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Line of thought

Common denominator of many of the works presented:

go beyond the idealistic setting of periodic materials

do not treat fully general random materials (fine theoretically,
but too expensive to treat practically);

consider materials that are, in a sense to be made precise,
random perturbations of periodic materials;

and adapt the modelling and the numerical approach.

Even more broadly,

Make mechanics of random materials practical

Work on the simplest possible equation −div
`

a( ·
ε
)∇uε

´

= f .
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Bounds
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Hashin-Shtrikman bounds - 1

A(x, ω) =
∑

k∈Z2

1Q+k(x) ak(ω) Id2, ak i.i.d., P(ak = a) = P(ak = b) = 1/2

A⋆ = a⋆ Id2 =
√
ab Id2.

Set a = 1, and check the accuracy of some classical bounds for various b.
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Hashin-Shtrikman bounds - 2

Case a = 1, b = 10:

Harmonic (Reuss) HS- A⋆ SC Model HS+ Arithmetic (Voigt)

1.81 2.38 3.16 4.00 4.19 5.50

Error is larger than 25 %.
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Homogenization theory

−div
“

a(
x

ε
)∇uε

”

= f, a periodic

−div
“

a(
x

ε
, ω))∇uε

”

= f a stationary

−div
“

a(Φ−1(
x

ε
, ω))∇uε

”

= f a periodic,∇Φ stationary

−div
“

a(Φ−1(
x

ε
, ω), ω′)∇uε

”

= f a stationary,∇Φ stationary

−div
“

a(
x

ε
)∇uε

”

= f a belongs to a general, abstract, algebra
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Homogenization 1.0.1: the periodic setting

−div
[
Aper

(x
ε

)
∇uε

]
= f in D, uε = 0 on ∂D,

with Aper symmetric and Z
d-periodic: Aper(x+ k) = Aper(x) for any k ∈ Z

d.
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Homogenization 1.0.1: the periodic setting

−div
[
Aper

(x
ε

)
∇uε

]
= f in D, uε = 0 on ∂D,

with Aper symmetric and Z
d-periodic: Aper(x+ k) = Aper(x) for any k ∈ Z

d.

When ε→ 0, uε converges to u⋆ solution to

−div [A⋆∇u⋆] = f in D, u⋆ = 0 on ∂D.

The effective matrix A⋆ is given by

[A⋆]ij =

∫

Q

(ei + ∇wei
(y))T Aper(y) ej dy, Q = unit cube = (0, 1)d

with, for any p ∈ R
d, wp solves the so-called corrector problem:

−div [Aper(y) (p+ ∇wp)] = 0 in R
d, wp is Z

d-periodic.

Note that up(y) = p · y + wp(y) satisfies 〈∇up〉 = p.
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Homogenization 1.0.1: the periodic setting

−div
[
Aper

(x
ε

)
∇uε

]
= f in D, uε = 0 on ∂D,

with Aper symmetric and Z
d-periodic: Aper(x+ k) = Aper(x) for any k ∈ Z

d.

When ε→ 0, uε converges to u⋆ solution to

−div [A⋆∇u⋆] = f in D, u⋆ = 0 on ∂D.

The effective matrix A⋆ is given by

[A⋆]ij =

∫

Q

(ei + ∇wei
(y))T Aper(y) ej dy, Q = unit cube = (0, 1)d

with, for any p ∈ R
d, wp solves the so-called corrector problem:

−div [Aper(y) (p+ ∇wp)] = 0 in R
d, wp is Z

d-periodic.

Note that up(y) = p · y + wp(y) satisfies 〈∇up〉 = p.

→ Solve d PDEs (for p = ei, 1 ≤ i ≤ d) on the bounded domain Q: easy!

– p. 8



Some simple cases

−div
[
Aper

(x
ε

)
∇uε

]
= f

in the 0D case (remove differential operators):

−aper

(x
ε

)
uε(x) = f(x)

Then uε(x) = −f(x) a−1
per

(x
ε

)
⇀ −f(x) 〈a−1〉, because a highly oscillatory

periodic function weakly converges to its average. Hence uε ⇀ u⋆ with

−a⋆ u⋆(x) = f(x) with a⋆ = 〈a−1
per〉−1 (harmonic average)

in the 1D case: analytical expression for uε, pass to the limit,

− d

dx

[
a⋆ du

⋆

dx

]
= f with again

1

a⋆
=

∫ 1

0

1

aper(y)
dy.
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Stochastic homogenization setting

We consider statistically homogeneous random materials:

−div
[
A
(x
ε
, ω
)
∇uε

]
= f in D

The tensor A(x, ω) is such that

A(x, ω) and A(x+ k, ω) share the same probability distribution, for any
k ∈ Zd. For a given realization of the randomness, properties may be
different. But, on average, they are identical: the material is statistically
homogeneous.

x 7→ E(A(x, ·)) is a periodic function.

Ergodicity property: space average ∼ average over realizations:

1

|QN |

∫

QN

A(x, ω) dx −→
N→∞

E

[∫

Q

A(x, ·) dx
]

with Q = (0, 1)d and QN = (−N,N)d.
– p. 10



Stochastic homogenization

−div
[
A
(x
ε
, ω
)
∇uε

]
= f in D, uε = 0 on ∂D.

uε(·, ω) converges to u⋆ solution to

−div [A⋆∇u⋆] = f in D, u⋆ = 0 on ∂D,
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Stochastic homogenization

−div
[
A
(x
ε
, ω
)
∇uε

]
= f in D, uε = 0 on ∂D.

uε(·, ω) converges to u⋆ solution to

−div [A⋆∇u⋆] = f in D, u⋆ = 0 on ∂D,

where the effective matrix A⋆ is given by

[A⋆]ij = E

(∫

Q

(ei + ∇wei
(y, ·))T

A (y, ·) ej dy

)
,

where wp solves





−div [A (y, ω) (p+ ∇wp(y, ω))] = 0 in R
d, p ∈ R

d,

∇wp is statist. homog., E

(∫

Q

∇wp(y, ·) dy
)

= 0.

The corrector problem is set on R
d. Theoretically, the RVE is infinite.
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A variant of the classical homogenization

setting
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A variant of classical stochastic homogenization

Classical stochastic homogenization:

−div
[
A
(x
ε
, ω
)
∇uε(x, ω)

]
= f(x) in D, uε = 0 on ∂D

where the matrix A is stationary.

We consider here a variant:

−div
[
Aper

(
Φ−1

(x
ε
, ω
))

∇uε(x, ω)
]

= f(x) in D, uε = 0 on ∂D

for a periodic matrix Aper and a random diffeomorphism Φ, with ∇Φ stationary.

In general, Aper ◦ Φ−1 is NOT stationary.

X. Blanc, CLB and P.-L. Lions, C. R. Acad. Sci., 2006.
X. Blanc, CLB and P.-L. Lions, J. Math. Pures et Appliquées, 2007.
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Random diffeomorphism

Φ(.,ω)

A ’real’ material ≡ a random deformation of a reference periodic material
Up to (more or less) random glasses, the material is periodic!
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Example

Deformed structure

The periodic structure corresponds to identical fibers set on a Z2 lattice.
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Discrete stationary setting

Let (τk)k∈Zd be a group action that preserves the measure P and is ergodic:

∀k ∈ Z
d, ∀B ∈ F , P(τkB) = P(B)

∀B ∈ F ,
(
τkB = B for any k ∈ Z

d
)

=⇒ P(A) = 0 or 1.

A function F is said stationary if,

∀k ∈ Z
d, F (x+ k, ω) = F (x, τkω) a.e., a.s.

Only discrete shifts are allowed.

