1}^m u_{\alpha}\lambda_{\alpha}\right).$$

- The minimum is not unique (homogeneity)
- Minimizing ${\mathcal J}$ is equivalent to minimizing a Rayleigh quotient
- The reduced solution is optimal w.r.t the A-norm defined as

$$\|V\|_A^2 \equiv \mathbb{E}\left\{a(V, V)\right\} = A(V, V),$$

to be compared with the KL norm $\mathbb{E}\left\{ \|V\|_{\mathbb{V}}^{2}\right\} = \mathbb{E}\left\{ (V, V)_{\mathbb{V}} \right\}.$

Recursive construction :

For *i* = 1, 2, 3...

Sequential construction [Nouy, 2007]

 $u_i = \mathcal{D}(\lambda_i, U^{i-1})$

 $\lambda_i = \mathcal{S}(u_i, U^{i-1})$

$$\mathcal{J}(U^{i}) = \min_{\mathbf{v} \in \mathbb{V}, \beta \in \mathbb{S}^{P}} \mathcal{J}\left(\beta \mathbf{v} + \sum_{j=1}^{i-1} \lambda_{j} u_{j}\right) = \min_{\mathbf{v} \in \mathbb{V}, \beta \in \mathbb{S}^{P}} \mathcal{J}\left(\beta \mathbf{v} + U^{i-1}\right)$$

The optimal couple (λ_i, u_i) solves simultaneously

• a) deterministic problem

$$A(\lambda_i u_i, \lambda_i v) = B(\lambda_i v) - A(U^{i-1}, \lambda_i v), \quad \forall v \in \mathbb{V}$$

• b) stochastic problem

$$\boldsymbol{A}(\lambda_{i}\boldsymbol{u}_{i},\beta\boldsymbol{u}_{i})=\boldsymbol{B}(\beta\boldsymbol{u}_{i})-\boldsymbol{A}\left(\boldsymbol{U}^{i-1},\beta\boldsymbol{u}_{i}\right),\quad\forall\beta\in\mathbb{S}^{\mathrm{P}}$$

Example of stochastic elliptic problem :

• Deterministic problem : $u_i = \mathcal{D}(\lambda_i, U^{i-1})$

$$\int_{\Omega} \mathbb{E}\left\{\lambda_{i}^{2} k\right\} \nabla u_{i} \cdot \nabla v \mathrm{d} \boldsymbol{x} = \mathbb{E}\left\{-\int_{\Omega} \lambda_{i} k \nabla U^{i-1} \cdot \nabla v \mathrm{d} \boldsymbol{x} + \int_{\Omega} \lambda_{i} f v \mathrm{d} \boldsymbol{x}\right\}, \quad \forall v$$

• Stochastic problem :
$$\lambda_i = S(u_i, U^{i-1})$$

$$\mathbb{E}\left\{\lambda_{i}\beta\int_{\Omega}k\boldsymbol{\nabla}\boldsymbol{u}_{i}\cdot\boldsymbol{\nabla}\boldsymbol{u}_{i}\mathrm{d}\boldsymbol{x}\right\}=\mathbb{E}\left\{-\beta\int_{\Omega}k\boldsymbol{\nabla}\boldsymbol{U}^{i-1}\cdot\boldsymbol{\nabla}\boldsymbol{u}_{i}\mathrm{d}\boldsymbol{x}+\int_{\Omega}\boldsymbol{f}\boldsymbol{u}_{i}\mathrm{d}\boldsymbol{x}\right\},\quad\forall\beta.$$

Properties :

[Nouy, 2007, 2008]

• The couple (λ_i, u_i) is a fixed point of :

$$\lambda_i = S \circ \mathcal{D}(\lambda_i, \cdot), \quad u_i = \mathcal{D} \circ S(u_i, \cdot)$$

• Homogeneity property :

$$rac{\lambda_i}{c} = \mathcal{S}(cu_i, \cdot), \quad rac{u_i}{c} = \mathcal{D}(c\lambda_i, \cdot), \quad \forall c \in \mathbb{R} \setminus \{0\}.$$

 \Rightarrow arbitrary normalization of one of the two elements.

Algorithms inspired from dominant subspace methods Power-type, Krylov/Arnoldi, ... UQ in numerical simulations Polynomial Chaos expansions Proper Generalized Decompositions Algorithms An example

Power Iterations

Set / = 1

2 initialize λ (*e.g.* randomly)

- While not converged, repeat
 - a) Solve : $u = \mathcal{D}(\lambda, U^{l-1})$
 - b) Normalize u
 - c) Solve : $\lambda = S(u, U^{l-1})$

$$I e u_l = u, \lambda_l = \lambda$$

() *I* ← *I* + 1, if *I* < *m* repeat from step 2

Comments :

- Convergence criteria for the power iterations (subspace with dim > 1 or clustered eigenvalues)
 [Nouy, 2007, 2008]
- Usually few (4 to 5) inner iterations are sufficient

