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Naïve (threshold) binarization( )
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Yanowitz-Bruckstein Binarization

• Isolate the locations of edge centers, for example, 
h f ithe set of points,

  , :s x y I T  

for some threshold T. 

  , :s x y I T 

• Use the values I(x,y), for (x,y) in s, as constraints 
for a threshold surface u which elsewherefor a threshold surface, u, which elsewhere 
satisfies the equation 

0u
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EdgesEdges
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ResultsResults
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Al b i M lti id f Sh fAlgebraic Multigrid for Shape from 
Photometric Stereo

1. What is “shape from photometric stereo”?

2 Why is the “standard approach” insufficient?2. Why is the standard approach  insufficient?

3. What can we do about it?

4. How does (algebraic) multigrid help?

5. Some results
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The Problem

“Sh f h i ” d l i h h“Shape from photometric stereo” deals with the 
problem of shape reconstruction from 2D projections

f h l ld i h h hof the real world onto a camera in the case where the 
camera is fixed and several images are obtained with 
diff li h i di idifferent lighting conditions.
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Input images with the same camera position and head p g p
object but three different lighting directions.
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Lambertian reflectance model: Given three images, g ,
I1, I2, I3, of the same object with three different 
lighting directions, l1, l2, l3, we assumeg g , 1, 2, 3,

,3,2,1,,  iNlI ii 

where                is the albedo (which depends on the 

,,,,,ii 

),( yx ( p
properties of the object), and N is the normal to the
surface, z(x,y), given by

),( yx

, ( ,y), g y
 
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The approximate surface gradient,

 , Tp q z 

can be extracted easily from the images. 

We wish to reconstruct z(x,y), keeping in mind that 
there are errors in the model and in the 
measurements.
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Variational formulation: find the surface which
minimizes the functional

  ,,),(
2

dydxzqpyxw T 

with w(x,y) > 0. The Euler-Lagrange equation is

     ,,,0,),(  yxzqzpyxw T
yx

    ,,,,  yxqpz T nn

where n is the outwards normal to .
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The choice                     yields the Poisson 
equation The resulting reconstruction is often

( , ) 1w x y 
equation. The resulting reconstruction is often 
unsatisfactory due to errors in the model and in the 
measurements shaded regions etcmeasurements, shaded regions, etc.

Additional data: constraints at points where the 
height z is known accurately by some independent 
measurement. 

We then minimize the functional subject to the c
constraintsconstraints,

  .,,1,, ckzyxz kkk 
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Now, however, w(x,y)=1 will result in spurious “spikes” at the ( y) p p
constrained points. Indeed, one can show that in order to 
maintain p continuous derivatives of the reconstructed shape at

we must have   kk yxyx ,, 

   ryxw
with             in a neighborhood of              where

  ,,  kryxw
p  ,, kk yx

      ., 22
kkk yyxxyxr 

Accordingly, we set
    2

minw x y r


There exists an efficient algorithm to compute w(x,y).

   , min .kk
w x y r
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Computationally, the problem is now more difficult due to the 
constraints and the singular w.

Approaches based on simple multigrid or FFT are inefficient.pp p g

Hence, we choose a novel robust algebraic multigrid approach:

• Galerkin coarsening

• Specialized Prolongations
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Some Results: Side and perspective views of the 
reconstructed surface, with the frontal textured 
mapped onto it. Left: unconstrained; Right: eight 
constrained points.
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Plan

Isometric embedding problem

Motivation from 3D face recognition

Isometric embedding problem

Basic MDS algorithm

Multigrid MDSg

Results
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Isometric embedding



jx

ijd
i

ixij

j

A mapping between finite metric spaces

     1 1: ,..., , ,..., ,N
m

Nx x      D 

= 1i j Nd x x   

pp g p

such that

- m-dimensional embedding space

=    , 1,..., .ij i jij i j Nd x x    

m

such that

- NN matrix of original geodesic distances ij

- NN matrix of distances in the embedding space ijdD

A. Elad, R. Kimmel, CVPR 2001

g p ij
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Isometric embedding in cartography

GLOBE (HEMISPHERE) PLANAR MAP

Exact isometric embedding of the sphere into any Rm does not exist

A. Bronstein, M. Bronstein and R. Kimmel, “Three-dimensional face recognition”

g p y
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Multidimensional scaling (MDS)

