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Introduction to Saddle Point Problems

Motivation and goals

Let A be a real, symmetric, n × n matrix and let f ∈ Rn be given.

Let 〈·, ·〉 denote the standard inner product in Rn.

Consider the following two problems:

1 Solve Au = f

2 Minimize the function J(u) = 1
2
〈Au, u〉 − 〈f , u〉

Note that ∇J(u) = Au − f . Hence, if A is positive definite (SPD), the two
problems are equivalent, and there exists a unique solution u∗ = A−1f .

Many algorithms exist for solving SPD linear systems: Cholesky, Preconditioned
Conjugate Gradients, AMG, etc.
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Motivation and goals (cont.)

Now we add a set of linear constraints:

Minimize J(u) = 1
2
〈Au, u〉 − 〈f , u〉

subject to Bu = g

where

A is n × n, symmetric

B is m × n, with m < n

f ∈ Rn, g ∈ Rm are given (either f or g could be 0, but not both)

Standard approach: Introduce Lagrange multipliers, p ∈ Rm

Lagrangian L(u, p) = 1
2
〈Au, u〉 − 〈f , u〉+ 〈p, Bu − g〉

First-order optimality conditions: ∇u L = 0, ∇p L = 0
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Motivation and goals (cont.)

Optimality conditions:

∇u L = Au + BTp − f = 0, ∇p L = Bu − g = 0

or, „
A BT

B O

«„
u
p

«
=

„
f
g

«
(1)

System (1) is a saddle point problem. Its solutions (u∗, p∗) are saddle points
for the Lagrangian L(u, p):

min
u

max
p
L(u, p) = L(u∗, p∗) = max

u
min

p
L(u, p)

Also called a KKT system (Karush–Kuhn–Tucker), or equilibrium equations.

Gil Strang calls (1) “the fundamental problem of scientific computing.”
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Motivation and goals (cont.)

Saddle point problems do occur frequently, e.g.:

Incompressible flow problems (Stokes, linearized Navier–Stokes)

Linear elasticity

Mixed FEM formulations of 2nd- and 4th-order elliptic PDEs

PDE-constrained optimization (e.g., variational data assimilation)

SQP and IP methods for nonlinear constrained optimization

Structural analysis

Resistive networks, power network analysis

Image processing (e.g., image registration)

Comprehensive survey: M. Benzi, G. Golub and J. Liesen, Numerical solution of
saddle point problems, Acta Numerica 14 (2005), pp. 1–137.

The bibliography in this paper contains 535 items.

Google Scholar reports over 700 citations to date.
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Motivation and goals (cont.)

The aim of these lectures:

To review the basic properties of saddle point systems

To give a broad overview of “standard” solution algorithms

To present some recent developments

The emphasis of this lecture (and the next) will be on iterative solvers for large,
sparse saddle point problems, with a focus on our own recent work on
preconditioners for incompressible flow problems.

The ultimate goal: to develop robust preconditioners that perform uniformly
well independently of discretization details and problem parameters.

For flow problems, we would like to have solvers that converge fast regardless
of mesh size, viscosity, etc. Moreover, the cost per iteration should be linear in
the number of unknowns.



Introduction to Saddle Point Problems

Motivation and goals (cont.)

The aim of these lectures:

To review the basic properties of saddle point systems

To give a broad overview of “standard” solution algorithms

To present some recent developments

The emphasis of this lecture (and the next) will be on iterative solvers for large,
sparse saddle point problems, with a focus on our own recent work on
preconditioners for incompressible flow problems.

The ultimate goal: to develop robust preconditioners that perform uniformly
well independently of discretization details and problem parameters.

For flow problems, we would like to have solvers that converge fast regardless
of mesh size, viscosity, etc. Moreover, the cost per iteration should be linear in
the number of unknowns.



Introduction to Saddle Point Problems

Motivation and goals (cont.)

The aim of these lectures:

To review the basic properties of saddle point systems

To give a broad overview of “standard” solution algorithms

To present some recent developments

The emphasis of this lecture (and the next) will be on iterative solvers for large,
sparse saddle point problems, with a focus on our own recent work on
preconditioners for incompressible flow problems.

The ultimate goal: to develop robust preconditioners that perform uniformly
well independently of discretization details and problem parameters.

For flow problems, we would like to have solvers that converge fast regardless
of mesh size, viscosity, etc. Moreover, the cost per iteration should be linear in
the number of unknowns.



Introduction to Saddle Point Problems

Motivation and goals (cont.)

