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Motivation

Motivation

Often engineering and industrial processes as well as other areas of
applications require designing controllers, actuators, sensors, dampers, and
also often times the perturbations and signals to be faced are of wave-like
nature:

Noise reduction in cavities and vehicles.

Laser control in Quantum mechanical and molecular systems.

Seismic waves, earthquakes.

Flexible structures.

Environment: the Thames barrier.

Optimal shape design in aeronautics.

Human cardiovascular system: the bypass

Oil prospection and recovery.

Irrigation systems.

........
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Motivation

The mathematical theory needed to understand these issues combines:

Hyperbolic PDEs on Networks

Control Theory

Optimal Design

Optimization

Spectral analysis

Microlocal analysis

Numerical analysis

. . .

In this talk we aim to present some toy models and problems, together
with some key results and research perspectives.
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The control of waves An example: noise reduction
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The control of waves An example: noise reduction

Acoustic noise reduction
Active versus passive controllers.
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The control of waves A toy model
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The control of waves A toy model

Control of 1− d vibrations of a string

The 1-d wave equation, with Dirichlet boundary conditions, describing the
vibrations of a flexible string, with control on one end:





ytt − yxx = 0, 0 < x < 1, 0 < t < T
y(0, t) = 0; y(1, t) =v(t), 0 < t < T
y(x , 0) = y 0(x), yt(x , 0) = y 1(x), 0 < x < 1

y = y(x , t) is the state and v = v(t) is the control.
The goal is to stop the vibrations, i.e. to drive the solution to equilibrium
in a given time T : Given initial data {y 0(x), y 1(x)} to find a control
v = v(t) such that

y(x ,T ) = yt(x ,T ) = 0, 0 < x < 1.
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The control of waves A toy model
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The control of waves A toy model

The dual observation problem

The control problem above is equivalent to the following one, on the
adjoint wave equation:





ϕtt − ϕxx = 0, 0 < x < 1, 0 < t < T
ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T
ϕ(x , 0) = ϕ0(x), ϕt(x , 0) = ϕ1(x), 0 < x < 1.

The energy of solutions is conserved in time, i.e.

E (t) =
1

2

∫ 1

0

[
|ϕx(x , t)|2 + |ϕt(x , t)|2

]
dx = E (0), ∀0 ≤ t ≤ T .

The question is then reduced to analyze whether the folllowing inequality
is true. This is the so called observability inequality:

E (0) ≤ C (T )

∫ T

0
|ϕx(1, t)|2 dt.
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The control of waves A toy model

The answer to this question is easy to gues: The observability inequality
holds if and only if T ≥ 2.

E(0) ≤
� T

0
|ϕx(1, t)|2dt

Wave localized at t = 0 near the extreme x = 1 propagating with velocity
one to the left, bounces on the boundary point x = 0 and reaches the
point of observation x = 1 in a time of the order of 2.

Enrique Zuazua (BCAM) Waves, Control and Design
Woudschoten Conference, October 2012 12

/ 58



The control of waves A toy model

Construction of the Control

Following J.L. Lions’ HUM (Hilbert Uniqueness Method), the control is

v(t) = ϕx(1, t),

where ϕ is the solution of the adjoint system corresponding to initial data
(ϕ0, ϕ1) ∈ H1

0 (0, 1)× L2(0, 1) minimizing the functional

J(ϕ0, ϕ1) =
1

2

∫ T

0
|ϕx(1, t)|2dt+

∫ 1

0
y 0ϕ1dx− < y 1, ϕ0 >H−1×H1

0
,

in the space H1
0 (0, 1)× L2(0, 1).

Note that J is convex. The continuity of J in H1
0 (0, 1)× L2(0, 1) is

guaranteed by the fact that ϕx(1, t) ∈ L2(0,T ) (hidden regularity).
Moreover,

COERCIVITY OF J = OBSERVABILITY INEQUALITY. 1

1Norbert Wiener (1894–1964) defined Cybernetics as the science of control
and communication in animals and machines
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Networks

Observation on one single external vertex

The sharp condition is: The spectra of each pair of subtrees with a
common vertex should have empty intersection.
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Damped waves Geometric conditions for exponential decay
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Damped waves Geometric conditions for exponential decay

Internal stabilization of waves:

Let ω be an open subset of Ω. Consider:





ytt −∆y =−yt1ω in Q = Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞)
y(x , 0) = y 0(x), yt(x , 0) = y 1(x) in Ω,

where 1ω stands for the characteristic function of the subset ω.
The energy dissipation law is then

dE (t)

dt
= −

∫

ω
|yt |2dx .

