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What’s it about?What s it about?

A framework of efficient iterativeA framework of efficient iterative
methods for solving problems with many 
variables and many scalesvariables and many scales.
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• Framework: common concept  different methods• Framework: common concept, different methods.
• Efficient: usually O(N) or O(N log N) operations

The importance of efficient methods becomes greater as 
  ! 

p g
computers grow stronger! 

• Iterative: most nontrivial problems in our field cannot be 
solved directly efficiently.
S l i  i t l  bj t t  i t   • Solving: approximately, subject to appropriate convergence 
criteria, constraints, etc.

• Many variables: the larger the number of variables, the 
greater the gain of efficient methods  greater the gain of efficient methods. 

• Many scales: typical spatial and/or temporal sizes.

A framework of efficient iterative methods for 
solving problems with many variables and many 
scales.
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Basic Concepts: Local vs. Global processing.

Imagine a large number of soldiers who need to be 
arranged in a straight line and at equal distances from arranged in a straight line and at equal distances from 
each other. 

Th  t  ldi  t th  d  f th  li   fi d  The two soldiers at the ends of the line are fixed. 

We number the soldiers 0 to N , and the length of the 
entire line is L.
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Initial Position
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Final Position
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Global processing Let soldier number j stand on the Global processing. Let soldier number j stand on the 
line connecting soldier 0 to soldier N at a distance jL/N
from soldier number 0.
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This method solves the problem directly, but it This method solves the problem directly, but it 
requires a high degree of sophistication: recognition 
of the extreme soldiers and some pretty fancy 
arithmetic.
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L l i  (i i  h d)  h  h  Local processing (iterative method). Suppose that the 
inner soldiers’ initial position is . 
Then repeat for i=1 2 : Let each soldier j j=1 N 1 at 

(0) (0)
1 2 1( , , , )Nx x x x 

Then repeat for i=1,2,…: Let each soldier j, j=1,…N-1 at 
iteration i move to the point midway between the 
locations of soldier j-1 and soldier j+1 at iteration i-1:j j

      111   iii      1
1

1
12   i

j
i
j

i
j xxx

This is an iterative process. Each iteration brings us 
closer to the solution(?). The arithmetic is trivial.
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A step in the right direction
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l  Slow convergence
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F  Fast convergence
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Slow convergence
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Local solution: damping
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Local solution: damping
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Local solution: damping
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Local solution: damping
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The multiscale idea: Employ the local processing with 
simple arithmetic. But do this on all the different p
scales.
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Large scale

25



Large scale
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Intermediate scale
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Intermediate scale
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Small scale
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HOW MUCH DO WE SAVE?

Analysis of the Jacobi iterative process

Matrix representation:Matrix representation:

   1 ii Sxx  Sxx
where
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This matrix S has N - 1 linearly independent eigenvectors, 
vk,  and corresponding real eigenvalues, k, p g g , k

.k k
kS v v

Since vk span the space        , any initial configuration of 
the soldiers can be written as a linear combination:

1N

  



1

0
N

k
kc vx 

1k
kc vx

with some coefficients, ck.w th som  co ff c nts, k
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Hence, we obtain after m iterations:

          

   

 

km
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k
k
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mmm

cc vvSxS
xSSxx

0

221


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Conclusion:

  0 1, 1, , 1lim m
k

m

if k N


   x 

The iteration converges if the spectral radius, , of 
the iteration matrix S  is smaller than 1

m

the iteration matrix, S, is smaller than 1.
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Observation: the eigenvectors and eigenvalues of the 
matrix S are given by

  sin , 1, , 1,k k
j

jk j N
N
     

 
 

v v 

ith k 1 N 1

cos ,k
k
N
    

 
with k = 1, …, N –1.

Proof: Using the trigonometric identity,

   1 11 sin sin cos sin ,
2

j k j k k jk
N N N N

     
  

 

and the fact that , we obtain by 
substitution,                   .