The aim of these lectures:

To review the basic properties of saddle point systems

To give a broad overview of “standard” solution algorithms

To present some recent developments

The emphasis of this lecture (and the next) will be on iterative solvers for large,
sparse saddle point problems, with a focus on our own recent work on
preconditioners for incompressible flow problems.

The ultimate goal: to develop robust preconditioners that perform uniformly
well independently of discretization details and problem parameters.

For flow problems, we would like to have solvers that converge fast regardless
of mesh size, viscosity, etc. Moreover, the cost per iteration should be linear in
the number of unknowns.



Introduction to Saddle Point Problems

Motivation and goals (cont.)

The aim of these lectures:

To review the basic properties of saddle point systems

To give a broad overview of “standard” solution algorithms

To present some recent developments

The emphasis of this lecture (and the next) will be on iterative solvers for large,
sparse saddle point problems, with a focus on our own recent work on
preconditioners for incompressible flow problems.

The ultimate goal: to develop robust preconditioners that perform uniformly
well independently of discretization details and problem parameters.

For flow problems, we would like to have solvers that converge fast regardless
of mesh size, viscosity, etc. Moreover, the cost per iteration should be linear in
the number of unknowns.



Introduction to Saddle Point Problems

Motivation and goals (cont.)

The aim of these lectures:

To review the basic properties of saddle point systems

To give a broad overview of “standard” solution algorithms

To present some recent developments

The emphasis of this lecture (and the next) will be on iterative solvers for large,
sparse saddle point problems, with a focus on our own recent work on
preconditioners for incompressible flow problems.

The ultimate goal: to develop robust preconditioners that perform uniformly
well independently of discretization details and problem parameters.

For flow problems, we would like to have solvers that converge fast regardless
of mesh size, viscosity, etc. Moreover, the cost per iteration should be linear in
the number of unknowns.



Introduction to Saddle Point Problems

Motivation and goals (cont.)

The aim of these lectures:

To review the basic properties of saddle point systems

To give a broad overview of “standard” solution algorithms

To present some recent developments

The emphasis of this lecture (and the next) will be on iterative solvers for large,
sparse saddle point problems, with a focus on our own recent work on
preconditioners for incompressible flow problems.

The ultimate goal: to develop robust preconditioners that perform uniformly
well independently of discretization details and problem parameters.

For flow problems, we would like to have solvers that converge fast regardless
of mesh size, viscosity, etc. Moreover, the cost per iteration should be linear in
the number of unknowns.



Introduction to Saddle Point Problems

Outline

1 Properties of saddle point matrices

2 Examples of saddle point problems

3 Some solution algorithms



Introduction to Saddle Point Problems

Outline

1 Properties of saddle point matrices

2 Examples of saddle point problems

3 Some solution algorithms



Introduction to Saddle Point Problems

Outline

1 Properties of saddle point matrices

2 Examples of saddle point problems

3 Some solution algorithms



Introduction to Saddle Point Problems

Properties of saddle point matrices

Outline

1 Properties of saddle point matrices

2 Examples of saddle point problems

3 Some solution algorithms



Introduction to Saddle Point Problems

Properties of saddle point matrices

Solvability of saddle point problems

The following result establishes necessary and sufficient conditions for the
unique solvability of the saddle point problem (1).

Theorem. Assume that

A is symmetric positive semidefinite n × n

B has full rank: rank (B) = m

Then the coefficient matrix

A =

„
A BT

B O

«
is nonsingular ⇔ Null (A) ∩ Null (B) = {0}.

Furthermore, A is indefinite, with n positive and m negative eigenvalues.

In particular, A is invertible if A is SPD and B has full rank (“standard case”).
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Properties of saddle point matrices

Generalizations, I

In some cases, a stabilization (or regularization) term needs to be added in the
(2,2) position, leading to linear systems of the form

„
A BT

B −βC

«„
u
p

«
=

„
f
g

«
(2)

where β > 0 is a small parameter and the m ×m matrix C is symmetric
positive semidefinite, and often singular, with ‖C‖2 = 1.

This type of system arises, for example, from the stabilization of FEM pairs
that do not satisfy the LBB (‘inf-sup’) condition.

Another important example is the discretization of the Reissner–Mindlin plate
model in linear elasticity. In this case β is related to the thickness of the plate;
the limit case β = 0 can be seen as a reformulation of the biharmonic problem.
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Properties of saddle point matrices

Generalizations, II

In other cases, the matrix A is not symmetric: A 6= AT . In this case, the saddle
point system does not arise from a constrained minimization problem.