Question: Do they exist C > 0 and γ > 0 such that

E (t) ≤ Ce−γtE (0), ∀t ≥ 0,

for all solution of the dissipative system?
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Damped waves Geometric conditions for exponential decay
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Damped waves Geometric conditions for exponential decay

This is equivalent to an observability property: There exists C > 0 and
T > 0 such that

E (0) ≤ C

∫ T

0

∫

ω
|yt |2dxdt.

This estimate, together with the energy dissipation law, shows that

E (T ) ≤ σE (0)

with 0 < σ < 1. Accordingly the semigroup map S(T ) is a strict
contraction. By the semigroup property one deduces immediately the
exponential decay rate.
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Damped waves Geometric conditions for exponential decay

The observability inequality and, accordingly, the exponential decay
property holds if and only if the support of the dissipative
mechanism, Γ0 or ω, satisfies the so called the Geometric Control
Condition (GCC) (Ralston, Rauch-Taylor, Bardos-Lebeau-Rauch,...)

Rays propagating inside the domain Ω following straight lines that are
reflected on the boundary according to the laws of Geometric Optics. The
control region is the red subset of the boundary. The GCC is satisfied in
this case. The proof requires tools from Microlocal Analysis.
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Damped waves Geometric conditions for exponential decay

Qualitative change from 1− d to multi-d

Trapped ray

T
r
a
p
p
e
d

r
a
y

ω

Ω

A trapped ray scaping the damping region ω makes it impossible the decay
rate to be exponential. Each trajectory tends to zero as t →∞ but the

decay can be arbitrarily slow.
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Damped waves Complexity of the decay rate
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Damped waves Complexity of the decay rate

The optimal shape design problem

Optimize ω (or Γ0) and the damping profile a = a(x) to enhance the
exponential decay rate:





ytt −∆y =−a(x)yt1ω in Q = Ω× (0,∞)
y = 0 on Σ = Γ× (0,∞)
y(x , 0) = y 0(x), yt(x , 0) = y 1(x) in Ω.

Within the class of ω and a > 0 such the exponential decay property holds:

E (t) ≤ Ce−γa,ωtE (0), ∀t ≥ 0

MAXIMIZE : (ω, a)→ γa,ω.

Enrique Zuazua (BCAM) Waves, Control and Design
Woudschoten Conference, October 2012 24

/ 58



Damped waves Complexity of the decay rate

Overdamping!

Obviously, the decay rate γa depends on the damping potential a.
But, against the very first intuition, this map is not monotonic with
respect to the size of the damping. A 1− d spectral computation for
constant coefficients yields:
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Damped waves Complexity of the decay rate

Some known results: 1− d

1− d : The exponential decay rate coincides with the spectral abscissa
within the class of BV damping potentials. For large eigenvalues
Re(λ) ∼ −

∫
ω a(x)dx/2 (S. Cox & E. Z., CPDE, 1993). Thus:

γa ≤
∫

ω
a(x)dx .

k k/2 0

0

400

Re( )

Im
ag

(
)

Real (blue) and imaginary (red) eigenvalues  of the damped wave equation utt uxx+kut=0, x in (0,1), k=100*
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Damped waves Complexity of the decay rate

Multi−d

In the multidimensional case the situation is even more complex. The
decay rate is determined as the minimum of two quantities (G. Lebeau,
1996):

The spectral abscissa;

The minimum asymptotic average (as T →∞) of the damping
potential along rays of Geometric Optics.
The later is in agreement with our intuition of waves traveling along
rays of Geometric Optics.
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Damped waves Complexity of the decay rate

Geometric configuration in which the spectral abscissa does not suffice to
capture the decay rate. The decay rate vanishes due to a trapped ray, but
the spectrum is uniformly shifted in the left complex half space.
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Damped waves Optimal design
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Damped waves Optimal design

Optimal design of the billiard: Hébrard-Humbert, 2003
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Damped waves Optimal design

Optimal location of the sensor for the first eigenfunction by a level set
approach: A. Münch, 2005.

Enrique Zuazua (BCAM) Waves, Control and Design
Woudschoten Conference, October 2012 31

/ 58



Damped waves Optimal design

Some analytical difficulties:

There is no variational principle characterizing the decay rate.

The complex way in which the eigenvalues depend on the damping
potentials for low/high/intermediate frequencies, ....

Different problems! The optimal damping for a given initial datum 6=
the optimal damping for all possible solutions...

This is the case even for constant damping potentials k . The optimal
damping for the `-th eigenfunction is k = 2

√
µ`.