 

0sin0sin  
k

k
k vvS 
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Note: since | k | < 1, the method converges. But, for 
some eigenvectors, | k | is close to 1, so convergence is 
slow In particular  for k/N << 1  we haveslow. In particular, for k/N  <<  1, we have,

211k k     
   

F   b

cos 1 .
2k N N

         
   

For k =1 we obtain
22 11

m
m   
    2

1
11 .
2

m
m Ne

N


  
 

      
   

Conclusion: O(N 2) iterations are required to reduce such 
  b   d  f i d

36
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How much work do we save?

Jacobi’s method requires about N 2 iterations and N 2 *Jacobi s method requires about N iterations and N 
N = N 3 operations to improve the accuracy by an order 
of magnitude.g

The multiscale approach solves the problem in about  
Log2(N) iterations (whistle blows) and only about Ng2( ) (w w ) y
operations.

Example: for N = 1000 we require about:Example: for N  1000 we require about:

10 iterations and 1000 operations

instead of about 

1,000,000 iterations and 1,000,000,000 operations
38
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How important is computational efficiency?

Suppose that we have three different algorithms for a Suppose that we have three different algorithms for a 
given problem, with different computational 
complexities for input size N :p p

Algorithm 1: 106 N operations

Al ith  2  103 N 2 tiAlgorithm 2: 103 N 2 operations

Algorithm 3: N 3 operations

Suppose that the problem size, N, is such that 
Algorithm 1 requires one second. g q

How long do the others require? 
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Computer 
Algorithm 3

O(N3)
Algorithm 2

O(N2)
Algorithm 1 

O(N)
N

p
Speed

(ops/sec)

0.000001 sec0.001 sec1 sec11M (~106)
(1980’s)

1 sec1 sec1 sec1K1G (~109)
(1990’s)

12 days17 min1 sec1M1T ( 1012) 12 days17 min1 sec1M1T (~1012)
(2000’s)

31,710 years12 days1 sec1G1P (~1015) , yy( )
(2010’s)

Stronger Computers     

Greater Advantage of Efficient Algorithms!

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The catch: in less trivial problems  we cannot The catch: in less trivial problems, we cannot 
construct appropriate equations on the large 
scales without first propagating information 
from the small scales. 

Skill in developing efficient multilevel p g
algorithms is required for:

1  Choosing a good local iteration1. Choosing a good local iteration.

2. Choosing appropriate coarse-scale 
variablesvariables.

3. Choosing inter-scale transfer operators.

4. Constructing coarse-scale approximations
to the fine-scale problem.
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Damping

Recall: the eigenvectors and eigenvalues of the Recall: the eigenvectors and eigenvalues of the 
iteration matrix S are given by

 k  ,1,,1,sin











k

Nj
N
jkvk

j
k  v

with k = 1 N –1

,cos 







N
k

k


with k  1, …, N 1.

Note that convergence is also slow for .1/ Nk
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This slow convergence can be overcome by damping:

        1        ,
2
1)1( 1

1
1
1

1 





  i
j

i
j

i
j

i
j xxxx 

where  is a parameter. 

Then                        where   1i ix S xThen,                       where,x S x

  .1 SIS  

Note: vk are eigenvectors of S. The corresponding
eigenvalues are now    .111 kkk   

For                            we have convergence0 1,    1.k
 
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D fi i iDefinition:

Eigenvectors vk with                     are called2/1 Nk 
smooth (low-frequency). 

Those with                           are called rough or NkN 2/ g
oscillatory (high-frequency).

Recall that                            so for rough 
eigenvectors

cos ,k
k
N
    

 eigenvectors,

0.k 

 

0.k 
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E i Fi d                  hi h i ld  i l 10Exercise: Find                  which yields optimal 
convergence for the set of rough modes for 
arbitrary N:

10 

arbitrary N:

 : sup max min!,kN

  

i e

2

kNN k N 

i.e., 

 1,0
: sup 1 min!,


  

 
  

What is then the bound on the convergence 
 

 

g
factor,            , maximized over the rough modes? 
(Clues in my introductory paper.)

 k
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1D Model Problem

Find u which satisfies:Find u which satisfies:

     0 1Lu u x f x x   (1)     
  0

, 0, 1 ,

0 ,

Lu u x f x x

u u

  



(1)

  11 .u u

(In the particular case where f  = 0, the solution is a( p f
straight line that connects u0 with u1.)
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Discrete approximation: Since closed-form solutions 
exist only for a small number of differential equations  exist only for a small number of differential equations, 
we solve such equations approximately by a discrete 
approximation.approximation.