(power iterations)

Power Iterations with Update

[Nouy and olm, 2009]

(optional)

Same as Power Iterations, but after (u_l, λ_l) is obtained (step 4) update of the stochastic coefficients :

- Orthonormalyze $\{u_1, \ldots, u_l\}$
- Find $\{\lambda_1, \ldots, \lambda_l\}$ s.t.

$$A\left(\sum_{i=1}^{l} u_i \lambda_i, \sum_{i=1}^{l} u_i \beta_i\right) = B\left(\sum_{i=1}^{l} u_i \beta_i\right), \quad \forall \beta_{i=1,\ldots,l} \in \times \mathbb{S}^{\mathsf{P}}$$

Ontinue for next couple

Comments :

- Improves the convergence
- Low dimensional stochastic linear system $(I \times I)$
- Cost of update increases linearly with the order / of the reduced representation

UQ in numerical simulations Proper Generalized Decompositions

Algorithms

Arnoldi (Full Update version)

- Set / = 0
- **2** Initialize $\lambda \in \mathbb{S}^{P}$

3 For l' = 1, 2, ...

(Arnoldi iterations)

- Solve deterministic problem $u' = \mathcal{D}(\lambda, U')$
- Orthogonalize : $u_{l+l'} = u' \sum_{i=1}^{l+l'-1} (u', u_i)_{\Omega}$
- If $||u_{l+l'}||_{\mathbb{V}} \leq \epsilon$ or l+l' = m then break
- Normalize u_{l+l'}
- Solve $\lambda = \mathcal{S}(u_{l'}, U')$
- $\bigcirc I \leftarrow I + I'$

$$\textbf{9} \text{ Find } \{\lambda_1, \dots, \lambda_l\} \text{ s.t.}$$

$$A\left(\sum_{i=1}^l u_i \lambda_i, \sum_{i=1}^l u_i \beta_i\right) = B\left(\sum_{i=1}^l u_i \beta_i\right), \quad \forall \beta_{i=1,\dots,l} \in \mathbb{S}^P$$

(6) If l < m return to step 2.

[Tamellini et al. 2009]

UQ in numerical simulations Polynomial Chaos expansions Proper Generalized Decompositions Algorithms An example

Summary

Resolution of a series of deterministic elliptic problems, with elliptic coefficients E {λ²k} and modified (deflated) rhs

dimension is dim \mathbb{V}^h

• Resolution of a series of linear stochastic equations

dimension is $\text{dim}\,\mathbb{S}^P$

- Update problems : system of linear equations for stochastic random variables dimension is m × dim S^P
- To be compared with the Galerkin problem dimension

 $\dim \mathbb{V}^h \times \dim \mathbb{S}^{\mathrm{P}}$

Weak modification of existing (FE/FV) codes (weakly intrusive)

UQ in numerical simulations	Optimal Decompositions
Polynomial Chaos expansions	Algorithms
Proper Generalized Decompositions	An example

Example definition

- Rectangular domain 25,000×695 (m)
- 4 Geological layers with uncertain conductivities
- uncertainty on BCs
- 9 independent r.v. $\{\xi_1, ..., \xi_9\} \sim U[0, 1]^9$
- $\bullet~$ Stochastic space \mathbb{S}^{P} : Legendre polynomial up to order No
- dim $S^P = P + 1 = (9 + No)!/(9!No!)$

UQ in numerical simulations Optimal Decompositions Polynomial Chaos expansions Algorithms Proper Generalized Decompositions An example

Norm of residual and error as a function of m (No = 3)

UQ in numerical simulations	Optimal Decompositions
Polynomial Chaos expansions	Algorithms
Proper Generalized Decompositions	An example

CPU times (No = 3)

Closing remarks

Polynomial Chaos expansions

- Fast convergence when the solution has smooth dependence with respect to ξ
- Adaptivity of the spectral basis to the solution
- Development of dedicated Galerkin solvers
- Treatment of non-linearities in Galerkin projection
- Preconditioning for non-intrusive methods
- Case of non-smooth solutions : multi-resolution.

Proper Generalized Decompositions

- Theoretically well grounded method for linear symmetric definite operators
- Yield close to optimal decomposition
- Connection with Greedy algorithms
- Non-intrusive versions possible
- Adaptation of algorithms and analysis to more general class of problems
- Application to non-linear problems [Nouy and Olm, 2010] *e.g.* Navier-Stokes [Tamellini Nouy and olm, 2013]

UQ in numerical simulations Polynomial Chaos expansions Proper Generalized Decompositions Algorithms An example

Thanks for your attention

Spectral Methods for Uncertainty Quantification with applications in computational fluid dynamics

with Omar Knio Springer Series on Scientific Computation.

O. Le Maître & O. Knio Stochastic Spectral Methods