Ergodic theorem:

F
(x
ε
, ω
)

∗−⇀
ε→0

E

(∫

Q

F (x, ·)dx
)

in L∞(Rd), a.s.
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Stochastic deformations

−div
[
Aper

(
Φ−1

(x
ε
, ω
))

∇uε(x, ω)
]

= f(x) in D, uε = 0 on ∂D

Assumptions:

the map Φ(·, ω) is almost surely a diffeomorphism from R
d to R

d, with

EssInf
ω∈Ω,x∈Rd

(det(∇Φ(x, ω))) = ν > 0,

EssSup
ω∈Ω,x∈Rd

|∇Φ(x, ω)| = M < +∞,

∇Φ(x, ω) is stationary:

∀k ∈ Z
d, ∇Φ(x+ k, ω) = ∇Φ(x, τkω)

Why do we need ∇Φ to be stationary?
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A simple 0D computation

Consider b(x, ω) = bper(Φ
−1(x, ω)). Let us compute its average,

1

R

∫ R

0

b(x, ω) dx =
1

R

∫ R

0

bper(Φ
−1(x, ω)) dx

With the change of variables y = Φ−1(x, ω), we have

∫ R

0

b(x, ω) dx

R
=

1

Φ−1(R,ω) − Φ−1(0, ω)

∫ Φ−1(R,ω)

Φ−1(0,ω)

bper(y) Φ′(y, ω) dy

1

Φ−1(R,ω) − Φ−1(0, ω)

∫ Φ−1(R,ω)

Φ−1(0,ω)

Φ′(y, ω) dy

Our assumptions on Φ imply that Φ−1(R,ω) − Φ−1(0, ω) ≥M−1R a.s.
Thus, if Φ′(y, ω) is stationary, this converges to

[
E

∫ 1

0

Φ′(y, ω) dy

]−1

E

∫ 1

0

bper(y) Φ′(y, ω) dy.
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Homogenization result (X. Blanc, CLB, P.-L. Lions, 2006)

−div
[
Aper

(
Φ−1

(x
ε
, ω
))

∇uε(x, ω)
]

= f(x) in D, uε = 0 on ∂D

uε(·, ω) converges (weakly in H1 and strongly in L2) to u⋆ almost surely, with

−div [A⋆∇u⋆(x)] = f(x) in D, u⋆ = 0 on ∂D

with the homogenized matrix

A⋆
ij = det

[
E

[∫

Q

∇Φ(y, ·)dy
]]−1

E

[∫

Φ(Q,·)

(ei + ∇wei
(y, ·))T

Aper

(
Φ−1 (y, ·)

)
ejdy

]
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Homogenization result (X. Blanc, CLB, P.-L. Lions, 2006)

−div
[
Aper

(
Φ−1

(x
ε
, ω
))

∇uε(x, ω)
]

= f(x) in D, uε = 0 on ∂D

uε(·, ω) converges (weakly in H1 and strongly in L2) to u⋆ almost surely, with

−div [A⋆∇u⋆(x)] = f(x) in D, u⋆ = 0 on ∂D

with the homogenized matrix

A⋆
ij = det

[
E

[∫

Q

∇Φ(y, ·)dy
]]−1

E

[∫

Φ(Q,·)

(ei + ∇wei
(y, ·))T

Aper

(
Φ−1 (y, ·)

)
ejdy

]

where, for all p ∈ Rd, wp is the corrector defined by




−div
[
Aper

(
Φ−1(x, ω)

)
(p+ ∇wp(x, ω))

]
= 0 in R

d,

wp(x, ω) = w̃p(Φ
−1(x, ω), ω), ∇w̃p is stationary,

E

(∫

Φ(Q,·)

∇wp(y, ·)dy
)

= 0.
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Going further
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Numerical approximation

−div
[
Aper

(
Φ−1

(x
ε
, ω
))

∇uε(x, ω)
]

= f(x) in D, uε = 0 on ∂D

The corrector problem is set on Rd:




L(wp) = 0 in Rd,

∇wp is stationary

In practice, need to introduce truncation: introduce QN = (−N,N)d and
approximate wp by wN

p with




L(wN
p ) = 0 on QN ,

wN
p (·, ω) is QN -periodic

and compute A⋆
N (ω) from there: large domain (N ≫ 1), random output, . . .

Very expensive!
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Perturbations of identity - 1

Assume the diffeomorphism Φ is close to the identity:

Φ(x, ω) = x+ ηΨ(x, ω) +O(η2),

for η small. Then
wp(x, ω) = w0

p(x) + ηw1
p(x, ω) +O(η2),

with
−div

(
Aper

(
p+ ∇w0

p

))
= 0, w0

p is Z
d-periodic,

and




−div
[
Aper

(
∇w1

p −∇Ψ∇w0
p

)
+
(
∇ΨT − (div Ψ)Id

)
Aper

(
p+ ∇w0

p

)]
= 0,

E

(∫

Q

∇w1
p

)
= E

(∫

Q

(∇Ψ − (div Ψ)Id)∇w0
p

)
, ∇w1

p stationary.

However, to compute A⋆, only the expectation of wp
1 is needed!

A⋆
ij ∼ E

[∫
(ei + ∇wei

(y, ·))T Aper

(
Φ−1 (y, ·)

)
ejdy

]
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Perturbations of identity - 2

Taking the expectation and setting w1
p = E(w1

p),





−div
[
Aper∇w1

p

]
= RHS

(
Aper,E(∇Ψ),∇w0

p

)
,

∫

Q

∇w1
p =

∫

Q

(E(∇Ψ) − E(div Ψ) Id)∇w0
p, ∇w1

p periodic.

Eventually,

A⋆ = A0 + ηA1 +O(η2),

with

A0
ij =

∫

Q

(ei + ∇w0
ei

)TAperej

A1
ij =

∫

Q

fct
[
E(∇Ψ), A0,∇w0, Aper

]
+

∫

Q

(∇w1
ei
− E(∇Ψ)∇w0

ei
)TAperej .

Two periodic computations instead of an expensive stochastic one.
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After space truncation and discretization

In practice, the corrector problem is solved on QN = (−N,N)d, using e.g.
FEM.

→ We do not compute A⋆, but some A⋆
N,h(ω).

Yet, a similar result holds (R. Costaouec, CLB, F. Legoll, CRAS 2010):

A⋆
N,h(ω) = A0

h + ηA1
N,h(ω) +O(η2)

where

A0
h is the Finite Element approximation of A0, obtained by periodic

homogenization of Aper.

A
1

h := E

[
A1

N,h

]
is independent of N , and is easy to compute.
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Numerical illustration (2D)

Φη(x, ω) = x+ ηΨ(x, ω) with Ψ(x, ω) =


 ψA(x1, ω)

ψB(x2, ω)




with

ψA(x, ω) =
∑

k∈Z

1[k,k+1)(x)

(
k−1∑

q=0

2Aq(ω) +Ak(ω)

∫ x

k

sin2(2πt)dt

)

where (Ak)k∈Z and (Bk)k∈Z are all i.i.d. uniform random variables.

Take as periodic reference structure

Aper(x) = aper(x) Id

with

aper(x) = β + (α− β) sin2(πx) sin2(πy) ∈ C∞(R2)
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Stochastic structure

Deformed structure in QN , with N = 5 and η = 0.05
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Error at order η2

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11
−5.4

−5.2

−5.0

−4.8

−4.6

−4.4

−4.2

−4.0

η

Relative error:
A⋆

N,h(ω) −A0
h − ηA1

N,h(ω)

η2
for h = 1/3, N = 20
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Numerical illustration (R. Costaouec, CLB, F. Legoll, CRAS 2010)
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A⋆
N,h

h = 1/3, N = 20

A⋆
N,h(ω) = A0

h + ηA1
N,h(ω) +O(η2) and A

1

h := E
[
A1

N,h

]
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A theory for ’defects’

Further extension: more randomness!

Define a random “perturbation” in a different topology and provide an efficient approach to
compute the homogenized coefficients

Joint work with A. Anantharaman.

C. R. Acad. Sc., 348 (2010) 529-534.
SIAM MMS, 9, 2 (2011) 513-544,
Comm. Comp. Phys., 11 (2011), pp. 1103-1143.
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Random η (Anantharaman/LB)

In the previous setting, we have considered aper(Φ−1(x, ω)) with

Φη(x, ω) = x + ηΨ(x, ω) + . . . ,

and η a small scalar. We can alternately consider

Φη(x, ω) = x + bη(x, ω)Ψ(x, ω) + . . . ,

with bη small in some appropriate (random) norm.
To keep things simple, let us assume

a(x, ω) = aper(x) + bη(x, ω) cper(x).

The most interesting case is typically bη(x, ω) a Bernoulli random variable.
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Random η (Anantharaman/LB)
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Random η (Anantharaman/LB)
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Random η (Anantharaman/LB)

Law of the material:

δa + η (δc − δa)

on each cell. Cells are independent from one another. Product. Expand at first order in η:

N
Y

k=1

δa(cell k) + η N

"

δc(cell k = 1)
N
Y

k=2

δa(cell k) −
N
Y

k=1

δa(cell k)

#

.

Think of a jellium model in Physics, or, otherwise stated, of a model for defects.

