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Acquisition as linear algebra

= 
resolution/ 
bandwidth 

# samples 

data 

unknown 
signal/image 

acquisition 
system 

Small number of samples = underdetermined system
Impossible to solve in general

If x is sparse and Φ is diverse, then these systems can be “inverted”



Agenda

We will prove (almost from top to bottom) two things:

That an M ×N iid Gaussian random matrix satisfies

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 ∀ 2S-sparse x (1)

with (extraordinarily) high probability when

M ≥ Const · S log(N/S)

Suppose an M ×N matrix Φ obeys (1). Let x0 be an S-sparse
vector, and suppose we observe y = Φx0. Given y, the solution to

min
x
‖x‖`1 subject to Φx = y

is exactly x0.
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Gaussian random matrices

Each entry of Φ is iid Normal(0,M−1)

Φ
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For any fixed x ∈ RN , each measurement is

ym ∼ Normal(0, ‖x‖22/M)



Gaussian random matrices

Each entry of Φ is iid Normal(0,M−1)

Φ
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For any fixed x ∈ RN , we have

E[‖Φx‖22] = ‖x‖22

the mean of the measurement energy is exactly ‖x‖22



Gaussian random matrices

Each entry of Φ is iid Normal(0,M−1)

Φ
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For any fixed x ∈ RN , we have

P
{∣∣‖Φx‖22 − ‖x‖22∣∣ < δ‖x‖22

}
≥ 1− 2e−Mδ2/8



Gaussian random matrices

Each entry of Φ is iid Normal(0,M−1)

Φ

!!"#$%&''!%(#)%("*+#,(-)!,'#
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M

N

For all 2S-sparse x ∈ RN , we have

P
{

max
x

∣∣‖Φx‖22 − ‖x‖22∣∣ < δ‖x‖22
}
≥ 1− 2ec·S log(N/S)e−Mδ2/8

So we can make this probability close to 1 by taking

M ≥ Const · S log(N/S)



Random projection of a fixed vector

For Gaussian random Φ operating on a fixed x ∈ RN

‖Φx‖22 ≈ ‖x‖22

Theorem: Let Φ be an M ×N matrix whose entries are iid Gaussian

Φi,j ∼ Normal(0, 1/M).

Set v = Φx. Then
E ‖v‖22 = ‖x‖22,

as

E

[
M∑
m=1

v2
m

]
=

M∑
m=1

E[v2
m] =

M∑
m=1

1

M
‖x‖22 = ‖x‖22,

since vm = 〈x, φm〉 ∼ Normal(0,M−1‖x‖22)



Random projection of a fixed vector

For Gaussian random Φ operating on a fixed x ∈ RN

‖Φx‖22 ≈ ‖x‖22

Theorem: Let Φ be an M ×N matrix whose entries are iid Gaussian

Φi,j ∼ Normal(0, 1/M).

Set v = Φx. Then
E ‖v‖22 = ‖x‖22,

and for any 0 < δ ≤ 1

P
{∣∣‖v‖22 − ‖x‖22∥∥ > δ

}
≤ 2 exp

(
−(δ2 − δ3)M

4

)
≤ 2 exp

(
−δ2M/8

)
for δ ≤ 1/2.



The Markov inequality

Let Y be a positive random variable. Then for all t > 0

P {Y ≥ t} ≤ E[Y ]

t



The Markov inequality

Let Y be a positive random variable. Then for all t > 0

P {Y ≥ t} ≤ E[Y ]

t

Proof:

E[Y ] =

∫ ∞
0

y fY (y) dy

≥
∫ ∞
t

y fY (y) dy

≥ t
∫ ∞
t

fY (y) dy

= tP {Y ≥ t} .



The Markov inequality

Let Y be a positive random variable. Then for all t > 0

P {Y ≥ t} ≤ E[Y ]

t

Also:

P
{
Y 2 ≥ t2

}
≤ E[Y 2]

t2

P
{
Y 3 ≥ t3

}
≤ E[Y 3]

t3

P
{
eλY ≥ eλt

}
≤ E[eλY ]

eλt
λ > 0

...

P {φ(Y ) ≥ φ(t)} ≤ E[φ(y)]

φ(t)

for any strictly monotonic φ(·).



The Markov inequality

Let Y be a positive random variable. Then for all t > 0

P {Y ≥ t} ≤ E[Y ]

t

Chernoff-type bound:

P {Y ≥ t} ≤ E[eλY ]

eλt
for any λ > 0.



A first upper concentration bound ...

For v = Φx, ‖x‖2 = 1, we have that

P
{
‖v‖22 > 1 + δ

}
≤ E[eλ‖v‖

2
2 ]

eλ(1+δ)
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A first upper concentration bound ...

