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Acquisition as linear algebra

# samples y| = P resolution/
M bandwidth
e
\_Y_’ L v J N
data acquisition
system

)

unknown
signal/image

@ Small number of samples = underdetermined system
Impossible to solve in general

o If x is sparse and @ is diverse, then these systems can be “inverted”



Agenda

We will prove (almost from top to bottom) two things:
@ That an M x N iid Gaussian random matrix satisfies
(1—=8)lzlf < llezll3 < (1+8)]z]3 V¥ 2S-sparse x
with (extraordinarily) high probability when

M > Const - Slog(N/S)



Agenda

We will prove (almost from top to bottom) two things:
@ That an M x N iid Gaussian random matrix satisfies
(1—=8)lzlf < llezll3 < (1+8)]z]3 V¥ 2S-sparse x
with (extraordinarily) high probability when

M > Const - Slog(N/S)

@ Suppose an M x N matrix ® obeys (1). Let 2o be an S-sparse
vector, and suppose we observe y = ®x(. Given y, the solution to

min ||z|l¢, subjectto Pz =y
xT

is exactly xg.



Gaussian random matrices

@ Each entry of @ is iid Normal(0, M 1)
Y P

M

“measurements” =a

iid Gaussian random entries

@ For any fixed x € RY, each measurement is

Ym ~ Normal(0, |[«|3/M)




Gaussian random matrices

e Each entry of @ is iid Normal(0, M 1)

Y P

M

“measurements” =

iid Gaussian random entries

IIIIIIIIIIIIIIIII&

e For any fixed x € RV, we have
Ef|@z|3] = |13

the mean of the measurement energy is exactly ||z||3



Gaussian random matrices

@ Each entry of @ is iid Normal(0, M 1)
Y P

i |..| <

M

“measurements” =a

iid Gaussian random entries

@ For any fixed x € RY, we have

P {[||®x]3 — |lz|3| < 8llz3} > 1—2e M3



Gaussian random matrices

e Each entry of @ is iid Normal(0, M 1)

M

“measurements” =a

iid Gaussian random entries

IIIIIIIIIIIIIIIII&

o For all 25-sparse x € RY, we have
P {mIaX}H(I)xH% _ H~75||§‘ < 6||x||§} > 1— 9pcSlog(N/S) ,—M§?/8
So we can make this probability close to 1 by taking
M > Const - S log(N/S)



Random projection of a fixed vector

For Gaussian random ® operating on a fixed € RY

1@ ]3 ~ |3

Theorem: Let ® be an M x N matrix whose entries are iid Gaussian
®; ; ~ Normal(0,1/M).

Set v = ®x. Then
E||v[f5 = |lzl3,

as
M M M 1
B3| = S Er2i= 3 Lol = el
m=1 m=1 m=1

since vy, = (0, @) ~ Normal(0, M ~1||z||3)



Random projection of a fixed vector
For Gaussian random ® operating on a fixed z € RV

1®2]13 ~ ||=[13

Theorem: Let ® be an M x N matrix whose entries are iid Gaussian
®; j ~ Normal(0,1/M).

Set v = ®x. Then
E ||v[f5 = |13,

and forany 0 < § <1

4
< 2exp (—52M/8)

2 _ 83
P {‘HU”% - ”33”%H > 5} < 2exp (-MIW)

for 0 <1/2.



The Markov inequality

Let Y be a positive random variable. Then for all ¢ > 0

P{Y >t} < E[ty]



The Markov inequality

Let Y be a positive random variable. Then for all ¢t > 0

B[Y]

P{Y 21} < =

Proof:
E[Y] = /OOO y fy(y) dy
> / b y fy(y) dy

t
- d
Zt/t fr(y) dy
—tP{Y >1t}.



The Markov inequality

Let Y be a positive random variable. Then for all ¢ > 0

pivan < B

Also:

P{v?>#} <

P{Y3>#} <

P{e/\Yze)‘t}S A>0

P{op(Y) > o(t)} <

for any strictly monotonic ¢(-).



The Markov inequality

Let Y be a positive random variable. Then for all ¢ > 0

pivan < B

Chernoff-type bound:
[e*]

Ele
PY >t} < =

for any A > 0.



A first upper concentration bound ...

For v = @z, ||z||2 = 1, we have that

H Nlvli]

P{Joll} > 146} < =5



A first upper concentration bound ...

For v = @z, ||z||2 = 1, we have that

B[]

P{||7)H2 > 1—i—(5} < AT

B Ele* Zm vfn]
)



A first upper concentration bound ...

