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The simulation of a physical system involves the basic steps :
1 Definition of a mathematical model : express basic physical principles

(conservation laws, modeling of elementary processes, formulation, . . .)

Should account for all relevant physical processes : Validation

2 Prescription of the system investigated : definition of model inputs (geometry,
forcing, ICs, BCs, model constants, . . .)

Usually cannot exactly specified, e.g. because of limited measurements / data,
identification procedures, inherent variabilities,. . . Uncertainty representation

3 Construction & resolution of the numerical model : discretization method,
algorithms, approximate solvers, (parallel) implementation, . . .

To obtain an approximation of the model solution within some prescribed
accuracy. Verification & error analysis

4 Analysis & post-treatment : recast model output in a format suitable to fair
decision making.

One should quantify the impact of all sources of errors and uncertainty affecting
the numerical predictions. Error & uncertainty quantification

Reality : all these basic steps are mixed and strongly interrelated in engineering
practice.
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Input-data uncertainty D

Inherent variability (e.g. industrial processes, natural systems, variable environments,. . .)

Epistemic uncertainty (e.g. incomplete identification/calibration, unobserved quantities,
non-measurable model constants,. . .)

May not be reducible, even theoretically

Probabilistic treatment of input uncertainty : D defined on (Θ,A, dµ).

Uncertainty propagation

Given the random input D ∈ (Θ,A, dµ), and a modelM(·|D), the objective is to determine the
model solution U :

U is random and defined on (Θ,A, dµ) : U = U(θ ∈ Θ).

U and D are dependent random quantities, related by the model :

M(U(θ)|D(θ)) = 0, ∀θ ∈ Θ.

Input distribution

Model

Solution density Variability in U

Predictability assessment

Uncertainty analysis :
moments, confidence
intervals, full density,
sensitivity analysis,. . .
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Computational approaches (I) :

Deterministic Methods

Local sensitivity analysis : adjoint, AD, . . .

Perturbation techniques : limited to low variance of the input.

Neumann expansions : limited to low expansion order.

Moments method : limited characterization of S, closure problem (non-Gaussian / non-linear
problems).

Stochastic Methods Monte-Carlo

1 Generate at random a sample set of inputs : SD = {D(θ1),D(θ2), . . .}
2 Compute the corresponding sample set of model ouputs : SU = {U(θ1),U(θ2), . . .}

M(U(θi )|D(θi )) = 0.

3 Use the sample set SU to estimate moments, correlations, . . .

E {S} =
1
M

M∑
i=1

U(θi ), . . .

Robust and generic approach, no assumption regarding to U or D, reuse deterministic codes, but
slow convergence of the random estimates with the sample set size (M).
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Computational approaches (II) :

Solution spaces

We assume that U(θ) ∈ V, almost surely. The Hilbert space V is equipped with the inner product
and norm

(U,V )V , ‖U‖ = (U,U)
1/2
V U,V ∈ V.

Since U is random, ‖U‖ is a random variable : ‖U‖V(θ)
We further assume that the solution norm is a second order random variable :

E
{
‖U‖2

V

}
=

∫
Θ

‖U(θ)‖2
Vdµ(θ) <∞.

We denote L2(Θ, dµ) the space of second order random variables defined on (Θ,A, dµ),
equipped with the inner product and norm

〈u, v〉 = E {uv} =

∫
Θ

u(θ)v(θ)dµ(θ), ‖u‖L2 = 〈u, u〉1/2 u, v ∈ L2(Θ, dµ).

Functional representation

The stochastic solution can be sought as an element of the tensored Hilbert space
X = L2(Θ, dµ)⊗ V :

V ∈ X ⇒ V (θ) =
∑
α

vα(θ)Vα, vα ∈ L2(Θ, dµ), Vα ∈ V.

vα(θ) are random variables,

Vα are the deterministic functions.

O. Le Maître & O. Knio Stochastic Spectral Methods
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Computational approaches (II) :

Functional representation

The stochastic solution can be sought as an element of the tensored Hilbert space
X = L2(Θ, dµ)⊗ V :

V ∈ X ⇒ V (θ) =
∑
α

fα(θ)vα, fα ∈ L2(Θ, dµ), vα ∈ V.

fα(θ) are random variables,

vα are the deterministic functions.