For v = Φx, ‖x‖2 = 1, we have that

P
{
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}
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2
2 ]
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m ]
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M ]
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=
E[eλv

2
1 ] E[eλv

2
2 ] · · ·E[eλv

2
M ]

eλ(1+δ)

=
(E[eλv

2
1 ])M

eλ(1+δ)
(since vm i.i.d.)



A first upper concentration bound ...

For v = Φx, ‖x‖2 = 1, we have that

P
{
‖v‖22 > 1 + δ

}
≤ (E[eλv

2
1 ])M

eλ(1+δ)
, v1 ∼ Normal(0,M−1)



A first upper concentration bound ...

For v = Φx, ‖x‖2 = 1, we have that

P
{
‖v‖22 > 1 + δ

}
≤ (E[eλv

2
1 ])M

eλ(1+δ)
, v1 ∼ Normal(0,M−1)

It is known that

E[eλv
2
1 ] =

1√
1− 2λ/M

for λ < M/2.



A first upper concentration bound ...

For v = Φx, ‖x‖2 = 1, we have that

P
{
‖v‖22 > 1 + δ

}
≤ (E[eλv

2
1 ])M

eλ(1+δ)
, v1 ∼ Normal(0,M−1)

And so

P
{
‖v‖22 > 1 + δ

}
≤

(
e−2λ(1+δ)/M

1− 2λ/M

)M/2

∀ λ < M/2



A first upper concentration bound ...

We have

P
{
‖v‖22 > 1 + δ

}
≤

(
e−2λ(1+δ)/M

1− 2λ/M

)M/2

∀ λ < M/2

Choose

λ =
Mδ

2(1 + δ)

(easy to see that in this case λ < M/2).



A first upper concentration bound ...

We have

P
{
‖v‖22 > 1 + δ

}
≤

(
e−2λ(1+δ)/M

1− 2λ/M

)M/2

∀ λ < M/2

Choose

λ =
Mδ

2(1 + δ)

(easy to see that in this case λ < M/2).

And so

P
{
‖v‖22 > 1 + δ

}
≤
(

(1 + δ)e−δ
)M/2

.



The upper concentration bound

We have

P
{
‖v‖22 > 1 + δ

}
≤
(

(1 + δ)e−δ
)M/2

.
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The upper concentration bound

We have

P
{
‖v‖22 > 1 + δ

}
≤
(

(1 + δ)e−δ
)M/2

.

and so
P
{
‖v‖22 > 1 + δ

}
≤ e−(δ2−δ3)M/4



The lower concentration bound

The lower bound follows the exact same sequence of steps (work them out
at home!):

P
{
‖v‖22 < 1− δ

}
≤

(
e2(1−δ)λ/M

1 + 2λ/M

)M/2

≤
(

(1− δ)eδ
)M/2

by taking λ =
Mδ

2(1− δ)
≤ e−(δ2−δ3)M/4



The Johnson-Lindenstrauss Lemma

We have shown that for any fixed x ∈ RN

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22

with probability exceeding 1− 2e−cδ
2M .

(Can take c = 1/8.)

A simple application of the union bound means that for any set of K
vectors x1, x2, . . . , xK , the above holds with probability exceeding
1−Ke−δ2M/8...



The Johnson-Lindenstrauss Lemma

Theorem: (J&L, 1984): Let Q be a arbitrary set of Q vectors in RN , and
let Φ be an M ×N random linear mapping. Then

(1− δ)‖x1 − x2‖22 ≤ ‖Φ(x1 − x2)‖22 ≤ (1 + δ)‖x1 − x2‖22

for all x1, x2 ∈ Q with

P {Failure} ≤ 2Q2e−δ
2M/8 ≤ ε

when

M ≥ 8

δ2

[
2 log(Q) + log

(
1

ε

)
+ 0.7

]



The Johnson-Lindenstrauss Lemma
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Q points

Φ embeds to precision δ with probability ε when

M ≥ 8

δ2

[
2 log(Q) + log

(
1

ε

)
+ 0.7

]



Concentration bound

We have: For any fixed x ∈ RN

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22

with probability exceeding 1− 2e−cδ
2M .

(Can take c = 1/8.)

We want: this for all 2S-sparse x simultaneously...



A single 2S-dimensional subspace

Theorem: Let V be a 2S-dimensional subspace of RN . Then

P

{
sup
x∈V

∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

}
≤ 2 · 92S · e−c′δ2M

where the constant c′ = c/4 with c from the previous theorem.

