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A framework of efficient iterative
methods for solving problems with many
variables and many scales.



Framework: common concept, different methods.
Efficient: usually O(N) or O(N log N) operations

The importance of efficient methods becomes greater as
computers grow stronger!

Iterative: most nontrivial problems in our field cannot be
solved directly efficiently.

Solving: approximately, subject to appropriate convergence
criteria, constraints, etc.

Many variables: the larger the number of variables, the
greater the gain of efficient methods.

Many scales: typical spatial and/or temporal sizes.

A framework of efficient iterative methods for
solving problems with many variables and many
scales.



Basic Concepts: Local vs. Global processing.

Imagine a large number of soldiers who need to be
arranged in a straight line and at equal distances from
each other.

The two soldiers at the ends of the line are fixed.

We number the soldiers 0 to N, and the length of the
entire line is L.



Initial Position



Final Position



Global processing. Let soldier number j stand on the
line connecting soldier 0 to soldier N at a distance jL/N
from soldier number 0.







This method solves the problem directly, but it
requires a high degree of sophistication: recognition
of the extreme soldiers and some pretty fancy
arithmetic.
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Local processing (iterative method). Suppose that the
inner soldiers’ initial position is x'© =(x,,x,,..., Xy ).
Then repeat for i=1,2,...: Let each soldier j, j=1,...N-1 at
iteration /move to the point midway between the
locations of soldier j-1 and soldier j+1 at iteration i-1:

i 1 i i—
X = 2 O+ D)

This is an iterative process. Each iteration brings us
closer to the solution(?). The arithmetic is trivial.
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A step in the right direction
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Local solution: damping



Local solution: damping



Local solution: damping



Local solution: damping



The multiscale idea: Employ the local processing with
simple arithmetic. But do this on all the different
scales.
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Large scale
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Large scale
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Intermediate scale
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Intermediate scale
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HOW MUCH DO WE SAVE?

Analysis of the Jacobi iterative process

Matrix representation:

w () — SX(i—l)
where
0 1
1 0 1
1 O 1
S—=
2
1 O
1
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This matrix S has N - 1 linearly independent eigenvectors,
vk, and corresponding real eigenvalues, 4,

Svf =4 V-,

Since vk span the space RV, any initial configuration of
the soldiers can be written as a linear combination:

N -1
x©) =N ¢ vk
A 2. %N
k=1

with some coefficients, c,.
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Hence, we obtain after m iterations:

X(m) — Sx(m_l) — Szx(m_z) —
=8 =5"3 "¢ vk =D c v
Kk Kk

Conclusion:

limx™ -0 if [4]<1, k=1..N-1

M—>00

The iteration converges if the spectral radius, p, of
the iteration matrix, S, is smaller than 1.
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Observation: the eigenvectors and eigenvalues of the
matrix S are given by

Vk:{v‘}}:sin(j;—”j, j=1,...,N -1,

withk =1, ..., N-1.
Proof: Using the trigonometric identity,

1{sin (=1 k7 +sin (i+1) kﬂ} = Cosk—7Z sin—jkﬂ :
N N N

and the fact that sin 0 =sin 7z = 0, we obtain by
substitution, Sv* = A4, v¥
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Note: since | 4| < 1, the method converges. But, for
some eigenvectors, | 4, | is close to 1, so convergence is
slow. In particular, for kz/IN << 1, we have,

K 1 k7r2
=COS| — |~1-— .
A (Nj Z(N)

For k =1 we obtain

— -1m

S (Y

\2
) .

1(7{
__m_
~e 2 UN

Conclusion: O(N ?) iterations are required to reduce such

an error by an order of magnitude.
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How much work do we save?

Jacobi's method requires about N ? iterations and N 2 *
N = N 2 operations to improve the accuracy by an order
of magnitude.

The multiscale approach solves the problem in about
Log,(N) iterations (whistle blows) and only about N
operations.

Example: for N = 1000 we require about:

10 iterations and 1000 operations

instead of about

1,000,000 iterations and 1,000,000,000 operations
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How important is computational efficiency?

Suppose that we have three different algorithms for a
given problem, with different computational
complexities for input size N :

Algorithm 1: 10 N operations
Algorithm 2: 102 N ? operations

Algorithm 3: N 2 operations

Suppose that the problem size, N, is such that
Algorithm 1 requires one second.