Next remark that in −div (A(x, ω) (p + ∇w(x, ω)) = 0, the only source of randomness is in A.
Otherwise stated, w is a deterministic function of A. Thus, formally

A∗
ij =

Z Z

(ei + ∇wei
(A, y))T A(y)ejdy ρ(A) dA.

A∗ = A0 + ηA1 + . . .

No proof of the expansion. A0, A1 (and A2,...) finite..
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Random η (Anantharaman/LB)
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Random η (Anantharaman/LB)
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Random η (Anantharaman/LB)
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What if the material is “fully” stochastic?

We go back to the standard setting:

−div
[
A
(x
ε
, ω
)
∇uε

]
= f in D, uε = 0 on ∂D

with A stationary.

R. Costaouec, CLB, F. Legoll, Bol. Soc. Esp. Mat. Apl., 2010.
X. Blanc, R. Costaouec, CLB, F. Legoll, MPRF, 2012.
X. Blanc, R. Costaouec, CLB, F. Legoll, Lect. Notes Comp. Sci. Eng., vol 82,
2011.
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Standard stochastic homogenization

We go back to the standard setting:

−div
[
A
(x
ε
, ω
)
∇uε

]
= f in D, uε = 0 on ∂D

with A stationary. Then the effective matrix A⋆ is given by

[A⋆]ij = E

(∫

Q

(ei + ∇wei
(y, ·))T

A (y, ·) ej dy

)
,

where wp solves





−div [A (y, ω) (p+ ∇wp(y, ω))] = 0 in Rd,

E

(∫

Q

∇wp(y, ·) dy
)

= 0, ∇wp stationary

This corrector problem is set on Rd. Some approximation is in order to get to a
tractable problem.
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Standard discretization

Solve the corrector problem on a truncated domain:





−div
[
A (y, ω)

(
p+ ∇wN

p (y, ω)
)]

= 0 in R
d,

wN
p is QN -periodic, QN = (−N,N)d

This yields an approximate effective matrix

[A⋆
N ]ij(ω) =

1

|QN |

∫

QN

(
ei + ∇wN

ei
(y, ·)

)T
A (y, ω) ej dy

– p. 39



Standard discretization

Solve the corrector problem on a truncated domain:





−div
[
A (y, ω)

(
p+ ∇wN

p (y, ω)
)]

= 0 in R
d,

wN
p is QN -periodic, QN = (−N,N)d

This yields an approximate effective matrix

[A⋆
N ]ij(ω) =

1

|QN |

∫

QN

(
ei + ∇wN

ei
(y, ·)

)T
A (y, ω) ej dy

Due to numerical truncation, A⋆
N is random!

When N → ∞, we have A⋆
N → A⋆ a.s. (Bourgeat/Piatnitski, 2004).
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Reducing the statistical error

[A⋆
N ]ij(ω) =

1

|QN |

∫

QN

(
ei + ∇wN

ei
(y, ω)

)T
A (y, ω) ej dy

At fixed N ,

A⋆ −A⋆
N (ω) = A⋆ − E [A⋆

N ]
(small) systematic error

+ E [A⋆
N ] −A⋆

N (ω)
(large) statistical error

Can we reduce the statistical error? Can we compute more accurately E [A⋆
N ]?

[Related works by Gloria and Otto]
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Understanding the truncation in the 1D case

Assume that a(x, ω) =
∑

k∈Z

1[k−1,k)(x) ak(ω) with ak i.i.d.

The effective coefficient is the harmonic average:

a⋆ =

[
E

(∫ 1

0

a−1(x, ·) dx
)]−1

=

[
E

(
1

a0

)]−1

After truncation, we obtain the approximation

a⋆
N (ω) =

[
1

N

∫ N

0

a−1(x, ω) dx

]−1

=

[
1

N

N∑

k=1

1

ak(ω)

]−1

By law of large numbers, lim
N→∞

a⋆
N (ω) = a⋆.

But, at any N , E (a⋆
N ) 6= a⋆ (bias), and a⋆

N is random (variance).

For finite N , the approximation a⋆
N (ω) is random.
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An academic random material

A(x, ω) =
∑

k∈Z2

1Q+k(x) ak(ω) Id2, ak independent identically distributed

ak = α or β with equal probability.

– p. 42



Monte Carlo approximation

Consider 2M realizations Am(y, ω), compute for each of these

the corrector wN,m
p , solution to

−div
[
Am (y, ω)

(
p+ ∇wN,m

p (y, ω)
)]

= 0, wN,m
p is QN -periodic,

and the approximate homogenized matrix

[A⋆
N,m]ij(ω) =

1

|QN |

∫

QN

(
ei + ∇wN,m

ei
(y, ·)

)T
Am (y, ω) ej dy.

Approximate E(A⋆
N ) by I2M =

1

2M

2M∑

m=1

A⋆
N,m(ω).

Classical confidence interval:
∣∣∣E([A⋆

N ]ij) − [I2M ]ij

∣∣∣ ≤ 1.96

√
Var([A⋆

N ]ij)√
2M

The accuracy of I2M is directly linked with the variance of A⋆
N .

– p. 43



In practice, on a 2D example . . .

I2M ≈ E([A⋆
N ]11) (along with confidence intervals) for a given number 2M of

realizations, and several sizes for QN .

 7.92

 7.94

 7.96

 7.98

 8

 8.02

 8.04

 10000  20000  30000  40000

Number of cells in QN

For moderate N , the statistical error ≫ systematic error

Our aim: compute E(A⋆
N ) more efficiently, for any given N .
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Antithetic variables

Goal: compute E(f(U)), with U a random variable uniformly distributed in [0, 1].

Basic Monte Carlo method: using 2M independent realizations of U(ω),

I2M (ω) =
1

2M

2M∑

m=1

f(Um(ω))

Alternative approximation:

I2M (ω) =
1

M

M∑

m=1

1

2

(
f(Um(ω)) + f(1 − Um(ω))

)

1 − U(ω) has the same law as U(ω):

I2M and I2M both converge to E(f(U))

At fixed M ,

both estimators have the same cost (same number of evaluations of f )

accuracy?
– p. 45



When does it work?

I2M (ω) =
1

2M

2M∑

m=1

f(Um(ω))

I2M (ω) =
1

M

M∑

m=1

1

2

(
f(Um(ω)) + f(1 − Um(ω))

)

Let’s compare the variance:

Var I2M = Var I2M +
1

2M
Cov(f(U), f(1 − U))

I2M is a better estimator than I2M ⇐⇒ Cov(f(U), f(1 − U)) ≤ 0

Lemma: assume that f : [0, 1] 7→ R is non-decreasing. Then
Cov(f(U), f(1 − U)) ≤ 0.
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Back to the homogenization context

We will apply the exact same idea to homogenization, with

input ≡ U(ω) ∼ A(x, ω)|x∈QN
, output ≡ f(U) ∼ A⋆

N (ω)

Any time a random structure is considered, we will also make the
computations with the antithetic structure.

Example: each time we see

A(x, ω) =
∑

k∈Zd

1Q+k(x) ak(ω) Id , ak(ω) are i.i.d.

we also do the computations with the antithetic field:

B(x, ω) =
∑

k∈Zd

1Q+k(x) bk(ω) Id

where bk(ω) is antithetic to ak(ω).
At each point x, we replace the local microstructure by the antithetic
microstructure. – p. 47



Antithetic materials

A(x, ω) =
∑

k∈Zd

1Q+k(x) ak(ω) Id −→ B(x, ω) =
∑

k∈Zd

1Q+k(x) bk(ω) Id

If ak = α or β with equal probability, then set bk(ω) = β whenever ak(ω) = α.

If ak is uniformly distributed in [α, β], then set bk(ω) = α+ β − ak(ω).
– p. 48



Strategies

consider 2M independent realizations Am(x, ω), the associated
correctors wN,m

p and effective matrices A⋆
N,m(ω), and the estimator

I2M =
1

2M

2M∑

m=1

A⋆
N,m(ω).

– p. 49



Strategies

consider 2M independent realizations Am(x, ω), the associated
correctors wN,m

p and effective matrices A⋆
N,m(ω), and the estimator

I2M =
1

2M

2M∑

m=1

A⋆
N,m(ω).

consider M independent realizations Am(x, ω),

build the M antithetic fields Bm(x, ω),

for each of these Bm(x, ω), compute the associated corrector

−div
[
Bm (y, ω)

(
p+ ∇vN,m

p (y, ω)
)]

= 0 in R
d, vN,m

p is QN -periodic.