As before, it is enough to prove this for

x ∈ BV = {x ∈ V : ‖x‖2 = 1}



Covering the sphere

An ε-net for BV :

balls of radius ✏

unit sphere BV

unit sphere BV

unit sphere BV

for every x ∈ BV , there is a y ∈ Net such that ‖x− y‖2 ≤ ε

N(BV , ε) is the size of the smallest ε-net



Covering the sphere

balls of radius ✏

unit sphere BV

unit sphere BV

unit sphere BV

It is a fact that

N(BV , ε) ≤
(

1 +
2

ε

)2S



From discrete to continuous

Lemma: Fix 0 ≤ ε < 1/2, and let Nε be the minimal ε-net for BV . Then

sup
x∈BV

∣∣‖Φx‖22 − ‖x‖22∣∣ ≤ 1

1− 2ε
max
y∈Nε

∣∣‖Φx‖22 − ‖x‖22∣∣



A single 2S-dimensional subspace

Theorem: Let V be a 2S-dimensional subspace of RN . Then

P

{
sup
x∈V

∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

}
≤ 2 · 92S · e−c′δ2M

where the constant c′ = c/4 with c from the previous theorem.



A single 2S-dimensional subspace

Theorem: Let V be a 2S-dimensional subspace of RN . Then

P

{
sup
x∈V

∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

}
≤ 2 · 92S · e−c′δ2M

where the constant c′ = c/4 with c from the previous theorem.

So Φ is “well-conditioned” on V when

M ≥ Const · S



A single 2S-dimensional subspace

Theorem: Let V be a 2S-dimensional subspace of RN . Then

P

{
sup
x∈V

∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

}
≤ 2 · 92S · e−c′δ2M

where the constant c′ = c/4 with c from the previous theorem.

We want this for all subspaces in which 2S-sparse signals live...



A single 2S-dimensional subspace

Theorem: Let V be a 2S-dimensional subspace of RN . Then

P

{
sup
x∈V

∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

}
≤ 2 · 92S · e−c′δ2M

where the constant c′ = c/4 with c from the previous theorem.

We want this for all subspaces in which 2S-sparse signals live...

There are
(
N
2S

)
≤
(
Ne
2S

)2S
such subspaces...



All 2S-dimensional subspaces

For Γ ⊂ {1, . . . , N}, let

BΓ =
{
x ∈ RN : xγ = 0, γ 6∈ Γ, ‖x‖2 = 1

}
.

Theorem:

P

{
max
|Γ|≤2S

sup
x∈BΓ

∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

}
≤ 2

(
Ne

2S

)2S

92S e−c
′δ2M

SUCCESS!!!



All 2S-dimensional subspaces

Theorem:

P

{
sup

all 2S sparse x

∣∣‖Φx‖22 − ‖x‖22∣∣ > δ

}
≤ 2

(
Ne

2S

)2S

92S e−c
′δ2M

= elog 2+2S log(Ne/2S)+2S log 9−c′δ2M

Which is to say

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 ∀ 2S − sparse x

with high probability when

M ≥ Const

δ2
· S log(N/S)

SUCCESS!!!



Next up ...

Theorem: Let Φ be an M ×N matrix that is an approximate isometry for
3S-sparse vectors. Let x0 be an S-sparse vector, and suppose we observe
y = Φx0. Given y, the solution to

min
x
‖x‖1 subject to Φx = y

is exactly x0.



Moving to the solution

min
x
‖x‖1 such that Φx = y

Call the solution to this x]. Set

h = x] − x0.



Moving to the solution

min
x
‖x‖1 such that Φx = y

Call the solution to this x]. Set

h = x] − x0.

Two things must be true:

Φh = 0
Simply because both x] and x0 are feasible: Φx] = y = Φx0

‖x0 + h‖1 ≤ ‖x0‖1
Simply because x0 + h = x], and ‖x]‖1 ≤ ‖x0‖1



Moving to the solution

min
x
‖x‖1 such that Φx = y

Call the solution to this x]. Set

h = x] − x0.

Two things must be true:

Φh = 0
Simply because both x] and x0 are feasible: Φx] = y = Φx0

‖x0 + h‖1 ≤ ‖x0‖1
Simply because x0 + h = x], and ‖x]‖1 ≤ ‖x0‖1

We’ll show that if Φ is 3S-RIP, then these conditions are incompatible
unless h = 0



Geometry

SUCCESS FAILURE

! 

H = x :"x = y{ }

! 

x
0

! 

h
! 

x
0

! 

h

Two things must be true:

Φh = 0

‖x0 + h‖1 ≤ ‖x0‖1



Cone condition

For Γ ⊂ {1, . . . , N}, define hΓ ∈ RN as

hΓ(γ) =

{
h(γ) γ ∈ Γ

0 γ 6∈ Γ

Let Γ0 be the support of x0. For any “descent vector” h, we have

‖hΓc0
‖1 ≤ ‖hΓ0‖1



Cone condition

For Γ ⊂ {1, . . . , N}, define hΓ ∈ RN as

hΓ(γ) =

{
h(γ) γ ∈ Γ

0 γ 6∈ Γ

Let Γ0 be the support of x0. For any “descent vector” h, we have

‖hΓc0
‖1 ≤ ‖hΓ0‖1

Why? The triangle inequality..

