

Memory-reduced Adjoint Calculation

Andrea Walther Institut für Mathematik Universität Paderborn

Woudschoten Conference 2012

October 3-5, 2012

Outline

Motivation

Adjoints for Time Integrations Offline Checkpointing Online Checkpointing

Adjoints for Pseudo-Timestepping

Convergence Result Numerical Example

Summary

Starting Point

For nonlinear problems:

Adjoints are great

because of the time complexity to compute gradients for

• min f(x)

• $\widehat{J}'(u, x(u))$ such that

$$x'(u) = f(x(u), u) + \mathsf{IC}$$

using the adjoint equation

Constrained Optimization Problem

- ► Task: $\min_{x} f(x)$, s.t. c(x) = 0
- Solution: Consider Lagrangian L(x, λ) = f(x) + λ^T c(x) and compute

$$\mathbf{0} = \nabla_{\mathbf{x},\lambda} \mathcal{L}(\mathbf{x}_k,\lambda_k) = \left[\nabla f(\mathbf{x}) + \lambda^T \mathbf{A}(\mathbf{x}), \ \mathbf{c}(\mathbf{x})\right] \in \mathbb{R}^{n+m},$$

with $A(x) = \nabla c(x)$

Constrained Optimization Problem

- ► Task: $\min_{x} f(x)$, s.t. c(x) = 0
- Solution: Consider Lagrangian L(x, λ) = f(x) + λ^T c(x) and compute

$$\mathbf{0} = \nabla_{\mathbf{x},\lambda} \mathcal{L}(\mathbf{x}_k,\lambda_k) = \left[\nabla f(\mathbf{x}) + \lambda^T \mathbf{A}(\mathbf{x}), \ \mathbf{C}(\mathbf{x}) \right] \in \mathbb{R}^{n+m},$$

with $A(x) = \nabla c(x)$, e.g., using an SQP method \Rightarrow

$$\nabla_{x,\lambda}^{2}\mathcal{L}(x_{k},\lambda_{k}) p_{k}^{N} = \begin{bmatrix} B(x_{k},\lambda_{k}) & A(x_{k})^{T} \\ A(x_{k}) & 0 \end{bmatrix} p_{k}^{N} = -\nabla_{x,\lambda}\mathcal{L}(x_{k},\lambda_{k})$$

Constrained Optimization Problem

- ► Task: $\min_{x} f(x)$, s.t. c(x) = 0
- Solution: Consider Lagrangian L(x, λ) = f(x) + λ^T c(x) and compute

$$\mathbf{0} = \nabla_{\mathbf{x},\lambda} \mathcal{L}(\mathbf{x}_k,\lambda_k) = \left[\nabla f(\mathbf{x}) + \lambda^T \mathbf{A}(\mathbf{x}), \ \mathbf{C}(\mathbf{x}) \right] \in \mathbb{R}^{n+m},$$

with $A(x) = \nabla c(x)$, e.g., using an SQP method \Rightarrow

$$\nabla_{x,\lambda}^{2}\mathcal{L}(x_{k},\lambda_{k}) p_{k}^{N} = \begin{bmatrix} B(x_{k},\lambda_{k}) & A(x_{k})^{T} \\ A(x_{k}) & 0 \end{bmatrix} p_{k}^{N} = -\nabla_{x,\lambda}\mathcal{L}(x_{k},\lambda_{k})$$

► Iterative solve requires $A(x_k)v$, $A(x_k)^{\top}w$, and $\lambda^{\top}A(x_k)!!$

Starting Point: Adjoints are Great!

BUT

$\mathsf{MEM}(\bar{y}^{\top}F'(x)) \sim \mathsf{OPS}(F(x))$

independent of chosen approach!!

Starting Point: Adjoints are Great!

BUT

$$\mathsf{MEM}(\bar{y}^{\top}F'(x)) \sim \mathsf{OPS}(F(x))$$

independent of chosen approach!!

- For large-scale problems not acceptable!!
- Even for smaller problems long runtime due to extensive memory access.