Set B⋆
N,m(ω) =

1

|QN |

∫

QN

(
ei + ∇vN,m

ei
(y, ·)

)T
Bm (y, ω) ej dy.

I2M =
1

M

M∑

m=1

1

2

(
A⋆

N,m(ω) +B⋆
N,m(ω)

)
.

– p. 49



Efficiency comparison

I2M =
1

2M

2M∑

m=1

A⋆
N,m(ω)

I2M =
1

M

M∑

m=1

1

2

(
A⋆

N,m(ω) +B⋆
N,m(ω)

)

Equal cost: for both estimators, 2M corrector problems need to be solved.

Convergent:

I2M and I2M both converge to E(A⋆
N )

Efficiency: let’s see numerically!
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Numerical experiments

A(x, ω) =
∑

k∈Z2

1Q+k(x) ak(ω) Id2, ak i.i.d., ak ∼ U [α, β]

 10.33

 10.34
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 10.36

 10.37

 10.38

 10.39

 10.4

 10.41

 10000  20000  30000  40000

Number of cells in QN

I2M and I2M (and confidence interval), α = 3, β = 20.

Accuracy gain ≥
√

6 (e.g. CPU time gain of 6 for equal accuracy).
Approach efficient even if N is not large!
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Different realizations: no systematic bias

A(x, ω) =
∑

k∈Z2

1Q+k(x) ak(ω) Id2, ak i.i.d., ak ∼ U [α, β]

 10.37

 10.38

 10.39

 10.4

 10.41

 10.42

 10.43

 20000  30000  40000

Realization #1
Realization #2 (+shift)

Number of cells in QN

In addition, the CPU gain is roughly insensitive to the size of QN .
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CPU time gain

A(x, ω) =
∑

k∈Z2

1Q+k(x) ak(ω) Id2, ak i.i.d., ak ∼ U [α, β]

 5.5

 6

 6.5
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 0  10000  20000  30000  40000

CPU time gain

Number of cells in QN

The CPU time gain (ratio of variances) is roughly insensitive to the size of QN .
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Numerical experiments - 2: non equidistributed case

A(x, ω) =
∑

k∈Z2

1Q+k(x) ak(ω) Id2, ak i.i.d., P(ak = α) = 1/3, P(ak = β) = 2/3

In practice: ak = φ(uk) = α10≤uk≤1/3 + β11/3≤uk≤1, with uk ∼ U [0, 1].
Take bk = φ(1 − uk).
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– p. 54



Robustness of the numerical results - 1

Good variance reduction on A⋆
N for many input fields:

Correlated fields: A(x, ω)|Q+k is possibly correlated with A(x, ω)|Q. The
underlying uncorrelated structure is known:

A(x, ω) =
∑

k∈Z2

1Q+k(x)


1

2
ak(ω) +

1

16

∑

|q|=1

ak+q(ω)


 Id2

with ak i.i.d. and ak ∼ U [α, β].

B(x, ω) =
∑

k∈Z2

1Q+k(x)


1

2
bk(ω) +

1

16

∑

|q|=1

bk+q(ω)


 Id2

with bk antithetic to ak: here, bk(ω) = α+ β − ak(ω).

N 40 60 80 100

Variance reduction on [A⋆
N (ω)]11 31.17 39.89 25.43 45.52
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Robustness of the numerical results - 2

Good variance reduction on A⋆
N for many input fields:

Anisotropic fields:

A(x, ω) =
∑

k∈Z2

1Q+k(x)Ak(ω) with Ak(ω) =


αk(ω) γk(ω)

γk(ω) βk(ω)


 ,

where {αk}k∈Z2 , {βk}k∈Z2 and {γk}k∈Z2 are three independent families of
independent random variables.

B(x, ω) =
∑

k∈Z2

1Q+k(x)Bk(ω) with Bk(ω) =


αk(ω) γk(ω)

γk(ω) βk(ω)




where αk is antithetic to αk, . . .

N 40 60 80 100

Variance reduction on [A⋆
N (ω)]11 49.44 30.54 34.39 28.55
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Robustness of the numerical results - 3

Variance reduction not only for A⋆
N , but also for

its eigenvalues

the eigenvalues λk of the operator (∼ vibration frequencies):

−div [A⋆
N (ω)∇uk(ω)] = λk(ω)uk(ω)

the solution of the (approximated) homogenized problem:
A(x, ω) → homogenized matrix A⋆

N (ω), and then solve

−div [A⋆
N (ω)∇u⋆

N (ω)] = f

A(x, ω) → antithetic field B(x, ω), . . . , −div [B⋆
N (ω)∇v⋆

N (ω)] = f

inf
x∈D

Var u⋆
N (x)

Var
[

1
2 (u⋆

N (x) + v⋆
N (x))

] ≈ 9 = CPU time gain at equal accuracy
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Overview of the results

The method has been tested in several 2D situations:

various input fields,

various outputs

It has been proved to reduce the variance in 1D, for 2D weakly random
settings, and for some truely random 2D problems.

Behind the scene: −div [a(x, ω)∇u(x, ω)] = f(x, ω)

– p. 58



MsFEM approaches for weakly
stochastic materials

Keep ε at its small fixed value

MsFEM approach: introduced by Efendiev, Hou and Wu (subsequent large
literature: Aarnes, Allaire & Brizzi, Dostert, Ginting, Chen et al . . . )
Joint work with F. Legoll and F. Thomines.
M2AN, submitted
Asymptotic Analysis, in press.
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Motivation

Not all materials are fully stochastic!

An interesting case: stochastic perturbations of deterministic materials.

Several ways to formalize this.
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MsFEM approach in the deterministic setting

−div(Aε(x)∇uε(x)) = f(x) in D, uε = 0 on ∂D.

where Aε is not necessarily periodic.

Variational formulation: find uε such that

∀v ∈ H1
0 (D), Aε(u

ε, v) = b(v),

where

Aε(u, v) =

∫

D

(∇v)T Aε ∇u and b(v) =

∫

D

f v dx.

Idea: introduce an approximation with suitably chosen basis functions.

We introduce a classical P1 discretization of the domain D, with L nodes, and
denote φ0

i the basis functions.

– p. 61



Basis functions

One possible definition (many have been proposed: Allaire, Hou,
Efendiev): 




−div(Aε(x)∇φε,K
i ) = 0 in K

φε,K
i = φ0

i

∣∣
K

on ∂K.

These problems, indexed by K, are all independent from one another.

Introduce the finite dimensional space

Wh := span {φε
i , i = 1, . . . , L} ,

where φε
i is such that φε

i |K = φε,K
i for all K, and proceed with a standard

Galerkin approximation using Wh:

Find uε
h ∈ Wh such that, ∀v ∈ Wh, Aε(u

ε
h, v) = b(v).

This only involves a limited number of degrees of freedom.

– p. 62



A three step method

– p. 63



A three step method

Coarse mesh with a P1 Finite Element basis functions φ0
i .

– p. 63



A three step method

Coarse mesh with a P1 Finite Element basis functions φ0
i .

MsFEM basis





−div(Aε(x)∇φε,K
i ) = 0 in K

φε,K
i = φ0

i

∣∣
K

on ∂K

and glue them together: φε
i such that φε

i |K = φε,K
i for all K. The MsFEM

functions are computed independently (in parallel) over each K.

– p. 63



A three step method

Coarse mesh with a P1 Finite Element basis functions φ0
i .

MsFEM basis





−div(Aε(x)∇φε,K
i ) = 0 in K

φε,K
i = φ0

i

∣∣
K

on ∂K

and glue them together: φε
i such that φε

i |K = φε,K
i for all K. The MsFEM

functions are computed independently (in parallel) over each K.

Solve the macro problem with MsFEM basis functions φε
i .

– p. 63



Numerical illustration

0 0.5 1
0

0.2

0.4

0.6

0.8

1

FEM basis vs MsFEM basis

The MsFEM method is accurate even with a coarse mesh, because the basis
functions encode the specific fast oscillations of the problem.

−div(Aε(x)∇φε,K
i ) = 0 in K with φε,K

i = φ0
i

∣∣
K

on ∂K

w := φε,K
i − φ0

i

∣∣
K

−div(Aε(x)(∇φ0
i + ∇w) = 0 + Dirichlet BC: ∼ corrector problem
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Simple elements of numerical analysis

Recall the classical argument for the approximation

a(u, v) = L(v), ∀v ∈ V

by

a(uh, vh) = L(vh), ∀vh ∈ Vh.