Most problems about the optimal location and distribution of damping to
maximize the decay rate are still completely open.
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Optimal placement of sensors and actuators
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Optimal placement of sensors and actuators Problem formulation
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Optimal placement of sensors and actuators Problem formulation

Joint work with Y. Privat and E. Trélat

Consider the conservative wave equation:





ztt −∆z = 0 in Q = Ω× (0,T )
z = 0 for x ∈ ∂Ω; t ∈ (0,T )
z(x , 0) = z0(x), zt(x , 0) = z1(x) in (0, π).

Optimal placement problems are then of variational nature!

It corresponds to the analysis of the behavior of the damped system
infinitesimally small damping.

Observability:

||z0||2L2(Ω) + ||z1||2H−1(Ω) ≤ C (ω,T )

∫ T

0

∫

ω
z2dxdt.
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Optimal placement of sensors and actuators Problem formulation

Fourier series shows that, in general, Fourier modes are mixed in quite an
complicated manner thus making the understanding of these issues
complex:

z(t) =
∑

ẑke i
√
λk tφk(x).

Thus,

∫ T

0

∫

ω
|z |2dxdt =

∑∑
ẑk ẑj

∫

ω
φk(x)φj(x)dx

∫ T

0
e [i
√
λk−i
√
λj ]t .
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Optimal placement of sensors and actuators The spectral problem
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Optimal placement of sensors and actuators The spectral problem

Reduction to a spectral problem

The problem becomes much simpler in several cases:

The case T =∞. We then look at the

lim
T→∞

1

T

∫ T

−T

∫

ω
|z |2dxdt.

Randomizing initial data and considering the expected observability
constant (Zygmund lemma, recent works by N. Burq et al.)

In 1-d, Ω = (0, π) in which case solutions are 2π-time periodic.

Cross terms vanish and we are led to the following observability problem:

∑
|ẑk |2 ≤ C (ω)

∑
|ẑk |2

∫

ω
φ2
k(x)dx .
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Optimal placement of sensors and actuators The spectral problem

These issues can be considered, as mentioned above, in two different
cases:

Fixed initial data, and therefore fixed weights |ẑk |2 in `1.

All possible initial data of finite energy. Then, the problem becomes
that of finding ω so that the following minimum is maximized:

min
k

∫

ω
φ2
k(x)dx .
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Optimal placement of sensors and actuators Main results
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Optimal placement of sensors and actuators Main results

The following results are proved:
1.- Optimal observation subdomain ω for fixed finite energy initial data
(z0, z1).

For initial data that are analytic (exponential decay of Fourier
coefficients), there is a unique minimizer with a finite number of
connected components.

The optimal set always exists but it can be a Cantor set even for
C∞ smooth data.

2.- Spectral problem of optimally observing or controlling all the
eigenfunctions uniformly.

Relaxation occurs (Hébrart-Henrot, 2005): the optimum is achieved
by a density function ρ(x) so that

∫ π
0 ρ(x)dx = L and not by a

measurable set with bang-bang densities (except for L = π/2).

The infima coincide for both the relaxed and the classical problem (in
the multi−d case under the QUANTUM UNIQUE ERGODICITY
(QUE) condition: φ2

j ⇀ 1/|Ω| as j →∞.)

Spillover occurs (1− d): The optimal design for the first N Fourier
modes is the worst choice for the N + 1-th one.

Enrique Zuazua (BCAM) Waves, Control and Design
Woudschoten Conference, October 2012 41

/ 58



Optimal placement of sensors and actuators Main results
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Optimal placement of sensors and actuators Main results

The spillover phenomenon
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Optimal placement of sensors and actuators Main results

In the multi-dimensional case the problem is much more complex. Spectra
do not behave according to our 1− d intuition

sin2(kx) ⇀ 1/2 as k →∞.

Our main contribution is to put in evidence the intimate relations between
optimal design problems and ergodicity properties of the domain.
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Optimal placement of sensors and actuators Main results

Domain conjectured to satisfy the QUE in A.H. Barnett, Asymptotic rate
of quantum ergodicity in chaotic Euclidean billiards, Comm. Pure Appl.

Math. 59 (2006), 1457 D1488.
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Optimal placement of sensors and actuators Main results

Optimal designs in 2− d for the square with volume fraction 1/2 in the
spectral criterium. This is an exceptional case where classical optimal

domains exist.
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Numerics
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Numerics

Joint work with A. Marica

In practice, the actual computation of controllers, sensors and
dampers needs to be done through numerical simulations.