Alternatives:

no assumptions on structure of F(x)
 For AD tools:
 subroutine-oriented checkpointing (Naumann, Utke, ...)

Alternatives:

- no assumptions on structure of F(x)
 For AD tools:
 subroutine-oriented checkpointing (Naumann, Utke, ...)
- F(x) = time-stepping procedure
 - transient procedure, i.e., real time-dependent process
 - pseudo time-stepping, e.g., aerodynamics, spin-up = fixed point iterations

Alternatives:

- no assumptions on structure of F(x)
 For AD tools:
 subroutine-oriented checkpointing (Naumann, Utke, ...)
- F(x) = time-stepping procedure
 - transient procedure, i.e., real time-dependent process
 - pseudo time-stepping, e.g., aerodynamics, spin-up = fixed point iterations

► F(x) = Newton-like solve \Rightarrow [Griewank, Walther 2008]

Alternatives:

- no assumptions on structure of F(x)
 For AD tools:
 subroutine-oriented checkpointing (Naumann, Utke, ...)
- F(x) = time-stepping procedure
 - transient procedure, i.e., real time-dependent process
 - pseudo time-stepping, e.g., aerodynamics, spin-up
 = fixed point iterations
- ► F(x) = Newton-like solve \Rightarrow [Griewank, Walther 2008]
- ► *F*(*x*) = Krylov subspace method ???

Alternatives:

- no assumptions on structure of F(x)
 For AD tools:
 subroutine-oriented checkpointing (Naumann, Utke, ...)
- F(x) = time-stepping procedure
 - transient procedure, i.e., real time-dependent process
 - pseudo time-stepping, e.g., aerodynamics, spin-up
 = fixed point iterations
- ► F(x) = Newton-like solve \Rightarrow [Griewank, Walther 2008]
- ► *F*(*x*) = Krylov subspace method ???

Alternatives:

- no assumptions on structure of F(x)
 For AD tools:
 subroutine-oriented checkpointing (Naumann, Utke, ...)
- F(x) = time-stepping procedure
 - ► transient procedure, i.e., real time-dependent process ⇒ checkpointing
 - pseudo time-stepping, e.g., aerodynamics, spin-up = fixed point iterations
- ► F(x) = Newton-like solve \Rightarrow [Griewank, Walther 2008]
- ► *F*(*x*) = Krylov subspace method ???

Alternatives:

- no assumptions on structure of F(x)
 For AD tools:
 subroutine-oriented checkpointing (Naumann, Utke, ...)
- F(x) = time-stepping procedure
 - ► transient procedure, i.e., real time-dependent process ⇒ checkpointing
 - pseudo time-stepping, e.g., aerodynamics, spin-up
 = fixed point iterations
 - \Rightarrow adapted derivative calculation
- ► F(x) = Newton-like solve \Rightarrow [Griewank, Walther 2008]
- ► *F*(*x*) = Krylov subspace method ???

Gradient Calculation (Time Integration)

1. Forward integration:

$$x_{i+1}=F_i(x_i,u_i),\ i=1,\ldots,l$$

with $x_i \in \mathbb{R}^n$ state, u_i control

number of time steps / might be not known a priori

- 2. Evaluation of target function $J(x, u) \rightarrow \widehat{J}(u)$
- 3. Backward integration:

$$\bar{x}_{i-1} = \bar{F}_i(\bar{x}_i, x_{i-1}, u_{i-1}, u_i), \ i = 1, \ldots, 1$$

AD, discretization of continuous adjoint, hand coded, ...

4. Gradient calculation

Gradient Calculation (Time Integration)

1. Forward integration:

$$x_{i+1}=F_i(x_i,u_i),\ i=1,\ldots,l$$

with $x_i \in \mathbb{R}^n$ state, u_i control

number of time steps / might be not known a priori

- 2. Evaluation of target function $J(x, u) \rightarrow \widehat{J}(u)$
- 3. Backward integration:

$$\bar{x}_{i-1} = \bar{F}_i(\bar{x}_i, \frac{x_{i-1}}{a_i}, u_{i-1}, u_i), \ i = 1, \dots, 1$$

AD, discretization of continuous adjoint, hand coded, ...

