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Yanowitz-Bruckstein Binarization

 [solate the locations of edge centers, for example,
the set of points,

s={(xy):|VI|>T}

for some threshold T.

o Use the values I(x,y), for (x,y) In s, as constraints
for a threshold surface, u, which elsewhere
satisfies the equation

AU = 0.
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Algebraic Multigrid for Shape from
Photometric Stereo

What is “shape from photometric stereo”?
Why Is the “standard approach” insufficient?
What can we do about it?

How does (algebraic) multigrid help?

Some results



The Problem

“Shape from photometric stereo” deals with the
problem of shape reconstruction from 2D projections
of the real world onto a camera in the case where the
camera Is fixed and several images are obtained with
different lighting conditions.
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Input images with the same camera position and head
object but three different lighting directions.
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Lambertian reflectance model: Given three images,
1, I, 15, of the same object with three different
lighting directions, |, |, 15, we assume

I =p(I,N), =123,

where p(x,y) Isthe albedo (which depends on the
properties of the object), and N Is the normal to the
surface, z(x,y), given by

N = (_ ZX’_Zy’l).
\/1+ Z,+1,
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The approximate surface gradient,

(p,q)T ~ V2

can be extracted easily from the images.

We wish to reconstruct z(x,y), keeping in mind that
there are errors in the model and In the
measurements.
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Variational formulation: find the surface which
minimizes the functional

2
J[ wex ) |(p @) - V2| dxdy
with w(x,y) > 0. The Euler-Lagrange equation Is

V-(W(X, y)(p—zx,q—zy)T):O, (x,y)eQ,
vVz-n=(p,q) -n, (x,y)eoQ,

where n Is the outwards normal to 0.
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The choice W(X, Y) =1 yields the Poisson
eguation. The resulting reconstruction is often
unsatisfactory due to errors in the model and in the
measurements, shaded regions, etc.

Additional data: constraints at points where the
height z is known accurately by some independent
measurement.

We then minimize the functional subject to the c
constraints,

z2(x..y.)=12, k=1....c
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Now, however, w(x,y)=1 will result in spurious “spikes” at the
constrained points. Indeed, one can show that in order to
maintain p continuous derivatives of the reconstructed shape at

(%, ¥)=(X.Y,) we must have
w(x,y)=r %,
with « > p in a neighborhood of (x,, y, ), where

rk(X’ Y):\/(X_Xk)2+(y_Yk)2-

Accordingly, we set L
w(X,y)= (mkin rk) .

There exists an efficient algorithm to compute w(x,y).
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Computationally, the problem is now more difficult due to the
constraints and the singular w.

Approaches based on simple multigrid or FFT are inefficient.
Hence, we choose a novel robust algebraic multigrid approach:
 Galerkin coarsening

* Specialized Prolongations
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Some Results: Side and perspective views of the
reconstructed surface, with the frontal textured
mapped onto It. Left: unconstrained; Right: eight
constrained points.
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Isometric embedding problem

Motivation from 3D face recognition

Basic MDS algorithm

Multigrid MDS

Results
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R™ - m-dimensional embedding space

A=(o

1]

D=(d

) - NxN matrix of original geodesic distances

ij) - NxN matrix of distances in the embedding space

A. Elad, R. Kimmel, CVPR 2001
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GLOBE (HEMISPHERE) PLANAR MAP

Exact isometric embedding of the sphere into any R™ does not exist

A. Bronstein, M. Bronstein and R. Kimmel, “Three-dimensional face recognition”
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Exact isometric embedding does not exist in most cases

MDS = minimization of embedding error criterion (stress), e.g. LS:

<]

X= (xl;...;xN ) - Nxm matrix of coordinates in R"

Nm optimization variables

Optimum defined up to an isometry group in R"

I. Borg, P. Grénen, Modern multidimensional scaling, Springer, 1997
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Non-convex and nonlinear optimization problem

Hessian is structured but full (dense)

Computational complexity of s(X) and Vs(X) is approximately
the same

Newton algorithm is prohibitive for large N

Line search is disadvantageous
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FACIAL SURFACES