How long do the others require?
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Computer
Speed N Algorithm 1 | Algorithm 2 | Algorithm 3

(ops/sec) O(N) O(N?) O(N3)
1M (~106) 1 1 sec 0.001 sec 0.000001 sec
(1980’s)

1G (~109) 1K 1 sec 1 sec 1 sec
(1990’s)

1T (~10%?) 1M 1 sec 17 min 12 days
(2000’s)

1P (~10%°) 1G 1 sec 12 days 31,710 years
(20107s)

Stronger Computers —

Greater Advantage of Efficient Algorithms!
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The catch: in less trivial problems, we cannot
construct appropriate equations on the large
scales without first propagating information
from the small scales.

Skill in developing efficient multilevel
algorithms is required for:

1. Choosing a good local iteration.

2. Choosing appropriate coarse-scale
variables.

3. Choosing inter-scale transfer operators.

4. Constructing coarse-scale approximations
to the fine-scale problem.



Damping

Recall: the eigenvectors and eigenvalues of the
iteration matrix S are given by

vk:{v’j‘}:sin(jkTﬂj, j=1...,N -1,

A = cos[k—ﬂj :
N

Note that convergence is also slow for K/ N = 1.
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This slow convergence can be overcome by damping:

1

(i) _ (i-1) (i-1) (i-1)
X _(1—a))xj +a)§(xj1 + X1 )

where o is a parameter.
Then, x" =Sa,X(i_1), where
S, =(1-w)l +wS.

Note: vk are eigenvectors of S, . The corresponding
eigenvalues are now A" =1-w+wi, =1-w(l-2,).

For O < o = 1, we have convergence, ﬂéa))‘ <1.
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Definition:

Eigenvectors vkwith 1<k <N/2 are called
smooth (low-frequency).

Those with N/2<k <N are called rough or
oscillatory (high-frequency).

nnnnnnnnnnn
CIyCl|VCb 1 VI D

1, <0.
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Exercise: Find 0 <@ <1 which yields optimal

convergence for the set of rough modes for
arbitrary N:

= min!,

e

Q . SUp MaXx
N %§k<N

l.e.,

w: sup [1-w+w»i|=min!
ﬂe(—l,O]

What is ‘rherg the bound on the convergence
factor, ﬁff" ‘ , maximized over the rough modes?

(Clues in my introductory paper.)




1D Model Problem

Find u which satisfies:

(In the particular case where f =0, the solution is a
straight line that connects u, with u,.)
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Discrete approximation: Since closed-form solutions
exist only for a small number of differential equations,
we solve such equations approximately by a discrete

approximation.

Define a grid: divide the domain (0,1) info N intervals.
Assume for simplicity a uniform grid of mesh-size
h=1/N.
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Finite-difference discretization: examples:

Forward differences:
- u(x+h)—u(x)

» +0(h).

Backward differences:

u

r_ U(X)_ Lr:(x — h) n O(h).

Central differences:
, _u(x+h)—u(x—h)

Sh +O(h2).

u

Second derivative:
0"(x) = u(x— h)—ZL:](Zx)+ u(x -+ h)+O(h2). )
Derivation: by the Taylor theorem
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We can thus approximate the differential
equation by a set of algebraic difference
equations:
h h h
h ,h __ ui+1_2ui TUi 3 gn
L'u” = h2 o fi
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In matrix form:

2 1 "
. 1 -2 1 u;
F e o o e o o =
1 -2 1 ug
u 1 _2_ | El—l_
£ —ul/h?
f)
fu_z
fy,—u'/h®

This is a tridiagonal system of equations which
can be solved directly or iteratively.



2D Model Problem

Find u which satisfies:

Lu=u,+u, =f(xy), (x,y)eQ, @®
u=g(x,y), (xy)eoQ.

This is the 2D Poisson equation, with Dirichlet boundary
conditions. It is an elliptic partial differential equation
which appears in many models.
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Discrete approximation

Define agrid: Q" () (assumed to be uniform for
simplicity, with mesh interval h).

Let u", g" and f " denote discrete approximations to u, g
and f defined at the nodes of the grid.

Plug (2) for u,,, and the analogous approximation for u,,
into (4), obtaining:
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L'uf', = (5)
h

h
1+1, ] [

h h h h
ui—l,j _Zui,j +U ui,j—l_zui,j +u|,j+1 _ f_h_ in Qh
hz hz i ]

u"=g" on 9"Q"

Thiﬁ yields a nonsingular linear system of equations for

UI’J

We consider solving this system by the classical
approach of Gauss-Seidel relaxation.