Exact isometric embedding does not exist in most casesExact isometric embedding does not exist in most cases

MDS = minimization of embedding error criterion (stress), e.g. LS:

    2

i
i

ijj
j

ds 


 X X

- Nm matrix of coordinates in 1;...; NX x x m

Nm optimization variables

Optimum defined up to an isometry group in m

I. Borg, P. Grönen, Modern multidimensional scaling, Springer, 1997
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Caveats

Non convex and nonlinear optimization problem

Hessian is structured but full (dense)

Non-convex and nonlinear optimization problem

Computational complexity of             and               is approximately 
the same

 s X  s X

Newton algorithm is prohibitive for large N

Line search is disadvantageous
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Isometric embedding in 3D face recognition

FACIAL SURFACES

EXPRESSION-INVARIANT REPRESENTATIONS (EMBEDDING INTO R3)

M. Bronstein, A. Bronstein, R. Kimmel, “Expression-invariant representation for human faces”
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3DFACE face recognition system
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3DFACE face recognition system
SCANNER OUTPUT

BOTTLENECK
~ 35% TOTAL TIME

      

~ 35% TOTAL TIME
   

EXPRESSION-INVARIANT 
REPRESENTATIONREPRESENTATION
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SMACOF – a basic MDS algorithm

  2
min d  X

First-order gradient-descent type optimization method

  min ij
i j

ijd 

X X

   2 2s  X UX X X X

Gradient of the stress function:

where

1 if  i j
u

 
 

 1 if    and  0
0 if and 0
ij iij jd d

d
i j

b i j
   


  

X

1 if  iju
N i j

   
0 if    and  0

if  
ij

ijj i

ijdb i j
b i j



  
   

A di t d t t b f d ith lti li ti d tA gradient descent step can be performed with a multiplicative update

 †( 1) ( ) ( )k k k X X XU   ( 1) ( ) († )1   
2

k k ks   X XUX X

I. Borg, P. Grönen, Modern multidimensional scaling, Springer, 1997

   
2

SMACOF STEP
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Multigrid MDS components

Hierarchy of grids:     

Restriction / interpolation operators:

Hierarchy of grids: 1 2 ... R    

1
1r

rr r


  PX X  1 1
1

1r r

Tr
r r

r
r  


  XPX XPPoints:

Distances:  1
1

1  r r

Tr r
r r



 P P  

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, “A multigrid approach for multidimensional scaling”
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Towards multigrid MDS

Convex nonlinear optimization is equivalent to a nonlinear equationConvex nonlinear optimization is equivalent to a nonlinear equation

   0      mins s   XX X

Multigrid spirit: solve problems of the form

     

   X

     
,

     min trace Ts s   X

X T

X X TXT


t diff t l ti l lat different resolution levels.

T - residual transferred from finer resolution levels

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, “A multigrid approach for multidimensional scaling”
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Modified stress

Problem: the function is unbounded   trace Ts X X T

Modified stress: force the center of gravity of        to be zero

Problem: the function                                   is unbounded   traces X X T

X

    
2

2
ˆ ;

m N

jjj iiid xs   
    

 
  X X    

1 1
;

i j j i
jjj iii

  
 
 

  

The modified stress is boundedThe modified stress is bounded

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, “A multigrid approach for multidimensional scaling”
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Multigrid MDS (FAS V-cycle)
Vcycle  , , , ,rr rr rK K X T 

ELSE

IF r = R     (coarsest level),                                and return min ,
R R R RsX X T

y  , , , ,rr rr r

Apply Kr SMACOF iterations to , return ,r rrs X T XELSE Apply Kr SMACOF iterations to                   , return ,r rr

Compute  
1

;r r

r

rs


   



G X

X P X

rX

 

1

1 1

1

1

1

;
;

r
r

r r

r

r

r

r

s













 





X P

G P

X
G X

T G

Apply MG on a coarser resolution:
  