The most important examples of this case are linear systems arising from the
Picard and Newton linearizations of the steady incompressible Navier–Stokes
equations. The following result is applicable to the Picard linearization (Oseen
problem):

Theorem. Assume that

H = 1
2
(A + AT ) is symmetric positive semidefinite n × n

B has full rank: rank (B) = m

Then

Null(H) ∩ Null(B) = {0} ⇒ A invertible

A invertible ⇒ Null(A) ∩ Null(B) = {0}.
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Properties of saddle point matrices

Nonsymmetric, positive definite form

Consider the following equivalent formulation:

„
A BT

−B O

«„
u
p

«
=

„
f
−g

«

Theorem. Assume B has full rank. If H = 1
2
(A + AT ) is positive definite, then

the spectrum of

A− :=

„
A BT

−B O

«
lies entirely in the open right-half plane Re(z) > 0. Moreover, if A is SPD and
the following condition holds:

λmin(A) > 4 λmax(S) where S = BA−1BT (“Schur complement”),

then A− is diagonalizable with real positive eigenvalues. In this case, there
exists a non-standard inner product on Rn+m in which A− is self-adjoint and
positive definite, and a corresponding conjugate gradient method
(B./Simoncini, NM 2006).
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Example 1: Mixed formulation of the Poisson equation

Let Ω be a domain in Rd and consider the system

u−∇p = f in Ω,

div u = g in Ω,

u · n = 0 on ∂Ω.

Eliminating the vector field u, the scalar field p must satisfy

−∆p = div f − g in Ω,
∂p

∂n
= −f · n on ∂Ω.

Weak formulation: Find (u, p) ∈ (L2(Ω))d × H1(Ω) ∩ L2
0(Ω) such that

〈u, v〉 − 〈∇p, v〉 = 〈f, v〉, v ∈ (L2(Ω))d ,

−〈u,∇q〉 = 〈g , q〉, q ∈ H1(Ω) ∩ L2
0(Ω),

where 〈·, ·〉 denotes the L2 inner product.
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Example 1: Mixed formulation of the Poisson equation (cont.)

Discretization using LBB-stable finite element pairs leads to an algebraic saddle
point problem:

„
M BT

B O

«„
u
p

«
=

„
f
g

«

Here M is a mass matrix, B the discrete divergence, and BT the discrete
(negative) gradient.

For this problem, several optimal preconditioned iterative solvers have been
developed.

By optimal we mean the following:

The convergence rate is independent of discretization parameters

The cost of each iteration is linear in the number of unknowns
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Example 2: the generalized Stokes problem

Let Ω be a domain in Rd and let α ≥ 0, ν > 0. Consider the system

αu− ν∆u +∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

Weak formulation: Find (u, p) ∈ (H1
0 (Ω))d × L2

0(Ω) such that

α〈u, v〉+ ν〈∇u,∇v〉 − 〈p, div v〉 = 〈f, v〉, v ∈ (H1
0 (Ω))d ,

〈q, div u〉 = 0, q ∈ L2
0(Ω).

The standard Stokes problem is obtained for α = 0 (steady case). In this case
we can assume ν = 1.
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Example 2: the generalized Stokes problem (cont.)

Discretization using LBB-stable finite element pairs or other div-stable scheme
leads to an algebraic saddle point problem:

„
A BT

B O

«„
u
p

«
=

„
f
0

«

Here A is a discrete reaction-diffusion operator, BT the discrete gradient, and
B the discrete (negative) divergence. For α = 0, A is just the discrete vector
Laplacian.

If an unstable FEM pair is used, then a regularization term −βC is added in
the (2, 2) block of A. The specific choice of β and C depends on the particular
discretization used.

Robust, optimal solvers have been developed for this problem:
Cahouet–Chabard for α > 0; Silvester–Wathen for α = 0.
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Sparsity pattern: 2D stokes (Q1-P0)

Without stabilization (C = O)
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Examples of saddle point problems

Example 3: the generalized Oseen problem

Let Ω be a domain in Rd and let α ≥ 0 and ν > 0. Also, let w be a
divergence-free vector field on Ω. Consider the system

αu− ν∆u + (w · ∇) u +∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

Note that for w = 0 we recover the generalized Stokes problem.

Weak formulation: Find (u, p) ∈ (H1
0 (Ω))d × L2

0(Ω) such that

α〈u, v〉+ ν〈∇u,∇v〉+ 〈(w · ∇) u, v〉 − 〈p, div v〉 = 〈f, v〉, v ∈ (H1
0 (Ω))d ,

〈q, div u〉 = 0, q ∈ L2
0(Ω).