For v = &z, ||z||2 = 1, we have that

Ele /\Hvll2]

P{|v]5>1+6}< — T

B Ele* Zm vfn]
T eA149)

E[e)‘v% e/\vg c e)‘UIQ\/[]

A1+9)



A first upper concentration bound ...

For v = ®x, ||z||2 = 1, we have that

E[e Mol

P{|v]3>1+6} < Y]

B E[e’\ 2 vin)
T eA(149)

E[e)\v% 6/\1)% . e)‘v%w]
eM1+46)

2

E[eM] E[e?E] - - - E[e ]

oA(1+3)



A first upper concentration bound ...

For v = ®x, ||z]|2 = 1, we have that

E[e Mol

IS YEER))
E[@Av% 6/\1)% R 6)‘1’%/1]
eM1+6)

E[e)\vf] E[e)\vg] . E[e)"UJQVI]
eMN1+4)

E M2\ M
= % (since vy, i.i.d.)
e



A first upper concentration bound ...

For v = @z, ||z||2 = 1, we have that

(B[N

2
P{|v[z>1+6} < T

v; ~ Normal(0, M 1)



A first upper concentration bound ...

For v = @z, ||z||2 = 1, we have that

(E[eAU%])M B
P {”’UH% > 1 + 5} S W, v ~ NOI‘mal(O,M 1)
It is known that
)\UZ 1
E[e] = ——— for A < M/2.

V1—2)\/M



A first upper concentration bound ...

For v = &z, ||z||2 = 1, we have that

(Bl

2
P{|vllz>1+6} < T

vy ~ Normal(0, M 1)

And so

o~ 2M(1+8)/M

M/2
1_m\4> VA< M2

SCERI |



A first upper concentration bound ...

We have

o~ 2M(1+6)/M

2 < [
P{o[>1+6)} < (12A/M

M/2
) VA< M/2

Choose
M6

" 2(1+9)
(easy to see that in this case A\ < M/2).

A



A first upper concentration bound ...

We have

3 M2
P2 >1+6) < eZ /M VA< M/2
{lIvll3>1+6} < =Y < M/

Choose
M6

A= — =
2(1+9)
(easy to see that in this case A < M/2).
And so

P{llv3>1+6} < ((1+5)e—5)M/2.



The upper concentration bound

We have »
P{H”H%> 1+5} < ((1_,_5)675) '

b|Ue: 1 + (5’ red: 657(62763)/2

25

15




The upper concentration bound

We have »
P> 140} < (a+ae)"

and so o
P{|l2>1+08) < e @*=)M/4



The lower concentration bound

The lower bound follows the exact same sequence of steps (work them out
at homel!):

B M/2
P{HUH2<1—5}< M
2 “\1+2\/M

M2 M
< ((1 _ 5)&) by taking A = —10

2(1 — 0)

< o~ (62=8%)M/4



The Johnson-Lindenstrauss Lemma

We have shown that for any fixed x € RY
L=d)ll3 < [2z]3 < (1+0)[l=(l3

with probability exceeding 1 — 2e=c*M

(Can take ¢ =1/8.)

A simple application of the union bound means that for any set of K

vectors x1, 2, ..., Tg, the above holds with probability exceeding
1— Ke9*M/8



The Johnson-Lindenstrauss Lemma

Theorem: (J&L, 1984): Let Q be a arbitrary set of @ vectors in RY, and
let ® be an M x N random linear mapping. Then

(1= 0)llzr — 22lf < (21 —a2)lF < (1+6)]ar — a2

for all x1,x9 € Q with

P {Failure} < 2Q2% M8 < ¢

when

M > ;% [2 log(Q) + log (1) + 0.7]



The Johnson-Lindenstrauss Lemma

() points

® embeds to precision § with probability ¢ when

M > % [2 log(Q) + log (1> + 0.7]
é €



Concentration bound

We have: For any fixed € R
1=z} < llexllf < (1+0)ll=(3
with probability exceeding 1 — 2e~*M

(Can take ¢ =1/8.)

We want: this for all 25-sparse = simultaneously...



A single 25-dimensional subspace

Theorem: Let V be a 2S-dimensional subspace of R"Y. Then
P {sup H|<I>x||% — ||:c|]§’ > 5} < 2.925. =82 M
zeV

where the constant ¢ = ¢/4 with ¢ from the previous theorem.