For computational purposes, we need
1 to discretize the abstract probability space (L2(Θ, dµ)),

2 to discretize the deterministic space V,
3 to define the functional expansion,

4 to introduce computational strategies for its determination.

The interest in the functional expansion comes from

possibly high convergence with the number of modes : low storage, low computational cost, . . .

explicit mapping D(θ) 7→ U(θ) : detailed UQ, sensitivity analysis

cheap (re)sampling of the stochastic solution : surrogate model for subsequent use.
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Representation of Input Uncertainty
We assume the availability of a parametrization of the uncertain inputs in terms of a set of N
independent real-valued second order random variables ξ = (ξ1, . . . , ξN) defined on (Θ,A, dµ) :

D(θ) = D(ξ(θ)), pξ(y) =
N∏

i=1

pi (yi ),

where pξ is the joint density function of ξ, with support Ξ ⊆ RN.

transformation of random variables,

principal orthogonal decompositions,

principal component analysis.

Example : Karhunen-Loeve decomposition of a Gaussian random field

κ(x, θ) ≈ E {κ}(x) +
N∑

i=1

φi (x)ξi (θ), ξi ∼ N(0, 1), E
{
ξiξj
}

= δij .

Then, the solution U(θ) ofM(U|D(θ)) = 0 can be identified with Ũ(ξ), the solution of

M(Ũ(ξ)|D(ξ)) = 0.

In addition (dropping the tilde),

U(ξ) =
∑
α

Ψα(ξ)uα ∈ L2(Ξ, pξ)⊗ V,

where Ψα(ξ) ∈ L2(Ξ, pξ) and uα ∈ V.

O. Le Maître & O. Knio Stochastic Spectral Methods
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Polynomial Chaos expansions (I) [Wiener,38], [Cameron and Martin,47]
PC expansion corresponds to the case where, in

U(ξ) =
∑
α

Ψα(ξ)uα,

the stochastic functions Ψα are orthogonal multivariate polynomials in ξ.
For i = 1, . . . ,N, consider the family of orthogonal polynomials {ψi

0, ψ
i
1, . . .} such that〈

ψ
i
α, ψ

i
β

〉
i

=

∫
ψ

i
α(y)ψi

β(y)pi (y)dy =
〈
ψ

i
α, ψ

i
α

〉
δα,β , ψ

i
α ∈ Πα(R).

Classical distributions [Xiu and Karniadakis, 2002]

pi Gaussian : Hermite polynomials,

pi Uniform : Legendre polynomials,

pi Exponential : Laguerre polynomials.

Let α = (α1 . . . αN) ∈ NN be a multi-index, and define

Ψα(ξ) =
N∏

i=1

ψ
i
αi

(ξi ),

such that 〈
Ψα,Ψβ

〉
= 〈Ψα,Ψα〉 δαβ =

N∏
i=1

〈
ψ

i
αi
, ψ

i
αi

〉
δαiβi .

Then,
L2(Ξ, pξ) = span{Ψα, α ∈ NN} and U(ξ) =

∑
α∈NN

Ψα(ξ)Uα.

O. Le Maître & O. Knio Stochastic Spectral Methods
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Polynomial Chaos expansions (II)
In practice, the PC expansion must be truncated

U(ξ) =
∑

α∈NN

Ψα(ξ)uα ≈
∑
α∈A

Ψα(ξ)uα = U|A|(ξ) ∈ SA ⊗ V ⊂ L2(Ξ, pξ)⊗ V.

Classical choice for the finite multi-index set A are

partial degree truncation Ap
No = {α ∈ NN,maxi αi ≤ No},

total degree truncation At
No = {α ∈ NN, |α| =

∑
i αi ≤ No},

hyperbolic cross truncation Ah
No,q = {α ∈ NN,

∑
i α

q
i ≤ Noq},

the objective being to control the increase of the basis dimension with both the expansion order No
and N :

|Ap
No| = (No + 1)N ≥ |Ap

No| =
(No + N)!

No!N!
≥ |Ah

No,q<1|.