Define a grid: divide the domain (0,1) into N intervals.g ( )
Assume for simplicity a uniform grid of mesh-size
h=1/N.
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Finite-difference discretization; examples:p

Forward differences:
     hOxuhxu 

Backward differences:

     .hO
h

u 

   h

Central differences:

     .hO
h

hxuxuu 




Central differences:
     .

2
2hO

h
hxuhxuu 




Second derivative:
2h

         .2 2
2 hOhxuxuhxuxu 


 (2)

Derivation: by the Taylor theorem

   2h
( )
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We can thus approximate the differential 
equation by a set of algebraic difference 

h h h

equation by a set of algebraic difference 
equations:

1 1
2

2 ,
h h h

h h hi i i
i

u u uL u f
h

  
 

1, , 1,i N 

0 0 ,hu u0 0

1

,

.h
Nu u
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12 1 hu   
 

In matrix form:

1

2

2

1 2 1
1

h

u
u

h

  
     
   
  

   

2

1

1 2 1
1 2

h
N
h
N

h
u
u





     
     

2
1 0

2

/h h

h

f u h
f

 
 
 2

2
2

.
h

N
h h

f

f 

 
 
 
 
 



2
1 1 /h h

Nf u h
  

This is a tridiagonal system of equations which 

50
can be solved directly or iteratively.



2D Model ProblemMo  ro m

Find u which satisfies:

   
   

,,,,



 yxyxfuuLu yyxx (4)

This is th 2D P iss  ti ith Di i hl t b d  

    .,,,  yxyxgu

This is the 2D Poisson equation, with Dirichlet boundary 
conditions. It is an elliptic partial differential equation 
which appears in many modelswhich appears in many models.
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Discrete approximationD scr t  appro mat on

Define a grid: (assumed to be uniform for 
simplicity  with mesh interval h)

h

simplicity, with mesh interval h).

Let uh, gh and f h denote discrete approximations to u, g
and f defined at the nodes of the grid.

Plug (2) for u and the analogous approximation for uPlug (2) for uxx, and the analogous approximation for uyy
into (4), obtaining:
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,

2 2

h h
i j

h h h h h h

L u 

 

(5)

1, , 1, , 1 , , 1
,2 2

2 2
in

h h h h h h
i j i j i j i j i j i j h h

i j

u u u u u u
f

h h
      

  

onh h h hu g  

This yields a nonsingular linear system of equations for
h

jiu

W  sid  s l i  this s st m b  th  l ssi l 

ji,

We consider solving this system by the classical 
approach of Gauss-Seidel relaxation.
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Gauss-Seidel (GS) Relaxation:

1. Choose initial guess, ~hug ,

2. Repeat until some convergence criterion is satisfied 
{

.u

{

Scan all variables in some prescribed  order, and 
change each variable in turn so as to satisfy hu~change each variable in turn so as to satisfy 
the (i,j)th equation.

}

jiu ,

}
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Observation: GS is a local process, because only near O s r at on GS s a oca  proc ss, caus  on y n ar 
neighbors appear in each equation. Hence, it may be 
efficient for eliminating errors which can be detected 
l ll  B  l l (“ h”)   locally. But large-scale (“smooth”) errors are 
eliminated very slowly.

(The difference between GS and Jacobi is that old ( ff
neighboring values are used in Jacobi, while the most 
updated values are used in GS.)
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K  Obs ti  d d: R l x ti  t b  Key Observation re-worded: Relaxation cannot be 
generally efficient for reducing the error (i.e., the 
difference vector )  But relaxation may be hh uu ~difference vector ). But relaxation may be 
extremely efficient for smoothing the error relative 
to the grid.

uu

Practical conclusion:

1. A smooth error can be approximated well on a
coarser grid.

2. A coarser grid implies less variables, hence less 
computation.p

3. On the coarser grid the error is no longer as 
smooth relative to the grid, so relaxation may once 

78
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again be efficient.