1
1 1

r
r r r r


  G PT G

Correction:
 1 11 111 , , , ,r r rrr r K K       TX X Vcycle

A l SMACOF it ti t t X T XK 
 1 1 1

r
rr r r r      X X XPX

Apply SMACOF iterations to                   , return ,r rrs X T rXrK 

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, “A multigrid approach for multidimensional scaling”
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Error smoothing

BEFORE RELAXATION AFTER RELAXATION

Error smoothing using SMACOF relaxation

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, “A multigrid approach for multidimensional scaling”
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Simulations

Isometric embedding of a facial surfaceIsometric embedding of a facial surface

Problems of different sizes: N = 225, 625, 1425, 3249 points , , , p

Different number of resolution levels: R = 3, 4

Different MG cycles: V-cycle and F-cycle

Different initialization: original points and random points

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, “A multigrid approach for multidimensional scaling”
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Results: random initialization

Performance of SMACOF and MG (V-cycle, 3 resolution levels) using random 
initialization 

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, “A multigrid approach for multidimensional scaling”
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Results: Problem size

Boosting obtained by multigrid MDS (V-cycle) compared to SMACOF, 3 resolution 
levels initialization by the original points

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, “A multigrid approach for multidimensional scaling”

levels, initialization by the original points 
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Results: different MG cycles

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, “A multigrid approach for multidimensional scaling”

Convergence of different MG cycles. Initialization by the original points.
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Conclusions

Multigrid MDS demonstrates significantly better performanceMultigrid MDS demonstrates significantly better performance
compared to SMACOF (~ order of magnitude)

The improvement is more pronounced for large N

Multigrid MDS appears to be less sensitive to initializationg pp

M. Bronstein, A. Bronstein, R. Kimmel, I. Yavneh, “A multigrid approach for multidimensional scaling”
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The ProblemThe ProblemThe ProblemThe Problem

Complete missing information in imagesComplete missing information in images
–– Image altered by object removalImage altered by object removalg y jg y j
–– Text or scratch on an imageText or scratch on an image
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V i hiV i hi CCVanishingVanishing CraneCrane
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ObjectivesObjectivesObjectivesObjectives

The objectiveThe objective
–– To complete the image so that it will “look natural”. To complete the image so that it will “look natural”. 

Mathematically hard to defineMathematically hard to define. . 
–– No good objective measures of success/failure yet.No good objective measures of success/failure yet.g j yg j y

Naturalness is multiNaturalness is multi--scaledscaled, and ultimately , and ultimately 
requires highrequires high--level knowledge about the world.level knowledge about the world.requires highrequires high level knowledge about the world.level knowledge about the world.

Nevertheless, there are several good lowNevertheless, there are several good low--level level 
approaches and many algorithms which oftenapproaches and many algorithms which oftenapproaches and many algorithms which often approaches and many algorithms which often 
work wellwork well. . 
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Previous workPrevious workPrevious workPrevious work
I i ti M th dI i ti M th dInpainting MethodsInpainting Methods
–– PDE basedPDE based
–– Diffusion by convolutionDiffusion by convolutionDiffusion by convolutionDiffusion by convolution
–– Learning image StatisticsLearning image Statistics

Texture SynthesisTexture Synthesis
–– Synthesizing one pixel at a timeSynthesizing one pixel at a time
–– Copying full patches onto the missing regionCopying full patches onto the missing region

Complex methodsComplex methods involvinginvolvingComplex methodsComplex methods involvinginvolving
–– SegmentationSegmentation
–– Rotation and scaling of patchRotation and scaling of patch
–– Image decompositionImage decomposition
–– Order of fillingOrder of filling
–– User guidanceUser guidance

99

–– User guidanceUser guidance



Our ContributionOur ContributionOur ContributionOur Contribution
Systematic employment of anotherSystematic employment of anotherSystematic employment of another Systematic employment of another 
dimension: dimension: scalescale..
The main ideaThe main idea: a good completion must be : a good completion must be 
scale consistentscale consistent That is regardless ofThat is regardless ofscale consistentscale consistent. That is, regardless of . That is, regardless of 
what our criterion of success is, the what our criterion of success is, the 
completed image must satisfy it at allcompleted image must satisfy it at allcompleted image must satisfy it at all completed image must satisfy it at all 
scales.  scales.  