4. Gradient calculation

Calculating Adjoints

Integration of forward solution:

$$x_{i+1} = F_i(x_i, u_i), \qquad i=1,\ldots, I$$

Integration of adjoint $\bar{x}_{i-1} = \bar{F}_i(\bar{x}_i, \bar{u}_i, x_{i-1}), i = 1, \dots, 1$?

Calculating Adjoints

Integration of forward solution:

$$x_{i+1} = F_i(x_i, u_i), \qquad i=1,\ldots,I$$

Integration of adjoint $\bar{x}_{i-1} = \bar{F}_i(\bar{x}_i, \bar{u}_i, x_{i-1}), i = 1, ..., 1$?

"Black-Box"-approach, e.g. using AD

Memory requirement??

Computing time ??

Calculating Adjoints

Integration of forward solution:

$$x_{i+1} = F_i(x_i, u_i), \qquad i = 1, ..., I$$

Integration of adjoint $\bar{x}_{i-1} = \bar{F}_i(\bar{x}_i, \bar{u}_i, x_{i-1}), i = 1, \dots, 1$?

Time Structure Exploitation

Memory requirement?? Computing time ??

Store-Everything Approach

Example: 12 time steps

Store-Everything Approach

Example: 12 time steps

MEM = O(I), TIME = 2I, might cause problems, even if it fits in memory

Adjoints for Time Integrations

Offline Checkpointing

Windowing / Multilevel-Checkpointing

Example: 12 time steps

Windowing / Multilevel-Checkpointing

Example: 12 time steps

 \rightarrow MEM = c, TIME \approx 3I, here: c = 6, additional #eval(F_i) = 17

Binomial Checkpointing

Example: 12 time steps, 4 checkpoints, reusage of all checkpoints!

Binomial Checkpointing

Example: 12 time steps, 4 checkpoints, reusage of all checkpoints!

Provable optimal strategy [Griewank, Walther '00, Walther, Griewank '04]

Theorem (Complexity Result for Binomial Checkpointing) *Given*

- total number of time steps to be reversed
- c = number of checkpoints that can be used
- r = unique integer satisfying

$$\beta(c,r-1) < I \leq \beta(c,r) \equiv {c+r \choose c}$$

Then: The minimal number of time step evaluations required equals

$$t(c, l) = rl - \beta(c+1, r-1) + 1$$

Proof: Based on induction [Griewank, Walther 2000]

Theorem (Complexity Result for Binomial Checkpointing) *Given*

- total number of time steps to be reversed
- c = number of checkpoints that can be used
 - r 🛛 = unique integer satisfying

$$\beta(c,r-1) < I \leq \beta(c,r) \equiv {c+r \choose c}$$

Then: The minimal number of time step evaluations required equals

$$t(c, l) = rl - \beta(c+1, r-1) + 1$$

Proof: Based on induction [Griewank, Walther 2000]

Implementation: revolve

Test Case: Optimal Control

Task:

Minimize cost function $\tilde{J}(u) := J(y(u), u)$ for

$$y_t - \frac{1}{\text{Re}} \Delta y + (y \cdot \nabla)y + \nabla p = Bu$$

-div $y = 0 \text{ in } \Omega \times (0, T)$
 $y(x, t) = 0 \text{ on } \partial \Omega \times (0, T) \quad y(x, 0) = y_0 \text{ in } \partial \Omega.$

Test Case: Optimal Control

Task:

Minimize cost function $\tilde{J}(u) := J(y(u), u)$ for

$$y_t - \frac{1}{\text{Re}} \Delta y + (y \cdot \nabla)y + \nabla p = Bu$$

-div $y = 0 \text{ in } \Omega \times (0, T)$
 $y(x, t) = 0 \text{ on } \partial \Omega \times (0, T) \quad y(x, 0) = y_0 \text{ in } \partial \Omega.$