Having Defined the stochastic basis, it remains to determine the deterministic functions Uα,
α ∈ A.
HINT :

Minimize L2-distance E
{
‖U(ξ)− U|A|(ξ)‖2

V

}
NISP, "Regression"

Verify ‖U(ξ)− U|A|(ξ)‖V = 0 over a set of selected points Collocation

Reformulate model equations for the Uα Stochastic Galerkin projection

O. Le Maître & O. Knio Stochastic Spectral Methods
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Non-intrusive methods Basics

Use code as a black-box

Compute/estimate spectral coefficients via a set of deterministic model solutions

Requires a deterministic solver only

1 SΞ ≡ {ξ(1), . . . , ξ(m)} sample set of ξ

2 Let s(i) be the solution of the deterministic problem
M
(

U(i)|D(ξ(i))
)

= 0

3 SU ≡ {U(1), . . . ,U(m)} sample set of model solutions

4 Estimate expansion coefficients uα from this sample set.

Complex models, reuse of determinsitic codes, planification, . . .

Error control and computational complexity (curse of dimensionality), . . .

O. Le Maître & O. Knio Stochastic Spectral Methods
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Least square fit “Regression” [Bervillier et al, 2006]

Best approximation is defined by minimizing a (weighted) sum of squares of residuals :

R2 ({Uα,α ∈ A}) ≡
m∑

i=1

wi

∥∥∥∥∥∥U(i) −
∑
α∈A

uαΨα
(
ξ

(i)
)∥∥∥∥∥∥

2

V

.

Advantages/issues

Stability with ratio m to |A|

Convergence with number of regression points m

Selection of the regression points and “regressors” Ψα

Error estimate, . . .

⇒ current trend toward Bayesian identification of the Uα : regularized version of the least
square problem [Rizzi et al, 2012]

O. Le Maître & O. Knio Stochastic Spectral Methods
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Non intrusive spectral projection : NISP [OLM et al, 2001]
Exploit the orthogonality of the spectral basis :

E
{

Ψ2
α

}
uα = 〈U,Ψα〉 =

∫
Ξ

U(ξ)Ψα(ξ)pξ(ξ)dξ.

Estimate integrals from a random sample sets (MC and variants) :

〈U,Ψα〉 ≈
1
m

m∑
i=1

U(ξ(i))Ψα(ξ(i))

MC LHS QMC

Convergence rate

Error estimate

Optimal sampling strategy

O. Le Maître & O. Knio Stochastic Spectral Methods
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Non intrusive projection Deterministic Quadratures
Approximate integrals by N-dimensional quadratures :

〈U,Ψα〉 ≈
NQ∑
i=1

w (i)U(i)Ψα
(
ξ

(i)
)
.

Owing to the product structure of Ξ the quadrature points ξ(i) and weights w (i) can be obtained by

full tensorization of n points 1-D quadrature (i.e. Gauss) :

NQ = nN

partial tensorization of nes-
ted 1-D quadrature formula (Féjer, Clenshaw-Curtis) using Smolyak formula : [Smolyak, 63]

NQ << nN

The partial tensorization results in so-called Sparse-Grid cubature formula, that can be constructed
adaptively to the integrants (anisotropic formulas) in order to account for variable behaviors along
the stochastic directions. [Gerstner and Griebel, 2003]

O. Le Maître & O. Knio Stochastic Spectral Methods
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Non intrusive projection Deterministic Quadratures
l = 4 l = 5 l = 6

Important development of sparse-grid methods

Anisotropy and adaptivity

Also (sparse grid) collocation methods (N-dimensional interpolation) [Mathelin and
Hussaini, 2003], [Nobile et al, 2008]
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Galerkin projection

Weak solution of the stochastic problemM(U(ξ); D(ξ)) = 0

Needs adaptation of deterministic codes

Potentially more efficient than NI techniques.

Let SP ⊂ L2(Ξ, pξ) defined as
SP = span{Ψ0, . . . ,ΨP},

where the {Ψk} are orthogonal functionals in ξ, e.g. a PC basis truncated to an order No.
We seek for the approximate stochastic model solution in V⊗ SP.

U(ξ) ≈ UP(ξ) =
P∑

k=0

uk Ψk (ξ).

Inserting UP in the weak formulation yields the stochastic residualR(UP) =M(UP(ξ)|D(ξ)) ∈ V′.