54



Gauss-Seidel (GS) Relaxation:

1. Choose initial guess, (J".

2. Repeat until some convergence criterion is satisfied

{

Scan all variables in some prescribed order, and
change each variable uihj in turn so as to satisfy

the (i,j)th equation.

1
J
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Observation: GS is a local process, because only near
neighbors appear in each equation. Hence, it may be
efficient for eliminating errors which can be detected
locally. But large-scale ("smooth") errors are
eliminated very slowly.

(The difference between GS and Jacobi is that old
neighboring values are used in Jacobi, while the most
updated values are used in GS.)

56






58

‘\v

«M

/:,

| \ A AR G
\‘\“2‘\‘\‘\ '\ P
l‘“’/“\‘ \ 




59

o bk
\

ﬂ\ N
/l;\"(o,

" ‘\

20

40



0.7 —|

0.6 |

0.5 ] T > LR o

0.4 | 4,/4{,',0,& N _#“;%:‘\
S S S N

| SR R AT\

02 Il ‘ TSN ";“\
e o ”I"flf'?fli"\fi“?%‘\\\\

30



61

ety

KR




e Illlllll"" 7
"l' /I)’

\\\‘\‘
\

(R
'&

\ \\ \\\\\\\\\\




- W =
- s _
IR




64

s

9.




oa | -

, s i S

30



66

TR

s




s i A
sty



68




69

30

il
il

<>
L

40



70

N
SRR

'55"'/ AN
SRR
U

40

AN



03\ S
SULNRANA,

; // 10024 L N
Y NG
'n‘g“‘\\\\\\\\\\\\\\\\\% R




12




73




74




75




76

TR

2%t heeaa
5

TR
CUORRTTTE

40



/ 7

I”Ilfff"’f“’"‘&«

Y
e TR




Key Observation re-worded: Relaxation cannot be
generally efficient for reducing the error (i.e., the
difference vector " — u"). But relaxation may be
extremely efficient for smoothing the error relative

to the grid.

Practical conclusion:

1. A smooth error can be approximated well on a
coarser grid.

2. A coarser grid implies less variables, hence less
computation.

3. On the coarser grid the error is no longer as
smooth relative to the grid, so relaxation may once

s again be efficient.



CoriAdA_npfinnomont AlAaam: Y YN
oria-rej lllClI\C”l Uqul iTAM

Define a sequence of progressively finer grids all
covering the full domain. Then,

1. Define and solve the problem on the coarsest grid,
say by relaxation.

2. Interpolate the solution to the next-finer grid.
Apply several iterations of relaxation.

3. Interpolate the solution to the next-finer grid and
continue in the same manner...

Does this method converge fast?
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1D Model Problem Revisited

Fine-grid (h) difference equation:

h h h
u.., —2uU; + U
Lhuh — 1+1 h2| i—1 __ fih,
1=1,...N —1,
h
U, = U,,
h
Uy =Uu,.

The eigenvectors of L" (like those of the Jacobi
relaxation operation) are Sine-function "waves":

vk =(sinkz/N,...sin jkz/n,...sin(N =D)kz/N)'

80
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Smooth waves—with k << A—have wavelengths large
compared to 4. Hence they can be approximated well
on the coarse grids. But non-smooth eigenvectors alias
with smooth components on the coarse grids.

Since the right-hand side, f", will generally have some

non-smooth components, these will be “interpreted” as
smooth components by the coarse grids, resulting in a

smooth error.

Hence, when we interpolate a coarse-grid solution to
the fine grid, we still have smooth errors in this
solution. These cannot be corrected efficiently by
relaxation.
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Errors:

There is an important distinction here between the
discretization error:

and the algebraic error:

Where U" is our current approximation to U’
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Note: Neither the solution, u", nor the discretization
error are smoothed by relaxation, only the algebraic
error. Hence, we formulate our problem in terms of
this error.

Denote v =u—=g"
Recall L"'u" = f".

Subtract L"U" from both sides, and use the linearity
of L" to obtain:

L'Vt = f" —L"a" =r" (8)
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As we have seen, we need to smooth the error v" on the
fine grid first, and only then solve the coarse-grid
problem. Hence, we need two types of infegrid
transfer operations:

1. A Restriction (fine-to-coarse) operator: 1.

2. A Prolongation (coarse-to-fine) operator: N

85



Two-grid Algorithm

Relax several times on grid h, obtaining U " with a

smooth corresponding error.
. h h h~h
Calculate the residual: " =T " —L'u".