Grid refinement algorithmGrid-refinement algorithm

Define a sequence of progressively finer grids all 
i  th  f ll d m i  Thcovering the full domain. Then,

1. Define and solve the problem on the coarsest grid, p g
say by relaxation.

2. Interpolate the solution to the next-finer grid. p g
Apply several iterations of relaxation.

3 Interpolate the solution to the next-finer grid and 3. Interpolate the solution to the next finer grid and 
continue in the same manner…

Does this method converge fast?
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1D Model Problem Revisited1D Model Problem Revisited

Fine-grid (h) difference equation:
2h h h1 1

2

2 ,

1 1

h h h
h h hi i i

i
u u uL u f

h
i N

  
 


(6)

1, 1,

h

i N 

0 0

1

,

.

h

h
N

u u

u u





The eigenvectors of Lh (like those of the Jacobi 
relaxation operation) are Sine-function “waves”:p

(sin / , sin / , sin( 1) / )k Tk N jk n N k N   v   (7)
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Aliasing
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Smooth waves—with k << N—have wavelengths large 
compared to h. Hence they can be approximated well 

 h   id B h i lion the coarse grids. But non-smooth eigenvectors alias
with smooth components on the coarse grids.

Since the right-hand side, f h, will generally have some
non-smooth components, these will be “interpreted” as 
smooth components by the coarse grids resulting in a smooth components by the coarse grids, resulting in a 
smooth error.

H  h   i l   id l i   Hence, when we interpolate a coarse-grid solution to 
the fine grid, we still have smooth errors in this 
solution These cannot be corrected efficiently by solution. These cannot be corrected efficiently by 
relaxation.
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Errors:Errors:

There is an important distinction here between the
discretization error:discretization error:

,huu 
and the algebraic error:

~hh

h

,hh uu 

hWhere       is our current approximation to     .hu~ hu
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Note: Neither the solution, uh, nor the discretization 
error are smoothed by relaxation, only the algebraic 
error. Hence, we formulate our problem in terms of 
this error.

Denote .~hhh uuv 

Recall .hhh fuL 

Subtract from both sides, and use the linearity hhuL ~ y
of Lh to obtain:

hhhhhh ruLfvL  ~ (8)
84
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As we have seen, we need to smooth the error vh on the 
fine grid first, and only then solve the coarse-grid f g f , y g
problem. Hence, we need two types of integrid 
transfer operations:

1. A Restriction (fine-to-coarse) operator: .H
hI

2. A Prolongation (coarse-to-fine) operator: .h
HI
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Two-grid Algorithm

• Relax several times on grid h, obtaining with a hu~g , g
smooth corresponding error.

• Calculate the residual: .~hhhh uLfr Calculate the residual:

• Solve approximate error-equation on the coarse 
grid:

f

grid:
.hH

h
HHH rIfvL 

• Interpolate and add correction:
.~~ Hh

H
hh vIuu 

• Relax again on grid h.

.H vIuu 

86
Multi-grid is obtained by recursion.



Multi-grid Cycle  21 VMulti grid Cycle

Let      approximate     ,         approximate the error on 
grid 2h  etc hhh

 21,V
hu 2 hv2 hu 4

grid 2h, etc.
 

timesonRelax

Set

timesonRelax

1
222

222
1

0,

vfuL

uuLfIf

vfuL

hhh

hhhhh
h

h

hhh







 

 S

timesonRelax

Set

844488
1

444

42224
2

4
1

0

0,

LfIf

vfuL

uuLfIf

f

hhhhhh

hhh

hhhhh
h

h





 

Solve

Set 84448
4

8 0,

fuL

uuLfIf

MhMhMh

hhhhh
h

h






timesonRelax

Correct
444

84
8

44

vfuL

uIuu
hhh

hh
h

hh







timesonRelax

Correct

timesonRelax

2
222

42
4

22
2

vfuL

uIuu

vfuL

hhh

hh
h

hh







87 timesonRelax

Correct

2

2
2

vfuL

uIuu
hhh

hh
h

hh







          V  cycle          V  cycle

Finest grid

RELAXATION

Coarsest grid RESTRICTION

RELAXATION

PROLONGATION
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Multigrid vs. Relaxation
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Variational Coarsening

All of this is well and good when we have a f g
straightforward structured problem derived 
from a partial differential equation.  p q

How should we choose                  in more 
general situations?