EXPRESSION-INVARIANT REPRESENTATIONS (EMBEDDING INTO R3)

M. Bronstein, A. Bronstein, R. Kimmel, “Expression-invariant representation for human faces”
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min, > (d; (X) -5, )2

i<]j
First-order gradient-descent type optimization method

Gradient of the stress function:
VXS(X) =2UX - 2B(X)X
where

o —5,d, " (X) if i ] and d; #0
-1 if 1] o o j
U; = h. =+ 0 if 1= and d; =0

U::

N-1 ifi=]j “ P
k 2.0 if i=]j
A gradient descent step can be performed with a multiplicative update

X6 =UB(XW)XW] o X = x© —iuTva(x“))
2

SMACOF STEP

I. Borg, P. Grénen, Modern multidimensional scaling, Springer, 1997
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Hierarchy of grids: €2, ©Q, 5...0),

Restriction / interpolation operators:

Points: X, =P"X X =P X

r r+14 “r+1 —

_ ~ o NT
Distances: A, =P™A (Pr”l)

M. Bronstein, A. Bronstein, R. Kimmel, |. Yavneh, “A multigrid approach for multidimensional scaling”
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Convex nonlinear optimization is equivalent to a nonlinear equation
Vs(X)=0 < minys(X)

Multigrid spirit: solve problems of the form

Vs(X)=T < miny s(X)—trace(XTT)

. J
Vo

(X.T)

at different resolution levels.

T - residual transferred from finer resolution levels

M. Bronstein, A. Bronstein, R. Kimmel, |. Yavneh, “A multigrid approach for multidimensional scaling”
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Problem: the function S(X)—trace(XTT) is unbounded

Modified stress: force the center of gravity of X to be zero

S(XA)=2 (dy (X)-5; )2 +’1j§;(i Xijj

i< i=1

The modified stress is bounded

M. Bronstein, A. Bronstein, R. Kimmel, |. Yavneh, “A multigrid approach for multidimensional scaling”
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veycle (X,,T,,A,, K, ,K/)

IFr=R
ELSE

(coarsest level), min, s, (X;,T;) and return

Apply K, SMACOF iterations to s, (X,,T, ), return X!
Compute G, =Vs, (X);

X! =P

G, =Vs.,(X,);

T.,=G , -P™G,

r+l1

Apply MG on a coarser resolution:
X/, « Veycle(X, T, ., A, ., K 1, K]

r+1 r+17 "r+1?=r+17 " “r4+1? r+1)

Correction: X! « X! +P/ (X!, —X/ ;)

r+l1 r+1

Apply K! SMACOF iterations to s, (X[, T, ), return X/

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, “A multigrid approach for multidimensional scaling”
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BEFORE RELAXATION AFTER RELAXATION

Error smoothing using SMACOF relaxation

M. Bronstein, A. Bronstein, R. Kimmel, |. Yavneh, “A multigrid approach for multidimensional scaling”
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Isometric embedding of a facial surface

Problems of different sizes: N = 225, 625, 1425, 3249 points
Different number of resolution levels: R=3, 4

Different MG cycles: V-cycle and F-cycle

Different initialization: original points and random points

M. Bronstein, A. Bronstein, R. Kimmel, |. Yavneh, “A multigrid approach for multidimensional scaling”
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Performance of SMACOF and MG (V-cycle, 3 resolution levels) using random
initialization

M. Bronstein, A. Bronstein, R. Kimmel, |. Yavneh, “A multigrid approach for multidimensional scaling”
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Boosting obtained by multigrid MDS (V-cycle) compared to SMACOF, 3 resolution
levels, initialization by the original points

M. Bronstein, A. Bronstein, R. Kimmel, |. Yavneh, “A multigrid approach for multidimensional scaling”
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Convergence of different MG cycles. Initialization by the original points.

