Mathematics of Compressive Sensing: Random matrices and ℓ_{1}-recovery

Justin Romberg
Georgia Tech, School of ECE
Dutch-Flemish Numerical Analysis Conference
October 7, 2011
Woudschoten, Zeist, Netherlands

Acquisition as linear algebra

- Small number of samples $=$ underdetermined system Impossible to solve in general
- If x is sparse and Φ is diverse, then these systems can be "inverted"

Agenda

We will prove (almost from top to bottom) two things:

- That an $M \times N$ iid Gaussian random matrix satisfies

$$
\begin{equation*}
(1-\delta)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2} \quad \forall 2 S \text {-sparse } x \tag{1}
\end{equation*}
$$

with (extraordinarily) high probability when

$$
M \geq \text { Const } \cdot S \log (N / S)
$$

Agenda

We will prove (almost from top to bottom) two things:

- That an $M \times N$ iid Gaussian random matrix satisfies

$$
\begin{equation*}
(1-\delta)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2} \quad \forall 2 S \text {-sparse } x \tag{1}
\end{equation*}
$$

with (extraordinarily) high probability when

$$
M \geq \text { Const } \cdot S \log (N / S)
$$

- Suppose an $M \times N$ matrix Φ obeys (1). Let x_{0} be an S-sparse vector, and suppose we observe $y=\Phi x_{0}$. Given y, the solution to

$$
\min _{x}\|x\|_{\ell_{1}} \quad \text { subject to } \quad \Phi x=y
$$

is exactly x_{0}.

Gaussian random matrices

- Each entry of Φ is iid $\operatorname{Normal}\left(0, M^{-1}\right)$

- For any fixed $x \in \mathbb{R}^{N}$, each measurement is

$$
y_{m} \sim \operatorname{Normal}\left(0,\|x\|_{2}^{2} / M\right)
$$

Gaussian random matrices

- Each entry of Φ is iid $\operatorname{Normal}\left(0, M^{-1}\right)$

- For any fixed $x \in \mathbb{R}^{N}$, we have

$$
\mathrm{E}\left[\|\Phi x\|_{2}^{2}\right]=\|x\|_{2}^{2}
$$

the mean of the measurement energy is exactly $\|x\|_{2}^{2}$

Gaussian random matrices

- Each entry of Φ is iid $\operatorname{Normal}\left(0, M^{-1}\right)$

- For any fixed $x \in \mathbb{R}^{N}$, we have

$$
\mathrm{P}\left\{\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|<\delta\|x\|_{2}^{2}\right\} \geq 1-2 e^{-M \delta^{2} / 8}
$$

Gaussian random matrices

- Each entry of Φ is iid $\operatorname{Normal}\left(0, M^{-1}\right)$

- For all $2 S$-sparse $x \in \mathbb{R}^{N}$, we have

$$
\mathrm{P}\left\{\max _{x}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|<\delta\|x\|_{2}^{2}\right\} \geq 1-2 e^{c \cdot S \log (N / S)} e^{-M \delta^{2} / 8}
$$

So we can make this probability close to 1 by taking

$$
M \geq \text { Const } \cdot S \log (N / S)
$$

Random projection of a fixed vector

For Gaussian random Φ operating on a fixed $x \in \mathbb{R}^{N}$

$$
\|\Phi x\|_{2}^{2} \approx\|x\|_{2}^{2}
$$

Theorem: Let Φ be an $M \times N$ matrix whose entries are iid Gaussian

$$
\Phi_{i, j} \sim \operatorname{Normal}(0,1 / M)
$$

Set $v=\Phi x$. Then

$$
\mathrm{E}\|v\|_{2}^{2}=\|x\|_{2}^{2}
$$

as

$$
\mathrm{E}\left[\sum_{m=1}^{M} v_{m}^{2}\right]=\sum_{m=1}^{M} \mathrm{E}\left[v_{m}^{2}\right]=\sum_{m=1}^{M} \frac{1}{M}\|x\|_{2}^{2}=\|x\|_{2}^{2}
$$

since $v_{m}=\left\langle x, \phi_{m}\right\rangle \sim \operatorname{Normal}\left(0, M^{-1}\|x\|_{2}^{2}\right)$