1010



Abstract DescriptionAbstract DescriptionAbstract DescriptionAbstract Description
II    dImageImage::    : 0,1 dI I   

k
k

DomainDomain (set of pixels):(set of pixels):
k m  

where where II is known in is known in kk but but 
missing in missing in mm


An An image completion algorithmimage completion algorithm
is a functionis a function    : 0 1 0 1d dC  

m

is a function,is a function,
such that such that 
satisfies:satisfies:

   : 0,1 0,1C 

  I C I 

   I I 

1111

satisfies:satisfies:    k kI I  



Abstract DescriptionAbstract DescriptionAbstract DescriptionAbstract Description

AA thi l iththi l ith i f tii f tiA A smoothing algorithmsmoothing algorithm is a function,is a function,
, such that, such that   : 0,1 0,1d dS    SI S I

is a less detailed version of is a less detailed version of II. . 
(T(The size of the image remains fixedhe size of the image remains fixed))

     S

(T(The size of the image remains fixedhe size of the image remains fixed).  ).  
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Scale ConsistencyScale ConsistencyScale ConsistencyScale Consistency

We say that a completion is We say that a completion is scale scale 
consistentconsistent ifif      C S I S C Iconsistentconsistent ifif      C S I S C I

1414



PatchPatch Based CompletionBased Completion CCPatchPatch--Based Completion, Based Completion, CC
Initialize:        ; Repeat until:          Initialize:        ; Repeat until:          I I



Choose target patch, Choose target patch, pp, , 
h hh h

m  T(p)k

such thatsuch that
,

\
m mp p  



pk
pm

Choose source patch,                                Choose source patch,                                
hh TT b l t t fb l t t f

\k mp p p  

  kT p 
where where TT belongs to a set of belongs to a set of 

simple transformations, simple transformations, 
e g translationse g translations

m

e.g., translations.e.g., translations.
Set                                  Set                                  
RedefineRedefine

    m mI p I T p

\ p 
1515
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PatchPatch Based CompletionBased Completion CCPatchPatch--Based Completion, Based Completion, CC

How should the target patch, How should the target patch, pp (i.e., ordering (i.e., ordering 
of filling), and the source patch, of filling), and the source patch, TT((pp)), be , be g), p ,g), p , ((pp)),,
chosen?chosen?

We adopt (but modify)  the approach of We adopt (but modify)  the approach of 
Criminisi et al.:Criminisi et al.:

A. Criminisi, P. Perez, and K. Toyama. Region filling and object removal by exemplar-based
inpainting IEEE Transactions on Image Processing 13(9):1200 1212 2004

1616

inpainting. IEEE Transactions on Image Processing, 13(9):1200–1212, 2004.



Elements ofElements of CCElements of Elements of CC

Choosing Choosing pp: : 
–– fix size and shape (square), fix size and shape (square), p

k

and center on a boundary and center on a boundary 
point of point of mm

M i i th d t fM i i th d t f

p



I 
n

–– Maximize the product ofMaximize the product of
Confidence in that Confidence in that 

patchpatch
/kp p

m
T(p)

patchpatch
The The inner productinner product

between the between the normalnormal to the to the 
boundary ofboundary of  and theand the edgeedge

I n 


boundary of  boundary of  mm and the and the edgeedge
entering entering mm

Choosing Choosing TT((pp)): : minimize minimize 

1717

gg ((pp))

    k kI p I T p



Three CriteriaThree Criteria      C S I S C I

1.1. SmoothedSmoothed--image image 

p    S S k S kI T p I p

completion:completion:

I 
n

    S S k S kp p

2.2. DetailedDetailed--image image 
m    k kI T p I p

gg
completion: completion: 

m

T(p)

T (p)

    
3.3. Scale Scale 

consistency:consistency: Ts(p)

    S SI T p I p

consistency:consistency:

1818
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Specific AlgorithmSpecific AlgorithmSpecific AlgorithmSpecific Algorithm
Generate Generate nn detail levels of detail levels of II
Complete  a single patch in Complete  a single patch in IISS

C l t th t h iC l t th t h i hil t ihil t iComplete the same patch in Complete the same patch in II while trying while trying 
to satisfy                           and                  to satisfy                           and                      k kI T p I p     S SI T p I p

simultaneously, equally weighted.simultaneously, equally weighted.
MultiMulti scale: recursive coarsescale: recursive coarse toto finefine