As before, it is enough to prove this for

re€By ={xeV:|z|=1}



Covering the sphere

An e-net for By :

unit sphere By balls of radius €

for every x € By, there is a y € Net such that ||z — y|l2 <€

N(By,e¢) is the size of the smallest e-net



Covering the sphere

unit sphere By balls of radius €

It is a fact that




From discrete to continuous

Lemma: Fix 0 < e < 1/2, and let N be the minimal e-net for By. Then

1
sup [[|@(l3 — [|z[3] < —-
xEBy

2 2
< 1 max [I@al — ]3]



A single 25-dimensional subspace

Theorem: Let V be a 2S-dimensional subspace of R™Y. Then
P {Sup ‘H@az”% - HarH%‘ > 5} < 2.925. o—C'02M
zeV

where the constant ¢ = ¢/4 with ¢ from the previous theorem.



A single 25-dimensional subspace

Theorem: Let V be a 25-dimensional subspace of R™. Then
p{sup [l ~ ol > 5] < 2925 -

zeV
where the constant ¢ = ¢/4 with ¢ from the previous theorem.

So @ is “well-conditioned” on V when

M > Const- S



A single 25-dimensional subspace

Theorem: Let V be a 25-dimensional subspace of RY. Then
P {sup 0l ~ ol > 5] < 2925

zeV
where the constant ¢’ = ¢/4 with ¢ from the previous theorem.

We want this for all subspaces in which 2S-sparse signals live...



A single 25-dimensional subspace

Theorem: Let V' be a 25-dimensional subspace of R™. Then
p{sup l0al} ~ ol > 6] < 2925

zeV
where the constant ¢ = ¢/4 with ¢ from the previous theorem.

We want this for all subspaces in which 2S-sparse signals live...

There are (2]2) < (%)23 such subspaces...



All 2S-dimensional subspaces

ForT'C {1,...,N}, let
Br={zeR" : 2y =0, v¢T, |zl2=1}.

Theorem:
P ¢ max sup (| @zll5 — [|z]]3] >6p < 2 Ne v 925 g~ c'0*M
IT|<2s 2 2 - 25

SUCCESS!!!



All 25-dimensional subspaces

Theorem:

2 2 Ne\%® oS 520
P sup “’(I).%HQ—HQUHZ‘>5 <2 ﬁ 925 o

all 25 sparse x

— clog 24+2Slog(Ne/2S)+2S log 9—c'§2 M

Which is to say
L=l < [z} < (1+0)lz]]3 V28 —sparse z
with high probability when

Const
M > T-Slog(N/S)



Next up ...

Theorem: Let ® be an M x N matrix that is an approximate isometry for
3S-sparse vectors. Let xy be an S-sparse vector, and suppose we observe
y = $xq. Given y, the solution to

min ||z||; subjectto Px =y
x

is exactly xg.



Moving to the solution

min |z|l; such that ®z =y
x
Call the solution to this z¥. Set

h:xﬁ—xo.



Moving to the solution

min ||z]|; such that dx =1y
x
Call the solution to this z¥. Set

h:mﬁ—xo.

Two things must be true:

e Ph=0
Simply because both z¥ and z( are feasible: ®zf =y = Pz

o |[zo + hlly < [lzolly
Simply because zg + h = z¥, and |21 < ||zo]|1



Moving to the solution

min |[z||; such that ®x =y
X
Call the solution to this z¥. Set

h:xﬁ—xo.

Two things must be true:

e ®h =0
Simply because both z¥ and z( are feasible: ®zf =y = Pz

o [lzo + Al < lzollx
Simply because xg + h = 2, and ||zf||1 < ||2ol|1

We'll show that if ® is 35-RIP, then these conditions are incompatible
unless h =0



Geometry

H={x:<1>x=y} %o

FAILURE

Two things must be true:
e Ph =0
o [lzo + hll1 < [lzollx




Cone condition

For T' C {1,..., N}, define hp € RV as

hr(y) = {3(7) z le:

Let I'g be the support of xg. For any “descent vector” h, we have

|Arclln < [l



Cone condition

For ' C {1,..., N}, define hp € RV as

hr(y) = {g(fy) z Z;

Let I'g be the support of xg. For any “descent vector” h, we have
[hrglli < [lhrgllx
Why? The triangle inequality..

zoll1 = [lzo + hll1 = |0 + hry + hrgllt
> [lwo + hrglli — [lhr 11
= l|lzollx + [[hrglls — [Ihr, 1



Cone condition

For ' C {1,..., N}, define hp € RY as

hr(y) = {3(7) z ;11:

Let I'g be the support of xy. For any “descent vector’ h, we have
lhrgll < [lhrglla
We will show that if @ is 35-RIP, then
Ph=0 = |lhryll1 < pllhrglh

for some p < 1, and so h = 0.