Infer from

a(u − uh, u − uh) = a(u − uh, v) = a(u − uh, u − vh), ∀vh ∈ Vh

that (Céa’s Lemma)

‖u − uh‖H1 ≤ (i.e. =) inf
vh∈Vh

‖u − vh‖H1 .

Next, use the interpolant Rh(u) to majorize

‖u − uh‖H1 ≤ inf
vh∈Vh

‖u − vh‖H1 ≤ ‖u − Rh(u)‖H1 ≤ C h
‚

‚D2u
‚

‚

L2 .

If u oscillates, we are doomed ....
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Simple elements of numerical analysis

Solve now (say) the one-dimensional equation L u := −(ηu′)′ + αu = f with possibly highly
oscillatory coefficients η and α, using

VH = {vH continuous, L uH = 0 on each [k H, (k + 1) H]} .

Using the classical argument, and the energy norm,

‖u − uH‖E = inf
vH∈VH

‖u − vh‖E ≤ ‖u − Rh(u)‖E .

But, on each interval [k H, (k + 1) H], L(u − RH(u)) = 0 and u − RH(u) vanishes on the
boundary, thus

‖u − RH(u)‖2
E = (L(u − RH(u)), (u − RH(u))) ≤ ‖f‖L2 ‖u − RH(u)‖L2

≤ ‖f‖L2 C H ‖u − RH(u)‖H1

using the Poincaré inequality on each interval to get the rightmost majoration. Therefore,

‖u − uH‖E ≤ C H ‖f‖L2 .
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Natural adaptation to the stochastic setting

Consider the stochastic problem





−div(Aε(x, ω)∇uε(x, ω)) = f(x) in D,
uε = 0 on ∂D,

and assume that we wish to build an estimate of the mean E(uε(x, ·)) using a
Monte-Carlo simulation method.

Then, for each realization of Aε,m(x, ω),

first construct a (random) MsFEM basis φε,m
i (x, ω)

and next solve the macroscale problem to compute uε,m(x, ω).

Eventually, E(uε(x, ·)) ≈ 1

M

M∑

m=1

uε,m(x, ω).

This is extremely expensive.

– p. 67



Weakly stochastic setting

Aε(x, ω) ≡ Aε
η(x, ω) = Aε

0(x) + ηAε
1(x, ω),

where Aε
0 is a deterministic matrix, and η is a small parameter, uniquely

determined by

∥∥∥∥
Aε

1

Aε
0

∥∥∥∥
L∞

= 1.

Alternative MsFEM method:

compute the MsFEM basis functions only once, with the deterministic part
of the matrix Aε

η:

−div(Aε
0(x)∇φε,K

i ) = 0 in K, φε,K
i = φ0

i |K on ∂K.

Deterministic approximation space

Wh := span {φε
i , i = 1, . . . , L} ,

next perform Monte-Carlo realizations only for the macro scale problem:

∀v ∈ Wh,

∫

D

(∇v(x))T Aε,m
η (x, ω) ∇um(x, ω)dx =

∫

D

fv.
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Numerical illustration (ε = 0.025, D = [0, 1]2, f = 1)

Aε
η(x, y, ω) = Aε

0(x, y) + η
∑

(k,ℓ)∈Z2

1(k,k+1](
x

ε
)1(ℓ,ℓ+1](

y

ε
)Xk,ℓ(ω)Aε

0(x, y)

where (Xk,ℓ)(k,ℓ)∈Z2 are i.i.d. scalar random variables, Xk,ℓ ∼ U [0, 1], and
Aε

0(x, y) is a classical test case of the literature.

We build the deterministic basis functions by locally solving
−div(Aε(x)∇φε

i ) = 0.

For each realization Aε,m
η (x, y, ω), solve for um(x, ω) =

∑

i

Um
i (ω)φε

i (x).

Compare three functions:

uref : reference solution

uM : approximation by the general MsFEM approach

uw−S: approximation by the weakly-stochastic MsFEM approach
– p. 69



Errors (uM : general MsFEM; uw−S: weakly-stochastic MsFEM)

Relative error in % (here, with H1 norm; similar conclusion with L2 norm,
although errors are 10 times smaller):

η e(uM , uref) e(uw−S , uref) e(uw−S , uM )

1 8.12 ± 0.19 17.37 ± 0.78 15.51 ± 0.87

0.1 7.17 ± 0.02 7.62 ± 0.07 2.56 ± 0.10

0.01 7.15 ± 0.002 7.28 ± 0.007 1.39 ± 0.002

when η is small (here, η ≤ 0.1), uw−S is an approximation of uref as
accurate as uM , and is obtained for a much smaller cost (the MsFEM
basis has only been computed once!)

as expected, when η is not small (say η ≈ 1), the accuracy of the solution
uw−S computed with the alternative approach proposed here decreases.

CLB, F. Legoll, F. Thomines,
http://arxiv.org/abs/1110.5206 and /1111.1524.
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Non stochastic problems

“General” but “explicit” deterministic problems

Joint work with X. Blanc, PL. Lions.

What is the most general property that allows homogenization
while keeping formulae explicit and staying deterministic?

Based on previous works (CPDE 2002, JMPA 2007, Milan Journal of Maths 2012) and ongoing

works.
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Non stochastic problems

Consider a set of points {Xi}i∈N s.t.

(H1) sup
x∈R3

#
{
i ∈ N / |x−Xi| < 1

}
< +∞,

(H2) ∃R0 > 0, infx∈3 #{i ∈ N, |x−Xi| < R0} > 0,

(H3) the following limit exists in L∞(Rn):

lim
R→∞

1

|BR|
#

{
(i0, i1, . . . , in) ∈ N

n+1,

|Xi0 | ≤ δ0R, |Xi0 −Xi1 − h1| ≤ δ1, . . . , |Xi0 −Xin
− hn| ≤ δn

}
.
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Non stochastic problems

(H3) may also be written as follows: for any n ∈ N, the following limit exists

lim
R→∞

1

|BR|

X

Xi0
∈BR

· · ·
X

Xin
∈BR

δ(Xi0
−Xi1

,...Xi0
−Xin

)(h1, . . . , hn) = ln(h1, . . . , hn),

and is a non-negative uniformly locally bounded measure.
Condition (H3) (originally designed for thermodynamic limit problems) has to be strenghtened into
[(H3’)] for any n ∈, the following limit exists

lim
ε→0

µn
“x

ε
, h1, . . . , hn

”

= νn(h1, . . . hn),

where

µn(y, h1, . . . , hn) =
X

i0∈Zd

X

i1∈Zd

· · ·
X

in∈Zd

δ(Xi0
,Xi0

−Xi1
,...Xi0

−Xin
)(y, h1, h2, . . . hn).
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(H3’) differs from (H3) in the sense it allows for averages on balls not only centered at 0 (or at a
point bounded independently of the radius R of the ball) but also at all points |xR| = O(R).
(H3’) allows to have a weak-* limit of all rescaled functions of the algebra, which in addition is
constant:

f
“x

ε

”

∗
⇀

ε→0
〈f〉.

Also, we may assume: (H3”) for any n ∈ N, the following limit exists

lim
ε→0

X

i0∈Zd

X

i1∈Zd

· · ·
X

in∈Zd

δ(Xi0
,Xi0

−Xi1
,...Xi0

−Xin
)(

x

ε
, h1, h2, . . . hn)

= νn(x, h1, . . . hn).

which allows to have a non necessarily constant weak-* limit of all rescaled functions of the
algebra. E.g.,

X

i1∈N

X

i2∈N

ϕ(
x

ε
− Xi1 ,

x

ε
− Xi2 ) ⇀

Z

Rd

Z

Rd

ϕ(y, y + h1) ν1(x, h1) dy dh1.
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Non stochastic problems

With {Xi} now defined, we introduce, for all ϕ ∈ D(R3n), the functions (for ϕ ∈ D(R3n))

f(x) =
X

i1∈N

· · ·
X

in∈N

ϕ(x − Xi1 , . . . x − Xin )

Assumptions (Hi) allow these functions to have averages

〈f〉 =

Z

R3

Z

R3(n−1)
ϕ(x, x − h1, . . . , x − hn−1)dln−1(h1, . . . hn−1)dx.