Solve approximate error-equation on the coarse
grid:

L"v? =" =1"r",
Interpolate and add correction:

U" «<—a"+1 v,
Relax again on grid h.

Multi-grid is obtained by recursion.
86



Multi-grid Cycle V(v,,v,)

Let u* approximate V°' u*"approximate the error on
9r‘ld 2h, etc. Relax on L"u" = f" v, times
Set " = Iﬁh(f - Lhuh), u*" =0
Relax on L*"u®" = f?" v, times
Set f*" = I;ﬂ‘(f S L2hu2h), u*" =0
Relax on L*""u*" = f*" v, times
Set f&h — |§E(f 4h L4hu4h), ut" =0

Solve MM —yMh — §Mh

h 4h, ,8h

Correct u*" «<—u*" +1."u

Relax on L*"u*" = f*" v, times
Correct u®" «—u®" +12"u”"
Relax on L*"u®" = f?" v, times
Correct u" «<—u" + 1), u®"

87 Relax on L"u" = f" v, times
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Residual convergence histories, 128 by 128 grid
10 T T T |

T T
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Multigrid vs. Relaxation



Variational Coarsening

All of this is well and good when we have a
straightforward structured problem derived
from a partial differential equation.

How should we choose 1", I, L" in more
general situations?
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Variational Coarsening

Assume that L" is symmetric positive definite
(SPD).

Let us then recast our problem as a convex
functional minimization task:

u" =argmin,, (%(vh)T L"v" —(v“)T fhj



Variational Coarsening

Recall the coarse-grid correction step:
0" < a" + 1} e"

Given (", our current approxima’rion we wish
to add a correction | " e that will reduce the
fine-grid functional as much as possible.

Note that the set of possible corrections is
the space spanned by the columns of ||}, called
The range of |,



Variational Coarsening

Plugging into the functional yields:

" =argmin,

+1"c H/ Lh(U'h+I,ZcH)—(U‘h+I,ZcH)T fhj

@ l\JlH m

h
IH

) Ldhet +(15) (La"—f")=0. [Ler=1;r]

SN



Choosing the Operators

Conclusions:

1. We should define L, =(17) LI}
(Galerkin coarsening) for the C.G. problem

L"e" = (1), )T r".
Note that L™ is SPD.

2. We should choose ||} such that the
unknown error, e", is approximately in its
range.

.J his depends on the relaxation, hence on L".



Choosing the Operators

Related well-known observations:

1. Ifehisinthe range of ), prior to the
coarse-grid correction, then it is
eliminated exactly.

2. Amongst all possible coarse- grld
corrections with the given |}, the Galerkin
correction minimizes the resulting fine-
grid error in the energy norm:

:<(e“)T , L“eh> = <(eh)T ,r“>.
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Nonlinear Multigrid Algorithm (FAS)

Recall that, in the usual multigrid approach, we use the
coarse grid to approximate the correction to the fine-
grid error. That is, we approximate the fine-grid
equation

L'V =r",
by the the coarse-grid equation
LMV =1"r"
We can rewrite the fine-grid equation as
L'u" L =r".

96



We approximate this equation on the coarse grid by

L"u™ —L"a" =r"

with y .
at =1"a".

The difference is that now the variable, ("'
approximates the full solution rather than just
the correction. Hence, this approach can be applied to
nonlinear problems. After we solve the coarse-grid
problem, we interpolate and add the correction:

0" "+ 1 (u" -a"),

97



Two-grid FAS Algorithm

- Relax several times on grid h, obtaining (" with a

smooth corresponding error.

. Calculate the residual: r" = f" — L"g".

+ Solve approximate equation for the full solution on

the coarse gr'|d. LHuH _ fH _ If:—lrh -I-Lle:Jll]h.

* Interpolate and add correction:

0"« a"+ 15 (u" —1ra").

* Relax again on grid h.

Multi-grid is obtained by recursion.
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Conclusions

With proper care and insight, multilevel methods are a
highly efficient tool for the iterative solution of
problems such as those arising from the discretization
of elliptic PDE, as well as many other types of problems.

Skill in developing efficient multilevel algorithms is
required for:

1. Choosing a good local iteration.
2. Choosing appropriate coarse-scale variables.
3. Choosing inter-scale transfer operators.

4. Constructing coarse-scale approximations to the fine-

scale problem.
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