Some basic facts about ¢, norms

o |Arlloo < [lhrll2 < |Ihr|l1

o |[Arll < /I - [|hr|l2
o [[hrfla < V/IT| - ||or]loo



Dividing up hr¢

Recall that I'g is the support of zg

Fix h € Null(®). Let

I'y = locations of 25 largest terms in hpg,

I’y = locations next 2 largest terms in hre,



Dividing up hr¢

Recall that I'g is the support of g
Fix h € Null(®). Let

I'y = locations of 25 largest terms in hp(c),

Iy = locations next 25 largest terms in hre,

Then

0=[®hll2 =2} hr)ll2 = [@(hry +hr,)llz = | Y ®hr; |2

J=1 Jj=>2



Dividing up hr¢

Recall that I'g is the support of g
Fix h € Null(®). Let

I'y = locations of 25 largest terms in hp(c),

I’y = locations next 25 largest terms in hre,

Then
0= [|@h)2 = |2 hr,)ll2 = |®(hry + hry)ll2 = | Y ®hr,ll2
j=1 Jj=>2

> [|®(hr + hry)lla = > [ @hr, |12

Jj=2



Dividing up hr¢

Recall that I'g is the support of zg
Fix h € Null(®). Let

I'1 = locations of 2 largest terms in hre,

Iy = locations next 25 largest terms in hre,

Then

1@ (hry + hr)ll2 < Y [®hryl2
j>2



Dividing up hr¢

Recall that I'g is the support of g
Fix h € Null(®). Let

Iy = locations of 25 largest terms in hre,

I’y = locations next 25 largest terms in hre,

Applying the 35-RIP gives
V1 =0d3s|hry + hr, 2 < |@(hry + hry)|l2
<D I9hr,llz < D VT + bas|hry 2

Jj=2 j=22



Dividing up hr¢

Recall that I'g is the support of g
Fix h € Null(®). Let

Iy = locations of 25 largest terms in hre,

I'y = locations next 25 largest terms in h[‘g,

Applying the 35-RIP gives

1+ 025
Ao + hry 2 < \/:Zuhpjug
35 j>2




Dividing up hr¢

Recall that I'g is the support of g

Fix h € Null(®). Let

I'y = locations of 25 largest terms in hp(c),

I'y = locations next 2.5 largest terms in hr(ﬂ),

Then

1+ d2s
lArg + Br, [l2 < \/;ZVQSHMJ-HOO

Jj=2

since [|hr;[l2 < V2S||hr; [l



Dividing up hr¢

Recall that I'g is the support of g

Fix h € Null(®). Let

I'y = locations of 25 largest terms in hp(c),

I'y = locations next 25 largest terms in hre,

Then

1+ dog 1
h h < 4/ hr.,
H ro + F1”2 = 1 — 039 ; \/%H r; ”1

since [|Ar,lloc < g5 llAr, 4 11



Dividing up hr¢

Recall that I'g is the support of g
Fix h € Null(®). Let

I'y = locations of 25 largest terms in hp(c),

I'y = locations next 25 largest terms in hre,

Which means
1+ das llhrglh

1—-463s 28

|hry + hryll2 <



Dividing up hr¢

Recall that I'g is the support of zg
Fix h € Null(®). Let

Iy = locations of 25 largest terms in hp(c),

Iy = locations next 25 largest terms in hre,

Working to the left

1+ das llhrgll
1—4d3s 28

[hrolla < llAr, + hry[l2 <




Dividing up hr¢

Recall that I'g is the support of zg
Fix h € Null(®). Let

Iy = locations of 25 largest terms in hp(c),

Iy = locations next 25 largest terms in hre,

Working to the left

h
H \;%Hl < lhrollz < [lhrg + hryll2 <

1+ das llhrgllt
1—d35 /28




Wrapping it up

We have shown

1+0d25 | S
Ihroll < 4/ 7= 525 V gllhrglll

= pllhrglla

po | LH0s
2(1 — d35)

for



Wrapping it up

We have shown

1+0d25 | S
Il <\ T2 5 gl

= pllhrglla

p= 1+ (525
2(1 — d3s)

Taking dog < d39 < 1/3 = p<1.

for



SUCCESS!

Theorem: Let ® be an M x N matrix that is an approximate isometry for
3S-sparse vectors. Let xy be an S-sparse vector, and suppose we observe
y = $xq. Given y, the solution to

min ||z||; subjectto Px =y
x

is exactly xg.