Definition: Set Ak,p({Xi}) the closure, for ‖ · ‖
W

k,p

unif

, of the vector space generated by

f(x) =
X

i1∈N

X

i2∈N

· · ·
X

in∈N

ϕ(x − Xi1 , x − Xi2 , . . . , x − Xin ), (1)

with ϕ ∈ D(R3n). It is also the closure for the same norm of the algebra generated by the

f(x) =
X

i∈N

ϕ(x − Xi), ϕ ∈ D(R3).
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Non stochastic problems

The question is homogenization for

−div
“

a(
x

ε
)∇uε

”

= f,

where a is a funtion of the algebra, for instance

a(y) = 1 +
X

i∈N

ϕ(x − Xi).

Homogenization does hold (because the case falls under the setting of, say, H-convergence). But
the issue we examine is the existence of an explicit expression for the limit (thus the uniqueness,
and the convergence without considering extractions).
A general theory by N’Guetseng covers (for (H3’)) our setting, but the formulae are not sufficiently
explicit (averages, etc...):

∀v ∈ A, 〈A(∇wp + p)∇v〉 = 0,

a∗
ij = 〈aij + aik∂kwej

〉,
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Examples of sets {Xi}

Examples of sets {Xi}:
Compactly perturbed periodic systems: {Xi}i∈NN is a periodic set, except for a finite number of
points. For instance, Z3 \ {0}.

Ap({Xi}) = Lp
per(Z

3) + Lp
0(R3), (2)

where Lp
0(R3) = {f ∈ Lp

loc(R
3), lim

|x|→∞
‖f‖Lp(B+x) = 0}. The algebra consists of periodic

functions up to local perturbations. Note that 〈| · |〉 is not a norm!

Two semi-crystals:

Ap({Xi}) =
“

Lp
per,1((Z3)−), Lp

per,2((Z3)+)
”

+ Lp
0(R3).

Deformed periodic lattices:

Set Xi(ω) = Φ(i, ω) where Φ is a stationary diffeomorphism, and consider the associated

algebra. Then A = B(Φ−1) where B is stationary and we may apply the results of our theory.
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A motivation

−
d

dx

„

(aper(x/ε)) + b(x/ε))
d

dx
uε

«

= f

where b is a compact perturbation of the periodic function aper . It homogenizes into −a∗(u∗)” = f

with a∗ = a∗
per =

`

〈a−1
per〉

´−1
. Using the corrector w′

per(y) = −1 + a∗
per (aper)−1(y) solution to

−
d

dx

„

aper(y)

„

1 +
d

dy
wper(y)

««

= 0

we note that (for F (x) =
R x
0 f and appropriate integration constants)

ˆ

u′
ε − (1 + w′

per(./ε)) (u∗)′
˜

(x) = (aper + b)−1 (x/ε) (F (x) + cε) − (aper)−1(x/ε) (F (x) + c∗)

=
h

(aper + b)−1 − (aper)−1
i

(x/ε) (F (x) + cε)

+(aper)−1(x/ε) (cε − c∗)

Consider εx instead of x (that is, micro instead of macro scale), the r.h.s. does not vanish
(because of the first term of the r.h.s.).

It however does in the perfect periodic case...
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A motivation

Consider now:

−
d

dy

„

(aper + b)(y)

„

1 +
d

dy
w(y)

««

= 0

that is w′(y) = −1 + a∗
per (aper + b)−1(y), then:

ˆ

u′
ε − (1 + w′(./ε)) (u∗)′

˜

(x) = (aper + b)−1(x/ε) (cε − c∗)

Bingo!

The "quality" of the approximation is identical to that obtained in the perfect periodic case: one can

accurately approximate uε close to the defects.

– p. 79



Example: periodic lattice with a defect

1/ε δε
per δε

3 0.198112 0.0850091

5 0.191952 0.0425306

10 0.183784 0.0266084

20 0.175248 0.0139564

Relative errors using the periodic corrector (left column) and the corrector adapted to the case
with defect (right column).

δε
per =

‚

‚

‚∇uε (ε ·) −∇uε,1
per (ε ·)

‚

‚

‚

L2(Ω)

‖∇uε (ε ·)‖L2(Ω)

, δε =

‚

‚∇uε (ε ·) −∇uε,1 (ε ·)
‚

‚

L2(Ω)

‖∇uε (ε ·)‖L2(Ω)

.

−div ((aper(x/ε) + b(x/ε))∇uε) = f.

−div ((aper(y) + b(y)) (p + ∇wp)) = 0
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Ongoing work

Blanc/LB/Lions, Milan Journal of Maths (in press), and in preparation.
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Ongoing work

Objective: Generalize this to other specific cases, to the general case, in one dimension and in
dimensions higher than one.

Current difficulty (work in progress – Blanc-LB-Lions–): show that the corrector problem is well
posed in the algebra, that is , if a ∈ A then the corrector problem

−div (a(y) (p + ∇wp)) = 0

is uniquely solvable for ∇wp ∈ A and < ∇wp >= 0.
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Relation to AtC problems

Passage from Atomistic to Continuum for non periodic materi als

Joint work with X. Blanc, PL. Lions.
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Discrete to continuum for random materials

Understand the passage from the atomistic scale to the continuum scale when the microstructure
of the material has some random character.
Extend the theory essentially based on the periodic setting to the random (ergodic stationary)
case.
Series of joint works with X. Blanc and P-L. Lions.

From molecular models to continuum mechanics , Archive for Rational Mechanics and Analysis,
2002.

Discrete to continuum limit for some models of stochastic la ttices of atoms , Note aux Comptes
Rendus de l’Académie des Sciences, 2006.

The energy of some microscopic stochastic lattices , Archive for Rational Mechanics and Analysis,
2007.

Stochastic homogenization and random lattices , Journal de Mathématiques Pures et Appliquées,
2007
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Change of scales in crystalline materials

• At the atomic scale, the energy is defined through a (possibly quantum) model Eµ = Eµ({Xi}),
where {Xi}1≤i≤N denote the positions of atoms .
• At the macroscale, the energy is given by a density of mechanical energy

EM (u) =
R

Ω F (u)(x)dx where u denotes the deformation.
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With a view to defining macroscopic energies from microscale

We first perform a limiting process for a periodic arrangement of sites, and then we ask ourselves

What is the most general geometrical property that allows for such a change of scale ?

In fact, also:

what is the most general geometrical property of an infinite set of particles that allows for the
definition of the energy per unit particle?

what is the most general property of functions that allows for homogenization theory to
apply?
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Assumptions :
◮ The atoms are periodically arranged (or ...): {X0

i }1≤i≤N = εZ3 ∩ Ω.
◮ The deformation is mapped from the macro onto the microscale : Xi = u(X0

i ). (variants with
Gamma-limit techniques, other authors)

Eε
µ(u) =

1

N
Eµ

“

u(εZ3 ∩ Ω)
”

ε→0
−→ EM (u) ?

Another viewpoint yielding the same question : practical computation of

1023
X

i=1

1023
X

j=1

V (Xi − Xj)
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Multiscale computational mechanics

Nanoindentation simulation, Courtesy Marc Fivel (INPG) .
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We do this in two steps

◮ First step : go from a molecule (finite number of particles) to a crystal (infinitely many particles)

“Thermodynamic limit problem” : take IN the energy of a molecule of size N , ρN the ground state;

let N go to infinity as the nuclei fill a periodic infinite lattice, does
IN

N
converge ? to Iper a

minimization problem on the unit cell ? does ρN converge ? to the minimizing ρper ?

◮ Second step: let the micro size go to zero, and reach the continuum

“Change of scale” can we deduce the functional F in
Z

Ω
F (∇u(x))dx from the one Eµ at the

atomic scale ?
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Step 1: thermodynamic limit

◮ Two-body potentials :

Eµ({Xi}) =
1

2

X

i6=j

V (Xi − Xj),

„

W0(x) =
1

|x|12
−

1

|x|6

«

,

In the limit where {Xi} −→ Z3,

1

N
Eµ({Xi}) −→

1

2

X

Xi 6=0∈Z3

V (Xi)

◮ Other classical interactions, Quantum models
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Step 2: Change of scale

Now, we change the scale... (Blanc/LB/Lions, ARMA, 2002)

inf

Z

Ω
F (u)(x) dx −

Z

Ω
f u −

Z

∂Ω
g u

ffi

u satisfies b.c.

ff

,
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Periodic setting

Two-body potential:

1

2N3

X

xi∈D∩Z3

X

xj 6=xi∈D∩Z3

V (
u( xi

N
) − u(

xj

N
)

1
N

).