The standard Oseen problem is obtained for α = 0 (steady case).
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Example 3: the generalized Oseen problem (cont.)

Discretization using LBB-stable finite element pairs or other div-stable scheme
leads to an algebraic saddle point problem:

„
A BT

B O

«„
u
p

«
=

„
f
0

«

Now A is a discrete reaction-convection-diffusion operator. For α = 0, A is just
a discrete vector convection-diffusion operator. Note that now A 6= AT .

The Oseen problem arises from Picard iteration applied to the steady
incompressible Navier–Stokes equations, and from fully implicit schemes
applied to the unsteady NSE. The ‘wind’ w represents an approximation of the
solution u obtained from the previous Picard step, or from time-lagging.

As we will see, this problem can be very challenging to solve, especially for
small values of the viscosity ν and on stretched meshes.
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Eigenvalues of discrete Oseen problem (ν = 0.01), indefinite form

Eigenvalues of Oseen matrix A =

„
A BT

B O

«
, MAC discretization.
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Examples of saddle point problems

Eigenvalues of discrete Oseen problem (ν = 0.01), positive definite form

Eigenvalues of Oseen matrix A− =

„
A BT

−B O

«
, MAC discretization.
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Some solution algorithms

Overview of available solvers

Two main classes of solvers exist:

1 Direct methods: based on factorization of A

High-quality software exists (Duff et al.; Demmel et al.)
Quite popular in some areas
Stability issues (indefiniteness)
Large amounts of fill-in
Not feasible for 3D problems
Difficult to parallelize

2 Krylov subspace methods (MINRES, GMRES, Bi-CGSTAB,...)
Appropriate for large, sparse problems
Tend to converge slowly
Number of iterations increases as problem size grows
Effective preconditioners a must

Much effort has been put into developing preconditioners, with optimality and
robustness w.r.t. parameters as the ultimate goals. Parallelizability also needs
to be taken into account.
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Some solution algorithms

Preconditioners

Preconditioning: Find an invertible matrix P such that Krylov methods
applied to the preconditioned system

P−1A x = P−1b

will converge rapidly (possibly, independently of the discretization parameter h).

In practice, fast convergence is typically observed when the eigenvalues of the
preconditioned matrix P−1A are clustered away from zero. However, it is not
an easy matter to characterize the rate of convergence, in general.

To be effective, a preconditioner must significantly reduce the total amount of
work:

Setting up P must be inexpensive

Evaluating z = P−1r must be inexpensive

Convergence must be rapid
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Some solution algorithms

Preconditioners

Options include:

1 ILU preconditioners

2 Coupled multigrid methods (geometric and algebraic; Vanka-type)

3 Schur complement-based methods (‘segregated’ approach)
Block diagonal preconditioning
Block triangular preconditioning (Elman, Silvester, Wathen et al.)
SIMPLE and its variants (ur Rehman, Segal, Vuik)

4 Constraint preconditioning (‘null space methods’)

5 Schilders factorization

6 Augmented Lagrangian-based techniques (AL)

The choice of an appropriate preconditioner is highly problem-dependent.
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Preconditioners (cont.)

Example: The Silvester–Wathen preconditioner for the Stokes problem is

P =

 bA O

O bMp

!

where bA−1 is given by a multigrid V-cycle applied to linear systems with
coefficient matrix A and bMp is the diagonal of the pressure mass matrix.

This preconditioner is provably optimal:

MINRES preconditioned with P converges at a rate independent of the
mesh size h

Each preconditioned MINRES iteration costs O(n + m) flops

Efficient parallelization is possible
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Example: Silvester-Wathen preconditioner

Number of MINRES iterations needed for 10−6 reduction in residual for locally
stabilized Q1− P0 mixed finite elements for Stokes flow in a cavity. Block
diagonal preconditioner: bA is one multigrid V-cycle with 1,1 relaxed Jacobi
smoothing and bMp is the diagonal pressure mass matrix. The cpu time (in
seconds) is on a Sun sparcv9 502 MHz processor with 1024 Mb of memory.
The cpu time is also given for a sparse direct solve (UMFPACK in MATLAB).

grid n m iterations cpu time sparse direct cpu
64× 64 8450 4096 38 14.3 6.8

128× 128 33282 16384 37 37.7 48.0
256× 256 132098 65536 36 194.6 897
512× 512 526339 263169 35 6903 out of memory

Note: the lack of scalability for finer meshes is caused by memory management
issues.