Galerkin projection [Ghanem & Spanos, 1991]
In general, one cannot find UP ∈ V⊗ SP such that

R(UP) = 0

It is then required thatR(UP) is orthogonal to the stochastic approximation space :〈〈
M(UP(ξ)|D(ξ)), v

〉
V′
, β(ξ)

〉
= 0 ∀β ∈ SP and v ∈ V.

This weak formulation corresponds to the stochastic Galerkin formulation.
The actual formulation is obtained in practice by projecting all model equations on SP.

O. Le Maître & O. Knio Stochastic Spectral Methods
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The Galerkin projection results in a set of P + 1 coupled problems for the stochastic modes uk of
the solution.

Find {uk , k = 0, . . . , P + 1} ∈ VP+1 such that〈〈
M
(

P∑
k=0

uk Ψk (ξ)|D(ξ)

)
, v

〉
V′

,Ψl (ξ)

〉
= 0, ∀v ∈ V and l = 0, . . . , P.

The size of the Galerkin problem increases with the stochastic basis dimension P + 1.

Recall that P + 1 = (N + No)!/N!No! for polynomial truncation at order No.

This can be costly for complex problems requiring large parametrization and large expansion
order.

P + 1 < NQ so complexity potentially less than for NISP and other non-intrusive approaches.

Galerkin solvers and algorithms targeting a complexity scaling with P + 1, whenever possible.

Projections on the Ψl of the model equations can be problematic for non-linear models.

O. Le Maître & O. Knio Stochastic Spectral Methods
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Case of linear modelsLinear problems are of practical importance in scientific computing,
whether as stand-alone mathematical problems or as ingredients of numerical methods (e.g.
iterative techniques for the resolution of non-linear problems).

We analyze the structure of the Galerkin problem arising from the projection of linear models, and
examine implications regarding suitable solution strategies.

Consider a linear problem discretized at the deterministic level and recast in the matrix form

[A](ξ)U(ξ) = B(ξ).

Seeking the solution U(ξ) in Rm ⊗ SP, the Galerkin projection gives :

P∑
i=0

〈Ψk , [A]Ψi〉 ui = 〈Ψk ,B〉 , k ∈ {0, . . . , P}.

equivalent to the larger (block) system of linear equations
[A]00 . . . [A]0P

...
. . .

...
[A]P0 . . . [A]PP




u0

...
uP

 =


b0

...
bP

 .

[A]ij the (m × m) matrix given by [A]ij :=
〈

Ψi , [A]Ψj
〉
, and bi := 〈Ψi ,B〉.

O. Le Maître & O. Knio Stochastic Spectral Methods
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The linear Galerkin problem couples all the stochastic modes ui ∈ Rm of the stochastic
solution.

It is not possible in general to compute independently the components ui .

The size of the spectral problem is large : m × dim SP = m × (P + 1).

Resolution of the linear Galerkin system can be demanding.

An understanding of the block structured system is instructive to design and apply well-suited
numerical methods.

In general, the matrix [A] has a PC expansion

[A](ξ) =
P∑

i=0

[A]i Ψi (ξ) ⇒ [A]ij =
〈

Ψi , [A]Ψj
〉

=
P∑

k=0

[A]k
〈

Ψi ,Ψj Ψk
〉
,

and the Galerkin system can be conveniently recast as
[A]00 . . . [A]0P

...
. . .

...
[A]P0 . . . [A]PP




u0

...
uP

 =


b0

...
bP

 ,

where bi := 〈B,Ψi〉 /
〈

Ψ2
i

〉
and

[A]ij :=
P∑

k=0

[A]k Ckji , Cijk :=

〈
Ψi Ψj Ψk

〉
〈Ψk Ψk 〉

.

O. Le Maître & O. Knio Stochastic Spectral Methods
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The third-order tensor Cijk plays a fundamental role in stochastic Galerkin methods, especially in
non-linear problems.

Cijk is symmetric w.r.t. the two first indices, Cijk = Cjik .

It induces block-symmetry in the spectral problem, [A]ij = [A]ji

Many of the (P + 1)3 entries are zero with many simplifications.

For instance the first block of the Galerkin system reduces to

[A]00 =
P∑

k=0

[A]k Ck00 = [A]0

and the sum for the upper-right block (and lower-left block) actually reduces to
[A]0P = [A]P/

〈
Ψ2

P

〉
.

Many other simplifications occur.