      

MultiMulti--scale: recursive, coarsescale: recursive, coarse--toto--fine.fine.
Fine to Coarse: Fine to Coarse: 
–– The best match in the finest image is The best match in the finest image is 

eventually used to fill the location in all the eventually used to fill the location in all the 
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Computational ComplexityComputational ComplexityComputational ComplexityComputational Complexity

The total complexity for The total complexity for nn levels is only levels is only 
((11++00..0707((nn --11))*(Criminisi)))*(Criminisi)
Exhaustive search performed in coarse levelExhaustive search performed in coarse level
OnlyOnly KK (~(~33%) best matches from coarse level%) best matches from coarse levelOnly Only KK (( 33%) best matches from coarse level %) best matches from coarse level 
are used for the finer levels for each target are used for the finer levels for each target 
patch.patch.patch.patch.
Filling order is set by the coarsest levelFilling order is set by the coarsest level
Each level costsEach level costs 77%% of the computationalof the computationalEach level costs Each level costs 77%% of the computational of the computational 
complexity of the coarsest level.complexity of the coarsest level.
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SingleSingle--Scale DevelopmentsScale Developments

k

gg pp

k

p

I 



n

m

T(p)
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SingleSingle Scale DevelopmentsScale DevelopmentsSingleSingle--Scale DevelopmentsScale Developments

Region consistent completionRegion consistent completion
–– In choosing the best matching patch, take into account In choosing the best matching patch, take into account 

the the regionregion surrounding surrounding pp..
–– Among the Among the NN best matching patches choose one which best matching patches choose one which 

hh i il dii il di t tht th didi ffhas a has a similar surroundingsimilar surrounding to the to the surroundingsurrounding of of pp..
–– Give decreasing weight to the pixels far from the center Give decreasing weight to the pixels far from the center 

point (due to lower relevance)point (due to lower relevance)point (due to lower relevance).  point (due to lower relevance).  
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ExperimentsExperimentsExperimentsExperiments

Systematic comparison on a synthetic image of Systematic comparison on a synthetic image of 
500500xx500 500 pixels containing pixels containing 2 2 textures.textures.
To add randomness, tested To add randomness, tested 50 50 locations of the locations of the 
missing regionmissing regiong gg g
Subjective grading Subjective grading 
–– Q=Q=11 visible defectvisible defectQQ 1 1 visible defectvisible defect
–– Q=Q=2  2  good (slight defects) good (slight defects) 
–– Q=Q=33 excellentexcellentQQ 3  3  excellentexcellent

Compared SCIC  to Criminisi.Compared SCIC  to Criminisi.
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Examples: QualityExamples: QualityExamples: QualityExamples: Quality
3
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Examples: QualityExamples: QualityExamples: QualityExamples: Quality
12
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Examples: ComparisonExamples: ComparisonExamples: ComparisonExamples: Comparison
SCICSCICC i i i iC i i i iQQ SCICSCICCriminisiCriminisiQQ

1818%%5656%%11

1818%%3636%%22

6464%%88%%33 6464%%88%%33

22 464611 5252MeanMean 22..464611..5252MeanMean
ScoreScore
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Examples: Input ImageExamples: Input ImageExamples: Input ImageExamples: Input Image
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Criminisi et al. SCIC
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Criminisi et al. SCICOriginal
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Criminisi et al. SCICOriginal
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ConclusionsConclusions
Scale consistencyScale consistency boosts the performance of anboosts the performance of an

ConclusionsConclusions
Scale consistencyScale consistency boosts the performance of an boosts the performance of an 
existing patchexisting patch--based completion algorithm based completion algorithm 
substantiallysubstantiallyyy
Fine to coarse  and coarse to fine information flow Fine to coarse  and coarse to fine information flow 
Region ConsistencyRegion ConsistencyRegion ConsistencyRegion Consistency
Computational complexity Computational complexity –– a fraction more than a fraction more than 
single scalesingle scalesingle scalesingle scale
Future research: Other image applications that Future research: Other image applications that 
use scale consistency.use scale consistency.use scale consistency.  use scale consistency.  
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