Notice that

u( xi

N
) − u(

xj

N
)

1
N

= N
`

u(
xi

N
) − u(

xj

N
)
´

≈ ∇u(
xj

N
) · (xi − xj) = ∇u(

xj

N
) · (xk)

and denote by

Ψ(x) =
1

2

X

xk 6=0∈Z3

V
`

∇u(x) · xk

´

,
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Periodic setting

Next observe that this is of the form

lim
card {yj}−→+∞

1

card {yj}

X

yj

Ψ(yj),

where the points yj form a grid in a unit volume, and thus is a Riemann sum, that converges as
N −→ +∞ to

1

2

Z

D

X

xk 6=0∈Z3

V
`

∇u(x) · xk

´

dx

At the macroscopic level, our density of mechanical energy therefore reads

W (∇u(x)) =
1

2

X

xk 6=0∈Z3

V
`

∇u(x) · xk

´
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Beyond the periodic setting: stochastic lattices

A notion of stationary ergodic stochastic lattices On the probability space (Ω,F , P), we consider a

random variable ℓ valued in
`

R
d
´Z

d

:

ℓ : Ω −→
`

Rd
´Z

d

ω 7−→ ℓ(ω) =
˘

xi, i ∈ Z
d
¯

.

and a group action (τk)k∈Zd on Ω, that preserves P, and that is assumed ergodic:

“

τkA = A,∀k ∈ Z
d
”

implies P(A) = 0 or 1.

The lattice ℓ is said a stationary ergodic stochastic lattice if

ℓ(τkω) = ℓ(ω) − k, ∀k ∈ Z
d.

(Blanc/LB/Lions, ARMA, 2006)
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Beyond the periodic setting: stochastic lattices

Three simple examples of such lattices are:
a) a periodic lattice

ℓ(ω) = {k, k ∈ Z
d},

b) a perturbation of a periodic lattice

ℓ(ω) = {k + Xk(ω), k ∈ Z
d}

by independent identically distributed random variables Xk(ω)

and c) the same perturbation but by stationary random variables

Xk(ω) = X0(τkω),
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Beyond the periodic setting: stochastic lattices

1

#(ℓ(ω) ∩ D)

X

xi∈ℓ(ω)∩ND

X

xj∈(ℓ(ω)∩ND)\{xi}

V

 

u( xi

N
) − u(

xj

N
)

1/N

!

is approximately

1

#(ℓ(ω) ∩ D)

X

xi∈ℓ(ω)∩ND

X

xj∈(ℓ(ω)∩ND)\{xi}

V

„

∇u(
xi

N
)(xi − xj)

«

and thus converges almost surely (by the ergodic theorem) to

1

2E (#(ℓ(ω) ∩ Q))

1

|D|

Z

D
E

0

@

X

xi∈ℓ(ω)∩Q

X

xj∈ℓ(ω)\{xi}

V (∇u(x)(xi − xj))

1

A dx,

where Q = [0, 1[d.
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Beyond the periodic setting: stochastic lattices

Pedagogic illustration : assume ℓ(ω) is an i.i.d. perturbation of a periodic lattice, that is

xi(ω) = i + Xi(ω),

with Xi(ω) i.i.d.
Then

u(
i+Xi(ω)

N
) − u(

j+Xj(ω)

N
)

1/N
≈ ∇u(

j + Xj(ω)

N
)(i − j + Xi(ω) − Xj(ω))

= ∇u(
j + Xj(ω)

N
)(k + Xj+k(ω) − Xj(ω))

≈ ∇u(
j

N
)(k + Xj+k(ω) − Xj(ω))
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Beyond the periodic setting: stochastic lattices

Thus we have

X

i,j

V

0

@

u(
i+Xi(ω)

N
) − u(

j+Xj(ω)

N
)

1/N

1

A ≈
X

j

X

k

V

„

∇u(
j

N
)(k + Xj+k(ω) − Xj(ω))

«

which, once renormalized, converges (Riemann sum and Strong law of large numbers) to

Z

E

 

X

k

V (∇u(x)(k + Xk(ω) − X0(ω)))

!

dx

Rk: further simplication : NN model in 1-d

1

N

X

j

V

„

∇u(
j

N
)(1 + Xj+1(ω) − Xj(ω))

«

−→

Z

E (V (∇u(x)(1 + X1(ω) − X0(ω)))) dx
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Many extensions

The arguments and results carry over to the case of

other interaction potentials

quantum models

abstract stochastic setting (measure defining the lattice)

lattice with stationary increments

Φ : R
3 −→ R

3, Φ(x + k, ω) = Φ(x, τkω) + Φ(k, ω)

Plus many relations with general deterministic settings (see Blanc/LB/Lions, CPDE 2003)

Formally differentiate w.r.t. x:

∇xΦ(x + k, ω) = ∇xΦ(x, τkω)

and find our assumptions for homogenization!

– p. 99



Electronic structure of crystals (E. Cancès and coll.)

The macroscopic properties of crystals are often directly related to the presence of defects

Mechanical behavior: e.g. dislocation and plasticity

Electronic/optical properties: e.g. impurities and conductivity/color

The electronic structure of crystals is difficult to model for crystals contain an infinite number of
electrons

Recent progress have been accomplished in the modelling on crystals in the framework of the
Density Functional Theory (DFT)

Catto, CLB and Lions (1998-2001): thermodynamic limit for perfect crystals

Cancès, Deleurence and Lewin (2008-): crystals with local defects

E and Lu (2010-): smootly deformed crystals
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Electronic structure of crystals (E. Cancès and coll.)

Within DFT, electronic states are described by density matrices

For finite systems (molecules and clusters), the ground state density matrix γ is a
self-adjoint trace-class operator on L2(R3)

ργ(x) := γ(x, x) electronic density, Tr(γ) =

Z

R3
ργ = number of electrons

For perfect crystals, the ground state density matrix γper is an infinite-rank orthogonal
projector on L2(R3) which commutes with the translations of the lattice; it can be computed
using Bloch-Floquet theory

For crystals with local defects, γ = γper + Q. As a consequence of the long-range of the
Coulomb interaction, the operator Q is not trace-class in general but nevertheless posseses
a density ρQ and a generalized trace Tr0(Q)

"bare" charge of the defect = Tr0(Q) 6=

Z

R3
ρQ = "renormalized" charge

Macroscopic counterpart: dielectric permittivity of the host crystal
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Time dependent problems

Passage from the Newton equation to the wave equation

Joint work with X. Blanc, PL. Lions.
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We prove that, in some simple situations at least, the
one-dimensional wave equation is the limit as the microscopic
scale goes to zero of some time-dependent Newton type
equation of motion for atomistic systems.

We address both some linear and some nonlinear cases.

Follow-up on our work on similar issues in the static setting (see
ARMA 2002 and other publications)

We emphasize we work in 1D, on simple cases!

Berezhnyy/Berlyand, E/Ming, Ortner/Theil (2012).
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Formal limit

d2Xi

dt2
= −

X

j 6=i

∇V (i − j + Xi − Xj)

Assuming that Xi(t) = Nφ

„

i

N
,

t

N

«

and considering a macroscopic time τ = t/N ,

1

N

∂2φ

∂τ2

„

i

N
,

t

N

«

= −
X

j 6=i

∇V

»

i − j + N

„

φ

„

i

N
,

t

N

«

− φ

„

j

N
,

t

N

««–

.

As N → ∞, we remark

N

„

φ

„

i

N
,

t

N

«

− φ

„

j

N
,

t

N

««

≈ ∇φ

„

i

N
,

t

N

«

· (i − j) −
1

N
D2φ

„

i

N
,

t

N

«

(i − j, i − j).

Assuming that i/N → x, a fixed macroscopic point, we obtain

∂2φ

∂τ2
(x, τ) −÷ [DAE(∇φ)] = 0,

where

E(A) =
X

k∈Zd\{0}

V (k + Ak),
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Simplest possible case: NN

d2Xi

dt2
= −V ′(1 + Xi − Xi+1) − V ′(1 + Xi − Xi−1)

with the convention that X0 = 0, XN+1 = 0, Convergence to

∂2φ

∂τ2
(x, τ) −

∂

∂x

»

V ′

„

1 +
∂φ

∂x
(x, τ)

«–

= 0.

The linear wave equation is obtained for the specific interaction potential V (x) = 1
2
(x − 1)2.