 \Rightarrow Gradient $\hat{J}'(u) = J_u(y(u), u) - B^*\lambda$ required with

$$\begin{aligned} -\lambda_t - \frac{1}{\mathsf{Re}} \Delta \lambda - (\mathbf{y} \cdot \nabla) \lambda + (\nabla \mathbf{y})^t \lambda + \nabla \xi &= -J_{\mathbf{y}}^{(t)}(\mathbf{y}(u), u) \\ -\operatorname{div} \lambda &= 0 \text{ in } \Omega \times (0, T) \\ \lambda(\mathbf{x}, t) &= 0 \text{ on } \partial \Omega \times (0, T) \quad \lambda(\mathbf{x}, T) &= -J_{\mathbf{y}}^{(T)}(\mathbf{y}(u), u) \text{ in } \partial \Omega. \end{aligned}$$

Test Case: Cavity Flow

joint work with Michael Hinze

Cost function of tracking typ, initial state:

$$y_0(x) = e \begin{bmatrix} (\cos 2\pi x_1 - 1) \sin 2\pi x_2 \\ -(\cos 2\pi x_2 - 1) \sin 2\pi x_1 \end{bmatrix},$$

 $\Omega := (0, 1) \times (0, 1), T = 1, Re = 10, e = Euler number$

Test Case: Cavity Flow

joint work with Michael Hinze

Cost function of tracking typ, initial state:

UNIVERSITÄT PADERBORN

Die Universität der Informationsgesellschaft

$$y_0(x) = e \begin{bmatrix} (\cos 2\pi x_1 - 1) \sin 2\pi x_2 \\ -(\cos 2\pi x_2 - 1) \sin 2\pi x_1 \end{bmatrix},$$

 $\Omega := (0, 1) \times (0, 1), T = 1, Re = 10, e = Euler number$

Desired state:

$$\begin{aligned} \boldsymbol{z}(\boldsymbol{x},t) &= \begin{bmatrix} \varphi_{\boldsymbol{x}_2}(\boldsymbol{x},t) \\ -\varphi_{\boldsymbol{x}_1}(\boldsymbol{x},t) \end{bmatrix}, \\ \varphi(\boldsymbol{x},t) &= \theta(\boldsymbol{x}_1,t)\theta(\boldsymbol{x}_2,t), \\ \theta(\boldsymbol{y},t) &= (1-\boldsymbol{y})^2(1-\cos kt), \\ \boldsymbol{y} &\in [0,1]. \end{aligned}$$

Runtime Ratios, 1000 Time Steps

Runtime Ratios, 1000 Time Steps

- Run-time ratio between 2 and 7.
- Only a very small number of checkpoints required!

qz

Optimal turn-around maneuver of an industrial robot

- Industrial robot ABB IRB 6400 (Büskens et al.)
- ▶ q = (q₁, q₂, q₃) as angular coordinates of the robot's joints
- Controlled via three functions u₁ through u₃
- Control problem: minimize the energy-related objective

$$J(q, u) = \int_0^{t_f} [u_1(t)^2 + u_2(t)^2 + u_3(t)^2] dt$$

- ► Trajectory approximation using the standard Runge-Kutta method of order 4 resulting in \approx 800 lines of C++ code
- Adjoint computation: Combination of ADOL-C and revolve

Andrea Walther

Memory-reduced Adjoint Calculation

Repetition Number *r* **vs Time Step Number** *l*

[Walther, Griewank 2004]

Repetition Number *r* **vs Time Step Number** *l*

[Walther, Griewank 2004]

Problem: Extension for unknown /?

Memory-reduced Adjoint Calculation

Repetition Number *r* **vs Time Step Number** *l*

[Walther, Griewank 2004]

Problem: Extension for unknown /?