O. Le Maître & O. Knio Stochastic Spectral Methods
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N = 4-dim SP = 35-S = 0.58 N = 6-dim SP = 84-S = 0.41

N = 8-dim SP = 165-S = 0.31 N = 10-dim SP = 286-S = 0.23

Illustration of the sparse structure of the matrices of the linear spectral problem for different dimensions, N, with No = 3. Matrix blocks [A]ij
that are generally non-zero appear as black squares.

O. Le Maître & O. Knio Stochastic Spectral Methods



UQ in numerical simulations
Polynomial Chaos expansions

Proper Generalized Decompositions

Stochastic discretization
PC solution methods
Examples

No = 2-dim SP = 21-S = 0.52 No = 3-dim SP = 56-S = 0.49

No = 4-dim SP = 126-S = 0.54 No = 5-dim SP = 252-S = 0.55

Illustration of the sparse structure of the matrices of the linear spectral problem for different expansion orders No, with N = 5. Matrix blocks

[A]ij that are generally non-zero appear as black squares.
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The main difficulty in solving discrete linear spectral problems is the size of the system.

The structure and sparsity of the linear Galerkin problem suggests iterative solution strategies.

Iterative solvers (e.g. conjugate gradient techniques for symmetric systems, and Krylov
subspace methods) can be used.

The efficiency of iterative solvers depends on the availability of appropriate preconditioners
which need be adapted to the Galerkin problem.

Construction of preconditioners to exploit the structure of the linear Galerkin problem.

O. Le Maître & O. Knio Stochastic Spectral Methods
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Convection dispersion equation

Proposed by : J.-M. Martinez (CEA/DEN/DM2S/LGLS) and A. Cartalade
(CEA/DEN/DM2S).
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1-D Convection dispersion

Model equation A. Cartalade (CEA)

Concentration C(x, t)

φ
∂C
∂t

= −
∂

∂x

[
qy − (φD0 + λ|q|)

∂C
∂x

]
.

IC and BC : C(x, t = 0) = 0, C(x = 0, t) = 1.

Parameters : q > 0 the Darcy velocity (1m/day), φ the fluid fraction (given in ]0, 1[), D0 the
molecular diffusivity (<< 1), and λ uncertain the hydrodynamic dispersion coefficient.

Uncertainty model

λ follows an uncertain power-law : λ = aφb .

a and b independent random variables.

log10(a) ∼ U[−4,−2] and b ∼ U[−3.5,−1].

a(ξ1) = exp(µ1 + σ1ξ1), b = µ2 + σ2ξ2, ξ1, ξ2 ∼ U[−1, 1].

λ(ξ1, ξ2) = exp(µ1 + σ1ξ1)φµ2+σ2ξ2 ≈
∑

k λk Ψk (ξ1, ξ2)

[Debusschere et al, 2004]
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Convection dispersion equation results

Solution method

Wiener-Legendre expansion and Galerkin projection :
C(x, t, ξ1, ξ2) =

∑P
k=0 Ck (x, t)Ψk (ξ1, ξ2).

Finite volume deterministic discretization O(∆x2).

Implicit time scheme O(∆t2) (block tri-diagonal system, mean operator preconditionner).

upwind stabilization of convection term (velocity is certain).

Expectation & standard deviation at x = 0.5

No = 1→ P + 1 = 3, No = 6→ P + 1 = 145.

O. Le Maître & O. Knio Stochastic Spectral Methods



UQ in numerical simulations
Polynomial Chaos expansions

Proper Generalized Decompositions

Stochastic discretization
PC solution methods
Examples

Convection dispersion equation results

Convergence of pdfs at x = 0.5

t = 10h. t = 15h.
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Convection dispersion equation results

Further uncertainty analysis : quartiles & ANOVA (Sobol)
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Stochactic spectral solvers
for incompressible Navier-Stokes equations

Stochastic Navier-Stokes equations with uncertain viscosity and source term :

∂U
∂t

+ U∇U = −∇P + ν∇2U + F

∇ · U = 0.

PC expansion of the solution :

(U,P) ≈ (UP,PP) =
P∑

k=0

(uk , pk )Ψk .