Easy for linear, or nonlinear convex. What about nonlinear nonconvex?
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Prototypical result

Proposition
Let (φ0, φ1) ∈

ˆ

H4(0, 1)
˜2 be such that φ0(0) = 0 and φ0(1) = 1. Define, for all N ∈ N, and for

all 1 ≤ i ≤ N ,

X0
i = Nφ0

„

i

N

«

, V 0
i = φ1

„

i

N

«

.

Let Xi(t) be the unique solution to the NN-linear Newton equation, with the convention
X0 = 0, XN+1 = 0, and let φ ∈ L∞

`

R+, H1(0, 1)
´

be the unique solution of linear-NN wave
equation. Then, we have the convergences

∀τ > 0, sup
1≤i≤N

˛

˛

˛

˛

1

N
Xi(Nτ) − φ

„

i

N
, τ

«˛

˛

˛

˛

−→
N→∞

0,

and

∀τ > 0,

"

sup
1≤i≤N

˛

˛

˛

˛

dXi

dt
(Nτ) −

∂φ

dτ

„

i

N
, τ

«˛

˛

˛

˛

#

−→
N→∞

0.

Proving the result amounts to proving convergence of a finite difference scheme.
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Bottom line for Proof

For a function Φ, we denote by

DεΦ(x) = ε−1(Φ(x + ε/2) − Φ(x − ε/2)),

where, of course, ε plays the role of 1/N . This discrete differentiation can be iterated:

D2
εΦ = ε−2(Φ(x + ε) − 2Φ(x) + Φ(x − ε)).

Using this notation, proving (after renormalization in time) the convergence of the solution to the
Newton equation to the solution to the wave equation basically amounts to proving (if we omit the
truncation error terms) that the solution Φε to

∂2Φε

∂t2
− D2

εΦε = 0,

with suitable (vanishing) initial and boundary conditions, vanishes with ε. This is an immediate
consequence of the fact that Φε satisfies the energy equality

d

dt

 

‚

‚

‚

‚

∂

∂t
Φε

‚

‚

‚

‚

2

+ ‖DεΦε‖
2

!

= 0.
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Nonlinear but convex: easy!

Same NN case, but now with a non necessarily quadratic but convex potential:

The main idea of the proof is to introduce the following energy

Ei(τ) = V (1 + Xi+1(Nτ) − Xi(Nτ)) − V

»

1 + Nφ

„

i + 1

N
, τ

«

− Nφ

„

i

N
, τ

«–

− NV ′

»

1 + Nφ

„

i + 1

N
, τ

«

− Nφ

„

i

N
, τ

«–

(δi+1 − δi) , (3)

where the presence of the last term, the first order derivative, basically allows to proceed as if the

potential V were quadratic, and therefore reduces the proof, up to technicalities, to the proof

performed for the linear case in the previous slide.
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First non immediate case: linear NNN nonconvex

d2Xi

dt2
= c1(Xi+1 − 2Xi + Xi−1) + c2(Xi+2 − 2Xi + Xi−2)

with "only" c1 + 4c2 > 0 and not the trivial case (c1 > 0, c2 > 0).

The limit expected (and indeed proven) reads:

∂2φ

∂τ2
(x, τ) − (c1 + 4c2)

∂2φ

∂x2
(x, τ) = 0,

which, precisely since c1 + 4c2 > 0, is well-posed.
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Linear NNN nonconvex (ct’d)

∂2Φε

∂t2
− c1D2

εΦε − 4 c2 D2
2εΦε = 0,

Elementary manipulations yields the energy estimate

d

dt

 

‚

‚

‚

‚

∂

∂t
Φε

‚

‚

‚

‚

2

+ c1 ‖DεΦε‖
2 + 4 c2 ‖D2εΦε‖

2

!

= 0.

When both c1 and c2 are nonnegative, we immediately observe (cf. above) that this imposes that
Φε vanishes in the limit. Use now:

4 D2
εΦ = 4 D2

2εΦ − ε2 D4
εΦ.

and rewrite Eqn as
∂2Φε

∂t2
− (c1 + 4c2)D2

εΦε + c2ε2D4
εΦε = 0.

The corresponding energy estimate reads

d

dt

 

‚

‚

‚

‚

∂

∂t
Φε

‚

‚

‚

‚

2

+ (c1 + 4c2) ‖DεΦε‖
2 − c2ε2

‚

‚D2
εΦε

‚

‚

2

!

= 0.
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Linear NNN nonconvex (ct’d)

We readily observe that if c1 + 4c2 > 0 and c2 ≤ 0 we again “formally” obtain convergence.

This can be easily formalized rigorously. The only interesting case is thus the case c1 + 4c2 > 0

and c2 ≤ 0.

Proof 1: use spectral decomposition of (c1 + 4c2)D2
ε + c2ε2D4

ε . Difficulty: no generality, because
it exploits too much the simple form of the operator (and the fact it has constant coefficients).

Proof 2: Proof by "weak convergence + energy conservation". Interest: transferable!
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Proof by weak convergence

∂2Φε

∂t2
− (c1 + 4c2)D2

εΦε + c2ε2D4
εΦε = 0.

Energy estimate:

d

dt

 

‚

‚

‚

‚

∂

∂t
Φε

‚

‚

‚

‚

2

+ (c1 + 4c2) ‖DεΦε‖
2 − c2ε2

‚

‚D2
εΦε

‚

‚

2

!

= 0.

Differentiate k times the equation and obtain a similar energy estimate

d

dt

 

‚

‚

‚

‚

Dk
ε

∂

∂t
Φε

‚

‚

‚

‚

2

+ (c1 + 4c2)
‚

‚

‚Dk+1
ε Φε

‚

‚

‚

2
− c2ε2

‚

‚

‚Dk+2
ε Φε

‚

‚

‚

2
!

= 0.

for each differentiation order k. In order to “eliminate” the nonpositive contribution of the last term,
we now weight and combine all these estimates so as to obtain

d

dt

+∞
X

k=1

δ2k

 

‚

‚

‚

‚

Dk
ε

∂

∂t
Φε

‚

‚

‚

‚

2

+ (c1 + 4c2)
‚

‚

‚Dk+1
ε Φε

‚

‚

‚

2
− c2ε2

‚

‚

‚Dk+2
ε Φε

‚

‚

‚

2
!

= 0.

for some parameter δ.
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Proof by weak convergence (ct’d)

This parameter δ is next adjusted, in function of ε, so as to cancel the series of the two right-most
terms by making it a telescopic series. We therefore conclude that some norm of the form

+∞
X

k=1

δ2k
‚

‚

‚Dk+1
ε Φε

‚

‚

‚

2

remains bounded over time.

Up to an extraction, we may assume Φε is weakly convergent, and it remains to deduce that the
convergence is strong.

This will be a consequence of the preservation of the energy by the equation, and the fact that
strong convergence holds at initial time.
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Difficult nonlinear cases: linearized regimes

We introduce a parameter γ ∈ (0, 1) and modify the (say NN) Newton equation as follows:

d2Xi

dt2
= Nγ

»

V ′

„

1 +
Xi+1 − Xi

Nγ

«

− V ′

„

1 +
Xi − Xi−1

Nγ

«–

Then we can prove that the corresponding limit is

∂2φ

∂τ2
(x, τ) − V ′′(1)

∂2φ

∂x2
(x, τ) = 0

Likewise in the NNN case...

Remark: We have no clue on the nonlinear nonconvex non-linearized case.
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Nonlinear nonconvex but linearized

Formal idea:
∂2Φε

∂t2
− εγ−1Dε∇V (ε1−γDεΦε) = 0,

When γ ∈ (0, 1), we observe that, still formally, Φε converges to the solution Φ to

∂2Φ

∂t2
−∇V (0).D2Φ = 0.

Proof using our "weak convergence + energy conservation" technique.

It is beyond our reach, without assuming convexity and thus simply using weak convergence
arguments, to determine the limit of a term like Dε∇V (DεΦε) unless ∇V is linear. This explains
why, in the present state of our understanding, we need to resort to the specific normalization
using γ ∈ (0, 1).

Blanc/LB/Lions, From the Newton equation to the wave equation in some simple cases, Networks and

Heterogeneous Media, Vol. 7, N. 1, 2012, pp 1-41.

– p. 115



Future research directions

time-dependent models (TDDFT, random phase approximation)

optimal control of electronic wave packets

defects on surfaces, extended defects (dislocations, junctions)

nuclear relaxation, positive temperature, electron-phonon interactions

interaction between defects, stochastic distributions of defects

excited states
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