- arevolve (Sternberg, Griewank, Walther), based on heuristics
- Optimal strategies? Analyse schedules for r < 4!</p>

Theorem (Complexity Result for Online Checkpointing I) *Given*

c = number of checkpoints that can be used

$$l =$$
 unknown number of time steps to be reversed
with $l < \beta(c, 2) \equiv u_2$

Then: The minimal number of time step evaluations required by the online checkpointing equals

$$t(l, c) = rl - \beta(c+1, r-1)$$
 $r \in \{1, 2\}.$

Proof: Based on induction: Easy for c = 1 $c - 1 \Rightarrow c$: Verify assumption for $l \le 2c + 1$, then use result for c - 1[Stumm, Walther 2010]

Online Checkpointing

Theorem (Complexity Result for Online Checkpointing II) *Given*

- *c* = number of checkpoints that can be used
- I = unknown number of time steps to be reversed $with <math>I \le \beta(c, 3) \equiv u_3$

Then: The number of time step evaluations required by the online checkpointing equals

 $\tilde{t}(l,c) \leq t(l,c) + 1$

Proof: Based on induction using offline checkpointing for $I = \beta(c, 3)$ [Stumm, Walther 2010]

Adjoints for Time Integrations

Online Checkpointing

Resulting Algorithm for r = 2

Adjoints for Time Integrations

Online Checkpointing

Resulting Algorithm for r = 3

Online Checkpointing

Summary: Theoretical Results

Provable (almost) optimal online checkpointing strategies for

С	10	20	40	80	160	320
U ₂	66	231	861	3321	13041	51681
U ₃	286	1771	12341	91881	708561	5564321

For larger values of /: [Moin, Wang 2010]

Implementation: Combination of

- Adjoints of time integration and
- routine revolve (C/Fortran version)

Calculating Adjoints II

Integration of forward solution:

$$y_{i+1} = F_i(y_i, u_i), \qquad i = 1, ..., I$$

Integration of adjoint $\bar{y}_{i-1} = \bar{F}_i(\bar{y}_i, \bar{u}_i, y_i), i = 1, ..., 1$?

Time Structure Exploitation

Memory requirement?? Computing time ??

Calculating Adjoints II

Integration of forward solution:

$$y_{i+1} = F_i(y_i, u_i), \qquad i = 1, ..., I$$

Integration of adjoint $\bar{y}_{i-1} = \bar{F}_i(\bar{y}_i, \bar{u}_i, y_i), i = 1, ..., 1$?

Time and Space Structure Exploitation

Memory requirement?? Computing time ??

Andrea Walther

23 / 37

Nanooptics: Optimisation

So far: Genetic algorithms

Now: L-BFGS and efficient gradient computation

- ADOL-C coupled with hand-coded adjoints
- Checkpointing (160 000 time steps!!)

 \Rightarrow TIME(gradient)/TIME(target function) < 7 despite of checkpointing!

Nanooptics: Optimisation

So far: Genetic algorithms

Now: L-BFGS and efficient gradient computation

- ADOL-C coupled with hand-coded adjoints
- Checkpointing (160 000 time steps!!)
- \Rightarrow TIME(gradient)/TIME(target function) < 7 despite of checkpointing!

Time-stepping prozess = fixed point iteration for state *x* at given control *u*

Time-stepping prozess = fixed point iteration for state *x* at given control *u*

Time-stepping prozess = fixed point iteration for state *x* at given control *u*

Time-stepping prozess = fixed point iteration for state *x* at given control *u*

No need to store intermediate results!! Derivative calculation??

Androo	Malthor
Anulea	vvaimer

Calculation of Adjoints for Fixpoint Iterations

Fixpoint equation $x_* = F(x_*, u)$

Desired derivatives:

$$\frac{\partial x_*}{\partial u} = \frac{\partial F(x_*, u)}{\partial u}$$

Calculation of Adjoints for Fixpoint Iterations

Fixpoint equation $x_* = F(x_*, u)$

Desired derivatives:

$$\frac{\partial x_*}{\partial u} = \frac{\partial F(x_*, u)}{\partial u}$$

This yields:

$$\frac{\partial x_*}{\partial u} = \frac{\partial F(x_*, u)}{\partial x} \frac{\partial x_*}{\partial u} + \frac{\partial F(x_*, u)}{\partial u}$$
$$\frac{\partial x_*}{\partial u} = \left(I - \frac{\partial F(x_*, u)}{\partial x}\right)^{-1} \frac{\partial F(x_*, u)}{\partial u}$$