And the Galerkin projection on Ψα gives

∂uk

∂t
+

P∑
i,j=0

Ckij ui∇uj = −∇pk +
P∑

i=0

〈νΨi ,Ψk 〉
〈Ψk ,Ψk 〉

∇2ui +
〈F ,Ψk 〉
〈Ψk ,Ψk 〉

∇ · uk = 0.
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Galerkin projection of the Navier-Stokes Equation :

∂uk

∂t
+
∑
l,m

Cklmul∇um = −∇pk +
∑
l,m

Cklmνl∇2um + f k , ∇ · uk = 0

where Cklm := 〈Ψl Ψm,Ψk 〉
〈Ψk ,Ψk 〉

Deterministic viscosity and explicit treatment of the non-linearity Decoupling !

1
∆t

un+1
k − ν∇2un+1

k + ∇pn+1
k =

1
∆t

un
k −

P∑
i,j=0

Ckij un
i ∇un

j +
〈F ,Ψk 〉
〈Ψk ,Ψk 〉

∇ · un+1
k = 0.

Other treatments of the convective part :
semi-implicit, un

l ∇un+1
m , −→ set of linear non-symmetric coupled problems :

stabilization, ?
alternative semi-implicit form :∑

l,m

Cklmul∇um

n+1

≈ un
0∇un+1

k +
∑

l>0,m

Cklmun
l ∇un

m

−→ mean-flow based stabilization (e.g. upwinding).
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Steady problem
Solve the nonlinear set of equations∑

l,m

Cklm

(
ul∇um − νl∇2um

)
+ ∇pk = f k , ∇ · uk = 0.

Large problem

Iterative approach mandatory (Newton-like)

Construction of approximate tangent operator (matrix-free)

Derive appropriate preconditioners, e.g. based on time-stepper [olm, 2009]
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Steady Flow around a circular cylinder - Vorticity formulation

Uncertain Reynolds : Re = Re(ξ) ∼ LN
(Median above critical value)
stochastic basis :
Wiener-Hermite

Numerical Method :
Newton Iterations (with Unstd. stoch. Stokes prec.)
ψ − ω formulation + influence matrix for BCs

u(ξ)∇ω(ξ)− 1
Re(ξ)
∇2ω(ξ) = 0.

Centered Finite differences O(∆x2)
Uniform mesh (512× 360) and direct FFT-based solvers
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Convergence of Newton iterates

Wiener-Hermite No = 4
L2 Residual of stochastic equation :

u(ξ)∇ω(ξ)− 1
Re(ξ)
∇2ω(ξ) = 0.

Convergence of the mean mode : (first 4 iterations)
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First 4 stoch. modes : ω(x , ξ) =
∑

k ωk (x)Ψk (ξ)

Near wake statistics :
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Functional expansions
Recall that the stochastic solution is sought in L2(Ξ, pξ)⊗ V :

U(ξ) =
∑
α

fα(ξ)uα(ξ), fα ∈ L2(Ξ, pξ) and uα ∈ V.

The PC methods consist in :
1 Discretization of L2(Ξ, pξ) introducing a subspace S|A| spanned by a basis {Ψα,α ∈ A},

2 Determination of the "best" approximation U|A| of U(ξ) in the subspace S|A| ⊗ V.

The a priori selection of the stochastic basis yields the question of the optimality of the PC
approximation. Can we do better ?

Instead, we could consider the stochastic subspace space S|A|, and define the generic separated
representation as

U|A|(ξ) ≈ Um(ξ) =
m∑
α=1

fα(ξ)uα(ξ), fα ∈ S|A| and uα ∈ V,

where known of the Uα and λα are selected a priori, and we expect m � |A| if the approximation
is reducible.
The reduced solution Um(ξ) is called the rank-m approximation, while {λ1, . . . , λm} and
{u1, . . . , um} are the stochastic and deterministic reduced bases.
The questions are then :

how to define the (deterministic or stochastic) reduced basis ?

how to compute the reduced basis and the m-th order PGD of U ?
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Optimal L2-spectral decomposition : POD, KL decomposition
If we define the rank-m approximation as the minimizer of

R2(Um(ξ)) = E


∥∥∥∥∥U(ξ)−

m∑
α=1

λα(ξ)uα

∥∥∥∥∥
2

V

,
it is well known that the optimum is the KL decomposition of U, that is the uα are the m dominant
eigenmodes of correlation operator of U, C : V 7→ V (symmetric positive operator) :

∀v ∈ V, (Cuα, v)V = γα (uα, v) , λα(ξ)‖uα‖2
V = (U, uα)V .