‖x0‖1 ≥ ‖x0 + h‖1 = ‖x0 + hΓ0 + hΓc0
‖1

≥ ‖x0 + hΓc0
‖1 − ‖hΓ0‖1

= ‖x0‖1 + ‖hΓc0
‖1 − ‖hΓ0‖1



Cone condition

For Γ ⊂ {1, . . . , N}, define hΓ ∈ RN as

hΓ(γ) =

{
h(γ) γ ∈ Γ

0 γ 6∈ Γ

Let Γ0 be the support of x0. For any “descent vector” h, we have

‖hΓc0
‖1 ≤ ‖hΓ0‖1

We will show that if Φ is 3S-RIP, then

Φh = 0 ⇒ ‖hΓ0‖1 ≤ ρ‖hΓc0
‖1

for some ρ < 1, and so h = 0.



Some basic facts about `p norms

‖hΓ‖∞ ≤ ‖hΓ‖2 ≤ ‖hΓ‖1

‖hΓ‖1 ≤
√
|Γ| · ‖hΓ‖2

‖hΓ‖2 ≤
√
|Γ| · ‖hΓ‖∞



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...
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Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Then

0 = ‖Φh‖2 = ‖Φ(
∑
j≥1

hΓj )‖2 ≥ ‖Φ(hΓ0 + hΓ1)‖2 − ‖
∑
j≥2

ΦhΓj‖2
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Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Then

0 = ‖Φh‖2 = ‖Φ(
∑
j≥1

hΓj )‖2 ≥ ‖Φ(hΓ0 + hΓ1)‖2 − ‖
∑
j≥2

ΦhΓj‖2

≥ ‖Φ(hΓ0 + hΓ1)‖2 −
∑
j≥2

‖ΦhΓj‖2



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Then
‖Φ(hΓ0 + hΓ1)‖2 ≤

∑
j≥2

‖ΦhΓj‖2



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Applying the 3S-RIP gives√
1− δ3S‖hΓ0 + hΓ1‖2 ≤ ‖Φ(hΓ0 + hΓ1)‖2

≤
∑
j≥2

‖ΦhΓj‖2 ≤
∑
j≥2

√
1 + δ2S‖hΓj‖2



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Applying the 3S-RIP gives

‖hΓ0 + hΓ1‖2 ≤
√

1 + δ2S

1− δ3S

∑
j≥2

‖hΓj‖2



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Then

‖hΓ0 + hΓ1‖2 ≤
√

1 + δ2S

1− δ3S

∑
j≥2

√
2S‖hΓj‖∞

since ‖hΓj‖2 ≤
√

2S‖hΓj‖∞



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Then

‖hΓ0 + hΓ1‖2 ≤
√

1 + δ2S

1− δ3S

∑
j≥1

1√
2S
‖hΓj‖1

since ‖hΓj‖∞ ≤ 1
2S ‖hΓj−1‖1



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Which means

‖hΓ0 + hΓ1‖2 ≤
√

1 + δ2S

1− δ3S

‖hΓc0
‖1√

2S



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Working to the left

‖hΓ0‖2 ≤ ‖hΓ0 + hΓ1‖2 ≤
√

1 + δ2S

1− δ3S

‖hΓc0
‖1√

2S



Dividing up hΓc
0

Recall that Γ0 is the support of x0

Fix h ∈ Null(Φ). Let

Γ1 = locations of 2S largest terms in hΓc0
,

Γ2 = locations next 2S largest terms in hΓc0
,

...

Working to the left

‖hΓ0‖1√
S

≤ ‖hΓ0‖2 ≤ ‖hΓ0 + hΓ1‖2 ≤
√

1 + δ2S

1− δ3S

‖hΓc0
‖1√

2S



Wrapping it up

We have shown

‖hΓ0‖1 ≤
√

1 + δ2S

1− δ3S

√
S

2S
‖hΓc0
‖1

= ρ‖hΓc0
‖1

for

ρ =

√
1 + δ2S

2(1− δ3S)



Wrapping it up

We have shown

‖hΓ0‖1 ≤
√

1 + δ2S

1− δ3S

√
S

2S
‖hΓc0
‖1

= ρ‖hΓc0
‖1

for

ρ =

√
1 + δ2S

2(1− δ3S)

Taking δ2S ≤ δ3S < 1/3 ⇒ ρ < 1.



SUCCESS!!

Theorem: Let Φ be an M ×N matrix that is an approximate isometry for
3S-sparse vectors. Let x0 be an S-sparse vector, and suppose we observe
y = Φx0. Given y, the solution to

min
x
‖x‖1 subject to Φx = y

is exactly x0.