Calculation of Adjoints for Fixpoint Iterations

Fixpoint equation $x_* = F(x_*, u)$

Desired derivatives:

$$\frac{\partial x_*}{\partial u} = \frac{\partial F(x_*, u)}{\partial u}$$

This yields:

$$\frac{\partial x_*}{\partial u} = \frac{\partial F(x_*, u)}{\partial x} \frac{\partial x_*}{\partial u} + \frac{\partial F(x_*, u)}{\partial u}$$
$$\frac{\partial x_*}{\partial u} = \left(I - \frac{\partial F(x_*, u)}{\partial x}\right)^{-1} \frac{\partial F(x_*, u)}{\partial u}$$
$$\bar{x}^T \frac{\partial x_*}{\partial u} = \underbrace{\bar{x}^T \left(I - \frac{\partial F(x_*, u)}{\partial x}\right)^{-1}}_{=:\xi_+^T} \frac{\partial F(x_*, u)}{\partial u}$$

Fixpoint Iteration for Adjoints

With

$$\xi_*^{\mathsf{T}} = \bar{\mathbf{x}}^{\mathsf{T}} \left(I - \frac{\partial F(\mathbf{x}_*, \mathbf{u})}{\partial \mathbf{x}} \right)^{-1}$$

one obtains

$$\xi_*^T \left(I - \frac{\partial F(x_*, u)}{\partial x} \right) = \bar{x}^T \quad \Leftrightarrow \quad \xi_*^T = \xi_*^T \frac{\partial F(x_*, u)}{\partial x} + \bar{x}^T$$

Fixpoint Iteration for Adjoints

With

$$\xi_*^{\mathsf{T}} = \bar{x}^{\mathsf{T}} \left(I - \frac{\partial F(x_*, u)}{\partial x} \right)^{-1}$$

one obtains

$$\xi_*^T \left(I - \frac{\partial F(x_*, u)}{\partial x} \right) = \bar{x}^T \quad \Leftrightarrow \quad \xi_*^T = \xi_*^T \frac{\partial F(x_*, u)}{\partial x} + \bar{x}^T$$

 \rightarrow Fixpoint iteration for ξ_*^T :

$$\xi_{k+1}^{\mathsf{T}} = \xi_k^{\mathsf{T}} \frac{\partial F(x_*, u)}{\partial x} + \bar{x}^{\mathsf{T}}$$

Convergence

Theorem (Christianson '94) *For*

$$\begin{aligned} x_{k+1} &= F(x_k, u) & \text{for } k = 0, 1, \dots, N \\ \left(\xi_{k+1}^T, \bar{u}_{k+1}^T\right) &= \xi_k^T F'(x_{N+1}, u) + \left(\bar{x}^T, 0^T\right) & \text{for } k = 0, 1, \dots, \bar{N} \end{aligned}$$

one has if $||F'(x_{N+1}, u)|| < 1$ that

- Derivatives converge
- Convergence rate of derivatives \approx convergence rate of state

Shape Optimization in Aerodynamics

- Cooperation UPB and DLR (N. Kroll, N. Gauger)
- Optimization of complete design chain
- Minimize drag s.t. lift constant

[Gauger, Walther, Özkaya, Moldenhauer 2012]

Numerical Example

Complete Design Chain

 $x \in \mathbb{R}^{p}$ flow, d = 20 , n, p, q LARGE

Complete Design Chain

 $x \in \mathbb{R}^p$ flow, d = 20 , n, p, q LARGE

∂ drag	∂ drag	∂ x	∂ m	∂ds
∂p –	∂x	∂ <i>m</i>	∂ ds	. <u>∂p</u>
	\cap	\cap	\cap	\cap
	$\mathbb{R}^{1 imes p}$	$\mathbb{R}^{p imes q}$	$\mathbb{R}^{q imes n}$	$\mathbb{R}^{n imes 20}$