, ,H h H
h HI I L

g
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Variational Coarsening
 h  h     Assume that Lh is symmetric positive definite 

(SPD). 

Let us then recast our problem as a convex 
functional minimization task:functional minimization task:

   1i
T Th h h h h hL f 

    arg min
2h

h h h h h h
v

u v L v v f   
 

0h h hL f

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Variational Coarsening
R ll th  s id ti  st :Recall the coarse-grid correction step:

h h h H .h h h H
Hu u I e  

Given     , our current approximation, we wish 
to add a correction that will reduce the 

hu
h H
HI e

fine-grid functional as much as possible.

Note that the set of possible corrections is 

HI e

Note that the set of possible corrections is 
the space spanned by the columns of , called 
the range of  

h
HI

hI
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V i ti l C iVariational Coarsening

Plugging into the functional yields:

arg min
H

H
ce 

     1
2

H

T Th h H h h h H h h H h
H H Hu I c L u I c u I c f     

 
       

2 
 


      0.
T Th h H h h h h

H h H HI L I e I L u f   H H H h
hL e I r  
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Choosing the Operators
C l si s: Conclusions: 

1. We should define                            Th h
H H h HL I L If

(Galerkin coarsening)  for the C.G. problem 
 H H h H

 TH H h hL I
Note that LH is SPD.                

  .H H h h
HL e I r

2. We should choose such that the 
unknown error  h  is approximately in its 

h
HI

unknown error, eh, is approximately in its 
range.

94This depends on the relaxation, hence on Lh.  



Choosing the Operators
R l t d ll k  bs ti s:Related well-known observations:

1. If eh is in the range of prior to the h
HIf g f p

coarse-grid correction, then it is 
eliminated exactly.

H

y

2. Amongst all possible coarse-grid 
c rr cti ns ith th  iv n  th  G l rkinhIcorrections with the given , the Galerkin
correction minimizes the resulting fine-
grid error in the energy norm:                 

HI

grid error in the energy norm:                 

   2 T Th h h h h hL
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N li  M l i id Al i h  (FAS)Nonlinear Multigrid Algorithm (FAS)

Recall that, in the usual multigrid approach, we use the 
coarse grid to approximate the correction to the fine-
grid error. That is, we approximate the fine-grid 
equationequation

,h h hL v r
by the the coarse-grid equation

H H H hL v I r
We can rewrite the fine-grid equation as

.hL v I r

.h h h h hL u L u r 
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W  i  hi  i   h   id bWe approximate this equation on the coarse grid by

H H H H HL u L u r 
with

,L u L u r 
H H h

hu I u 
The difference is that now the variable, 

i t  th f ll l ti th  th  j t 

.hu I u
,Hu

approximates the full solution rather than just 
the correction. Hence, this approach can be applied to
nonlinear problems  After we solve the coarse-grid nonlinear problems. After we solve the coarse-grid 
problem, we interpolate and add the correction:

 .h h h H H
Hu u I u u    

97



Two-grid FAS Algorithm

• Relax several times on grid h, obtaining       with a hug , g
smooth corresponding error.

• Calculate the residual:

u

h h h hr f L u  Calculate the residual:

• Solve approximate equation for the full solution on 
the coarse grid:

.r f L u

ˆH H H H h H H hthe coarse grid:

• Interpolate and add correction:
.H H H H h H H h

h hL u f I r L I u   

 
• Relax again on grid h.

 ˆ .h h h H H h
H hu u I u I u    

Relax again on grid h.

Multi-grid is obtained by recursion.
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C l si sConclusions

With proper care and insight, multilevel methods are a 
hi hl  ffi i  l f  h  i i  l i  f highly efficient tool for the iterative solution of 
problems such as those arising from the discretization 
of elliptic PDE  as well as many other types of problemsof elliptic PDE, as well as many other types of problems.

Skill in developing efficient multilevel algorithms is 
required for:required for:

1. Choosing a good local iteration.

2. Choosing appropriate coarse-scale variables.

3  Choosing inter-scale transfer operators3. Choosing inter-scale transfer operators.

4. Constructing coarse-scale approximations to the fine-
scale problem

99

scale problem.