But what about more difficult problems?
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Block preconditioners

If A is invertible, A has the block LU factorization

A =

„
A BT

B O

«
=

„
I O

BA−1 I

«„
A BT

O S

«
,

where S = −BA−1BT (Schur complement).
Let

PD =

„
A O
O S

«
, PT =

„
A BT

O S

«
,

then

The spectrum of P−1
D A is σ(P−1

D A) =


1, 1±

√
5

2

ff
The spectrum of P−1

T A is σ(P−1
T A) = {1}

GMRES converges in three iterations with PD , and in two iterations
with PT .
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Block preconditioners (cont.)

In practice, it is necessary to replace A and S with easily invertible
approximations:

PD =

 bA O

O bS
!

, PT =

 bA BT

O bS
!

bA should be spectrally equivalent to A: that is, we want cond(bA−1A) ≤ c
for some constant c independent of h

Often a small, fixed number of multigrid V-cycles will do

Approximating S is more involved, except in special situations; for
example, in the case of Stokes we can use the pressure mass matrix
(bS = Mp) or its diagonal, assuming the LBB condition holds. This is
the Silvester–Wathen preconditioner.

For the Oseen problem this does not work, except for very small Reynolds.
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Block preconditioners (cont.)

Recall that S = −BA−1BT is a discretization of the operator

S = div(−ν∆ + w · ∇)−1∇

A plausible (if non-rigorous) approximation of the inverse of this operator is

bS−1 := ∆−1(−ν∆ + w · ∇)p

where the subscript p indicated that the convection-diffusion operator acts on
the pressure space. Hence, the action of S−1 can be approximated by a
matrix-vector multiply with a discrete pressure convection-diffusion operator,
followed by a Poisson solve.

This is known as the pressure convection-diffusion preconditioner (PCD),
introduced and analyzed by Kay, Loghin, and Wathen (SISC, 2001).

This preconditioner performs well for small or moderate Reynolds numbers.
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Results for Kay, Loghin and Wathen preconditioner

Test problems: steady Oseen, homogeneous Dirichlet BCs, two choices of the
wind function.

A constant wind problem: w =

„
1
0

«
A recirculating flow (vortex) problem: w =

„
4(2y − 1)(1− x)x

−4(2x − 1)(1− y)y

«
Uniform FEM discretizations: isoP2-P0 and isoP2-P1. These discretizations
satisfy the inf-sup condition: no pressure stabilization is needed.
SUPG stabilization is used for the velocities.

The Krylov subspace method used is Bi-CGSTAB. This method requires two
matrix-vector multiplies with A and two applications of the preconditioner at
each iteration.

A preconditioning step requires two convection-diffusion solves (three in 3D)
and one Poisson solve at each iteration, plus some mat-vecs.
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Results for Kay, Loghin, and Wathen preconditioner (cont.)

Results for KLW preconditioner.

mesh size h viscosity ν

1 0.1 0.01 0.001 0.0001
constant wind

1/16 6 / 12 8 / 16 12 / 24 30 / 34 100 / 80
1/32 6 / 10 10 / 16 14 / 24 24 / 28 86 / 92
1/64 6 / 10 8 / 14 16 / 24 22 / 32 64 / 66
1/128 6 / 10 8 / 12 16 / 26 24 / 36 64 / 58
rotating vortex

1/16 6 / 8 10 / 12 30 / 40 > 400 / 188
1/32 6 / 8 10 / 12 30 / 40 > 400 / 378
1/64 4 / 6 8 / 12 26 / 40 > 400 / > 400
1/128 4 / 6 8 / 10 22 / 44 228 / > 400

Number of Bi-CGSTAB iterations
(Note: exact solves used throughout. Stopping criterion: ‖b−Axk‖2 < 10−6‖b‖2).
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Results with Vanka-type MG preconditioner

Results for Vanka-MG-BiCGStab approach, isoP2-P0 FEM.

mesh size h viscosity = ν

1 0.1 0.01 10−3 10−4

constant wind

1/16 4 4 3 4 5
1/32 4 4 3 4 4
1/64 4 4 4 3 5
1/128 4 4 4 3 4
rotating vortex

1/16 4 5 5 8 14
1/32 4 4 6 9 17
1/64 4 4 5 8 40
1/128 4 4 4 9 > 400

Better than KLW preconditioner, but still not robust for low viscosity. Can we
do better than this?
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