But the solution is needed to perform the decomposition !

Solve the Galerkin problem in V⊗ S|A
′|, with |A′| < |A|, to construct a deterministic basis

{uα, α = 1, . . . ,m} ; then solve the reduced problem for the
{
λα=1,...,m ∈ S|A|

}
.

Solve the Galerkin problem in VH ⊗ S|A| to construct {λα=1,...,m} ; then solve the reduced

problem for the
{

uα=1,...,m ∈ Vh
}

with dim VH � dim Vh.

See works by the groups of Ghanem and Matthies.

Observe : the above approaches mix L2 and Galerkin optimality definitions !
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An alternative definition of the optimality
Consider the family of variational problems : given ξ ∈ Ξ, find u ∈ V such that

a(u, v |ξ) = b(v |ξ) ∀v ∈ V,

where the bilinear form a(·, ·|ξ) is a.s. symmetric and positive definite.
Example : elliptic equation with random coefficient : V = H1

0

a(u, v |ξ) =

∫
Ω

k(ξ)∇u∇v dx, ε < k(ξ) <∞ a.s. in Ω.

The Galerkin problem becomes : Find U(ξ) ∈ L2(Ξ, pξ)⊗ V such that

A(U,V ) = E {a(U,V |ξ)} = B(V ) = E {b(V |ξ)} ∀V ∈ L2(Ξ, pξ)⊗ V.

Clearly, the bilinear form A : (L2(Ξ, pξ)⊗ V)× (L2(Ξ, pξ)⊗ V) 7→ R is symmetric positive
definite, so the solution U is the minimizer of the energy functional

J (V ) ≡
1
2

A(V ,V )− B(V )

Introducing the reduced solution, Um can be defined as

J (Um) =
1
2

A(Um
,Um)− B(Um) = min{

uα=1,...,m
}
,
{
λα=1,...,m

}J
(

m∑
α=1

uαλα

)
.

(detailed analysis for elliptic problems in [Nouy and Falco, 2012])
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The rank-m solution Um is defined by

J (Um) =
1
2

A(Um
,Um)− B(Um) = min{

uα=1,...,m
}
,
{
λα=1,...,m

}J
(

m∑
α=1

uαλα

)
.

The minimum is not unique (homogeneity)

Minimizing J is equivalent to minimizing a Rayleigh quotient

The reduced solution is optimal w.r.t the A-norm defined as

‖V‖2
A ≡ E {a(V ,V )} = A(V ,V ),

to be compared with the KL norm E
{
‖V‖2

V

}
= E {(V ,V )V}.

Recursive construction :
For i = 1, 2, 3 . . . Sequential construction [Nouy, 2007]

J (U i ) = min
v∈V,β∈SP

J

βv +

i−1∑
j=1

λj uj

 = min
v∈V,β∈SP

J
(
βv + U i−1

)
The optimal couple (λi , ui ) solves simultaneously [Nouy, 2008]

a) deterministic problem ui = D(λi ,U i−))

A(λi ui , λi v) = B(λi v)− A
(

U i−1
, λi v

)
, ∀v ∈ V

b) stochastic problem λi = S(ui ,U i−1)

A(λi ui , βui ) = B(βui )− A
(

U i−1
, βui

)
, ∀β ∈ SP
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Example of stochastic elliptic problem :

Deterministic problem : ui = D(λi ,U i−1)∫
Ω

E
{
λ

2
i k
}
∇ui ·∇vdx = E

{
−
∫

Ω

λi k∇U i−1 ·∇vdx +

∫
Ω

λi fvdx
}
, ∀v .

Stochastic problem : λi = S(ui ,U i−1)

E
{
λiβ

∫
Ω

k∇ui ·∇ui dx
}

= E
{
−β
∫

Ω

k∇U i−1 ·∇ui dx +

∫
Ω

fui dx
}
, ∀β.

Properties : [Nouy, 2007, 2008]

The couple (λi , ui ) is a fixed point of :

λi = S ◦ D(λi , ·), ui = D ◦ S(ui , ·)

Homogeneity property :

λi

c
= S(cui , ·),

ui

c
= D(cλi , ·), ∀c ∈ R \ {0}.