We describe the pathological behavior that numerical rays may
present with respect to the continuous ones, due to the heterogeneity
of the grids.

Group velocity changes for high frequency numerical solutions.

But, moreover, orientation of rays changes too due to the change of
metric that the heterogeneity of the grid induces.
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Numerics

Problem formulation

The wave equation with variable coefficients on R:

utt − uxx = 0, t > 0, x ∈ R. (1)

Energy conserved in time:

E(u0, u1) :=
1

2

∫

R

(|ut(x , t)|2 + |ux(x , t)|2) dx .
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Numerics

Finite difference approximations

Let h > 0 be the mesh size parameter, g : R→ R be an increasing
function on R, Gh := {xj := jh, j ∈ Z} and Gh

g := {gj := g(xj), j ∈ Z} the
uniform grid of size h of R and the non-uniform one obtained by
transforming the uniform one through the map g .

Finite difference semi-discretization of (1) on the non-uniform grid Gh
g :

u′′j (t)−
uj+1(t)−uj (t)

gj+1−gj − uj (t)−uj−1(t)
gj−gj−1

gj+1−gj−1

2

= 0. (2)

Energy is conserved in time

Eh(uh,0,uh,1) :=
h

2

∑

j∈Z

[
∂hgj |u′j(t)|2 +

1

∂h,+gj
|∂h,+uj(t)|2

]
.

This schemes provides a convergent numerical approximation.
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Numerics

The principal symbol :

℘(x , t, ξ, τ) := −g ′(x)τ2 + 4 sin2
(ξ

2

) 1

g ′(x)
. (3)

The null bi-characteristic lines associated to this principal symbol are the
solutions of the Hamiltonian system:




Ẋ (s) = ∂ξ℘ = 2 sin(Ξ(s))σ(g(X (s)))
g ′(X (s)) ,

ṫ(s) = ∂τ℘ = −g ′(X (s))τ,

Ξ̇(s) = −∂x℘ = g ′′(·)(X (s))− 4 sin2
(

Ξ(s)
2

)(
1

g ′(·)

)′
(X (s)),

τ̇(s) = −∂t℘ = 0.

(4)

(X (t),Ξ(t)) solves the Hamiltonian system:

(X )′(t) = ∓cg (X (t)) cos
(Ξ(t)

2

)
, (Ξ)′(t) = ±c ′g (X (t))2 sin

(Ξ(t)

2

)
(5)

with
cg (x) := 1/g ′(x).

Enrique Zuazua (BCAM) Waves, Control and Design
Woudschoten Conference, October 2012 51

/ 58



Numerics

Using Wigner transforms, high frequency solutions can be shown to
propagate and concentrate along those rays provided cg ∈ C 1,1(R).
This means that the grid transformation g ∈ C 2,1(R).

Gérard, P., Markowich, P., Mauser, N., Poupaud, Ph. Homogenization
limits and Wigner transforms, Comm. Pure Appl. Math., 1997.

Lions P.-L., Paul, Sur les mesures de Wigner, Rev. Matemática
Iberoamericana, 1993.
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Numerical simulations 1−d
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Numerical simulations multi-d
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Numerics

There is still plenty to be done to understand the behavior of discrete
waves over very irregular meshes:
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Conclusions

There is a rich (and difficult!) field to be explored at the intersection
of the following topics:

Networks
Damped wave equations
Control theory
Optimal design and Optimization
Spectral theory
Microlocal analysis
Fine numerics

At the continuous level there is a huge need of better spectral
understanding.
Also of gaining comprehension of complex dynamics when spectral
analysis does not suffice (non self-adjoint problems).
Correct answers can only be obtained by a fine combination of
analytical and numerical tools.
Numerics leads to novel unexpected phenomena of discrete wave
propagation. This complicates the numerical computation of optimal
shapes or locations for dampers, sensors, controllers.
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Y. Privat, E. Trélat and E. Z. Optimal observation of the
one-dimensional wave equation, preprint, 2012

E. Z. Propagation, observation, and control of waves approximated by
finite difference methods. SIAM Review, 47 (2) (2005), 197-243.

S. Ervedoza and E. Z. The Wave Equation: Control and Numerics, in
“Control and stabilization of PDE’s”, P. M. Cannarsa y J. M. Coron,
eds., “Lecture Notes in Mathematics”, CIME Subseries, Springer
Verlag, 2012, pp. 245-340.

A. Marica and E. Z. Propagation of 1− d waves in regular discrete
heterogeneous media: A Wigner measure approach, to appear.
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