M. Bronstein, A. Bronstein, R. Kimmel, |. Yavneh, “A multigrid approach for multidimensional scaling”
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Multigrid MDS demonstrates significantly better performance
compared to SMACOF (~ order of magnitude)

The improvement is more pronounced for large N

Multigrid MDS appears to be less sensitive to initialization

M. Bronstein, A. Bronstein, R. Kimmel, |. Yavneh, “A multigrid approach for multidimensional scaling”
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1 Complete missing information in images
— Image altered by object removal
— Text or scratch on an image
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1 The objective
— To complete the image so that it will “look natural”.

1 Mathematically hard to define.
— No good objective measures of success/failure yet.

1 Naturalness is multi-scaled, and ultimately
requires high-level knowledge about the world.

Nevertheless, there are several good low-level
approaches and many algorithms which often
work well.
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1 |npainting Methods

— PDE based

— Diffusion by convolution

— Learning image Statistics

1 Texture Synthesis
— Synthesizing one pixel at a time
— Copying full patches onto the missing region

1 Complex methods involvin
— Segmentation
Rotation and scaling of patch
Image decomposition
Order of filling

User guidance
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1 Systematic employment of another
dimension:

1 The main idea: a good completion must be
. That is, regardless of
what our criterion of success Is, the
completed image must satisfy it at all
scales.




Domain (set of pixels):

where | Is known In but
missing in

An iImage completion algorithm

IS a function,

such that
satisfies:




A smoothing algorithm Is a function,
s: [0, > [01]"%, such that | =s(I)

IS a less detailed version of |.

(The size of the Image remains fixed).
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We say that a completion Is scale
consistent if
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Initialize: | = |; Repeat until:
Q =

1 Choose target patch, p,
such that
P, =pPNQ. #O,

pk:p\pmj:@

1 Choose source patch, T(p)cQ,
where T belongs to a set of
simple transformations,
e.g., translations.

1 Set I_(Iom)<—|_(T(I0m))
1 Redefine QO «Q \p_
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How should the target patch, p (i.e., ordering
of filling), and the source patch, , be
chosen?

We adopt (but modify) the approach of
Criminisi et al.:

A. Criminisi, P. Perez, and K. Toyama. Region filling and object removal by exemplar-based
inpainting. IEEE Transactions on Image Processing, 13(9):1200-1212, 2004.
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1 Choosing

— fix size and shape (square),
and center on a boundary
point of

— Maximize the product of

1 Confidence in that
patch

| The inner product
between the normal to the

boundary of and the edge
entering

1 Choosing . minimize
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completion:

T(p,))

(
Scale

completion:
consistency:

.
O
=
—
O
&)
O
i
T

1. Smoothed-image

/
.



1 Generate n detall levels of
1 Complete a single patch In

1 Complete the same patch in | while trying
to satisfy and

\ V4

Nl In-
Viliti-SCaie. reCursive,

11V

simultaneously, equally weighted.
C

Nnarca_tn_fin
UQ OCT~LUTIIIIC.

1 Fine to Coarse:

— The best match in the finest image is
eventually used to fill the location in all the
levels.
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1 The total complexity for n levels is only
(1+0.07(n -1))*(Criminisi)
1 Exhaustive search performed in coarse level

1 Only K (~3%) best matches from coarse level
are used for the finer levels for each target
patch.

1 Filling order is set by the coarsest level

1 Each level costs 7% of the computational
complexity of the coarsest level.




Single-Scale Developments




iIngle-Scale De

1 Region consistent completion

— In choosing the best matching patch, take into account
the region surrounding

— Among the N best matching patches choose one which
has a similar surrounding to the surrounding of

— Give decreasing weight to the pixels far from the center
point (due to lower relevance).
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Xperiments

1 Systematic comparison on a synthetic image of
500x500 pixels containing 2 textures.

1 To add randomness, tested 50 locations of the
missing region
1 Subjective grading
— Q=1 visible defect
— Q=2 good (slight defects)
— Q=3 excellent

1 Compared SCIC to Criminisi.
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Criminisi et al.
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Original Criminisi et al. SCIC
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Scale consistency boosts the performance of an
existing patch-based completion algorithm
substantially

Fine to coarse and coarse to fine information flow
Region Consistency

Computational complexity — a fraction more than
single scale

Future research: Other image applications that
use scale consistency.