⇒ arbitrary normalization of one of the two elements.

Algorithms inspired from dominant subspace methods
Power-type, Krylov/Arnoldi, . . .
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Power Iterations
1 Set l = 1

2 initialize λ (e.g. randomly)
3 While not converged, repeat (power iterations)

a) Solve : u = D(λ,U l−1)
b) Normalize u
c) Solve : λ = S(u,U l−1)

4 Set ul = u, λl = λ

5 l ← l + 1, if l < m repeat from step 2

Comments :

Convergence criteria for the power iterations (subspace with dim > 1 or clustered
eigenvalues) [Nouy, 2007,2008]

Usually few (4 to 5) inner iterations are sufficient
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Power Iterations with Update [Nouy and olm, 2009]

1 Same as Power Iterations, but after (ul , λl ) is obtained (step 4) update of the stochastic
coefficients :

Orthonormalyze {u1, . . . , ul} (optional)
Find {λ1, . . . , λl} s.t.

A

(
l∑

i=1

uiλi ,
l∑

i=1

uiβi

)
= B

(
l∑

i=1

uiβi

)
, ∀βi=1,...,l ∈ ×SP

2 Continue for next couple

Comments :

Improves the convergence

Low dimensional stochastic linear system (l × l)

Cost of update increases linearly with the order l of the reduced representation
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Arnoldi (Full Update version) [Tamellini et al, 2009]

1 Set l = 0

2 Initialize λ ∈ SP

3 For l′ = 1, 2, . . . (Arnoldi iterations)

Solve deterministic problem u′ = D(λ,U l )

Orthogonalize : ul+l′ = u′ −
∑l+l′−1

j=1 (u′, uj )Ω

If ‖ul+l′‖V ≤ ε or l + l′ = m then break
Normalize ul+l′

Solve λ = S(ul′ ,U
l )

4 l ← l + l′

5 Find {λ1, . . . , λl} s.t. (Update)

A

(
l∑

i=1

uiλi ,

l∑
i=1

uiβi

)
= B

(
l∑

i=1

uiβi

)
, ∀βi=1,...,l ∈ SP

6 If l < m return to step 2.
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Summary

Resolution of a series of deterministic elliptic problems, with elliptic coefficients E
{
λ2k
}

and
modified (deflated) rhs

dimension is dim Vh

Resolution of a series of linear stochastic equations
dimension is dim SP

Update problems : system of linear equations for stochastic random variables
dimension is m × dim SP

To be compared with the Galerkin problem dimension
dim Vh × dim SP

Weak modification of existing (FE/FV) codes
(weakly intrusive)
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Example definition

D (Dogger)

L (Limestone)

M (Marl)

C (Clay)
z=200

z=0

z=295

z=595

z=695 z=695

z=595

z=200

z=0

z=350

x=
0

x=
25

,0
00

Rectangular domain 25,000×695 (m)

4 Geological layers with uncertain conductivities

uncertainty on BCs

9 independent r.v. {ξ1, . . . , ξ9} ∼ U[0, 1]9

Stochastic space SP : Legendre polynomial up to order No

dim SP = P + 1 = (9 + No)!/(9!No!)
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Norm of residual and error as a function of m (No = 3)
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CPU times (No = 3)
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Closing remarks

Polynomial Chaos expansions

Fast convergence when the solution has smooth dependence with respect to ξ

Adaptivity of the spectral basis to the solution

Development of dedicated Galerkin solvers

Treatment of non-linearities in Galerkin projection

Preconditioning for non-intrusive methods

Case of non-smooth solutions : multi-resolution.

Proper Generalized Decompositions

Theoretically well grounded method for linear symmetric definite operators

Yield close to optimal decomposition

Connection with Greedy algorithms

Non-intrusive versions possible

Adaptation of algorithms and analysis to more general class of problems

Application to non-linear problems [Nouy and Olm, 2010] e.g. Navier-Stokes
[Tamellini Nouy and olm, 2013]
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Thanks for your attention

Spectral Methods for Uncertainty Quantification with applications in computational fluid
dynamics
with Omar Knio
Springer Series on Scientific Computation.
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