Complete Design Chain

 $x \in \mathbb{R}^p$ flow, d = 20 , n, p, q LARGE

∂ drag	∂ drag	∂ x	∂m	∂ds
<u>∂p</u> =	∂x	∂ <i>m</i>	∂ ds	. <u>∂p</u>
	\cap	\cap	\cap	\cap
	$\mathbb{R}^{1 imes p}$	$\mathbb{R}^{p imes q}$	$\mathbb{R}^{q imes n}$	$\mathbb{R}^{n imes 20}$

Flow Solver

Euler equations for domain $\Omega \in \mathbb{R}^2$ + pseudo time:

$$\frac{\partial \omega}{\partial t} + \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} = 0$$

$$(\omega, f, g)(t, x, y) = \begin{pmatrix} \rho & \rho u & \rho v \\ \rho u & \rho u^2 + p & \rho uv \\ \rho v & \rho uv & \rho v^2 + p \\ \rho E & \rho uH & \rho vH \end{pmatrix}$$

 $\rho =$ density, v, u =velocity, E =energy, H =enthalpy

$$p = \text{pressure} \quad \Rightarrow \quad C_p := rac{2(p - p_\infty)}{\gamma M_\infty^2 p_\infty} \quad \Rightarrow \quad C_D$$

TAUij (DLR, N. Kroll, N. Gauger, R. Heinrich)

Test Problem: RAE2822

Two discretisations:

- ► I: 161 × 33 grid points
- ▶ II: 321 × 65 grid points

Complexity (one time step):

- $\blacktriangleright~70\times10^6/285\times10^6$ active variables (I/II)
- > $20 \times 10^6/116 \times 10^6$ operations (I/II)

Memory requirement for calculation derivatives with ADOL-C:

- 344 MB/2.3 GB for one time step (I/II)
- ▶ 2000 time steps \Rightarrow "Black-Box" differentiation impossible

Convergence History (Adjoints)

- linear convergence of iterations
- same rate of convergence for both iterations

Runtimes

Discretization I	PC	cluster	
2000 time steps	2 min 39 sec	1 min 44 sec	
Taping	56.8 sec	2.5 sec	
1000 adjoint steps	1 h 21 min 1 sec	15 min 8 sec	

Diskretization II	PC	cluster
2000 time steps	11 min 36 sec	7 min 40 sec
Taping	5 min 49 sec	10.4 sec
1000 adjoint steps		1 h 5 min 3 sec

Cluster: TIME(gradient) \leq 9 \times TIME(function)

- PC: AMD Athlon 3200, 1 GB RAM
- Cluster: single node, Dual AMD Opteron 240 (1.4GHz), 12 GB RAM

[Schlenkrich, Walther, Gauger, Heinrich 2008]

Optimization Results

using IPOPT [Gauger, Walther, Özkaya, Moldenhauer 2012]

And	Irea	Wa	Ither

_			
		0	1
נוכ			I V .
_		_	

Summary

- Adjoint computation may result in emormous memory requirement
- Exploit structure!

_			
			1
20			I V .
_		_	

- Adjoint computation may result in emormous memory requirement
- Exploit structure!
- Time-dependent problem: Implicit time-stepping ? Unknown number of time steps? Apply adapted checkpointing strategy

_			
			1
20			I V .
_		_	

Summary

- Adjoint computation may result in emormous memory requirement
- Exploit structure!
- Time-dependent problem: Implicit time-stepping ? Unknown number of time steps? Apply adapted checkpointing strategy
- Pseudo time-stepping: Two-phase approach "easy" to apply One-shot approach more efficient but also more complicated

-					
2			2		
_		ш		11	

- Adjoint computation may result in emormous memory requirement
- Exploit structure!
- Time-dependent problem: Implicit time-stepping ? Unknown number of time steps? Apply adapted checkpointing strategy
- Pseudo time-stepping: Two-phase approach "easy" to apply One-shot approach more efficient but also more complicated
- Differentiation of Newton-like iterations OK
- ▶ Be careful when differentiating solvers like CG, GMRES, ...