Random projection of a fixed vector

For Gaussian random Φ operating on a fixed $x \in \mathbb{R}^{N}$

$$
\|\Phi x\|_{2}^{2} \approx\|x\|_{2}^{2}
$$

Theorem: Let Φ be an $M \times N$ matrix whose entries are iid Gaussian

$$
\Phi_{i, j} \sim \operatorname{Normal}(0,1 / M)
$$

Set $v=\Phi x$. Then

$$
\mathrm{E}\|v\|_{2}^{2}=\|x\|_{2}^{2}
$$

and for any $0<\delta \leq 1$

$$
\begin{aligned}
\mathrm{P}\left\{\mid\|v\|_{2}^{2}-\|x\|_{2}^{2} \|>\delta\right\} & \leq 2 \exp \left(-\frac{\left(\delta^{2}-\delta^{3}\right) M}{4}\right) \\
& \leq 2 \exp \left(-\delta^{2} M / 8\right)
\end{aligned}
$$

for $\delta \leq 1 / 2$.

The Markov inequality

Let Y be a positive random variable. Then for all $t>0$

$$
\mathrm{P}\{Y \geq t\} \leq \frac{\mathrm{E}[Y]}{t}
$$

The Markov inequality

Let Y be a positive random variable. Then for all $t>0$

$$
\mathrm{P}\{Y \geq t\} \leq \frac{\mathrm{E}[Y]}{t}
$$

Proof:

$$
\begin{aligned}
\mathrm{E}[Y] & =\int_{0}^{\infty} y f_{Y}(y) d y \\
& \geq \int_{t}^{\infty} y f_{Y}(y) d y \\
& \geq t \int_{t}^{\infty} f_{Y}(y) d y \\
& =t \mathrm{P}\{Y \geq t\}
\end{aligned}
$$

The Markov inequality

Let Y be a positive random variable. Then for all $t>0$

$$
\mathrm{P}\{Y \geq t\} \leq \frac{\mathrm{E}[Y]}{t}
$$

Also:

$$
\begin{gathered}
\mathrm{P}\left\{Y^{2} \geq t^{2}\right\} \leq \frac{\mathrm{E}\left[Y^{2}\right]}{t^{2}} \\
\mathrm{P}\left\{Y^{3} \geq t^{3}\right\} \leq \frac{\mathrm{E}\left[Y^{3}\right]}{t^{3}} \\
\mathrm{P}\left\{e^{\lambda Y} \geq e^{\lambda t}\right\} \leq \frac{\mathrm{E}\left[e^{\lambda Y}\right]}{e^{\lambda t}} \quad \lambda>0 \\
\vdots \\
\mathrm{P}\{\phi(Y) \geq \phi(t)\} \leq \frac{\mathrm{E}[\phi(y)]}{\phi(t)}
\end{gathered}
$$

for any strictly monotonic $\phi(\cdot)$.

The Markov inequality

Let Y be a positive random variable. Then for all $t>0$

$$
\mathrm{P}\{Y \geq t\} \leq \frac{\mathrm{E}[Y]}{t}
$$

Chernoff-type bound:

$$
\mathrm{P}\{Y \geq t\} \leq \frac{\mathrm{E}\left[e^{\lambda Y}\right]}{e^{\lambda t}} \text { for any } \lambda>0
$$

A first upper concentration bound ...

For $v=\Phi x,\|x\|_{2}=1$, we have that

$$
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} \leq \frac{\mathrm{E}\left[e^{\lambda\|v\|_{2}^{2}}\right]}{e^{\lambda(1+\delta)}}
$$

A first upper concentration bound ...

For $v=\Phi x,\|x\|_{2}=1$, we have that

$$
\begin{aligned}
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} & \leq \frac{\mathrm{E}\left[e^{\lambda\|v\|_{2}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda \sum_{m} v_{m}^{2}}\right]}{e^{\lambda(1+\delta)}}
\end{aligned}
$$

A first upper concentration bound ...

For $v=\Phi x,\|x\|_{2}=1$, we have that

$$
\begin{aligned}
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} & \leq \frac{\mathrm{E}\left[e^{\lambda\|v\|_{2}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda \sum_{m} v_{m}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda v_{1}^{2}} e^{\lambda v_{2}^{2}} \cdots e^{\lambda v_{M}^{2}}\right]}{e^{\lambda(1+\delta)}}
\end{aligned}
$$

A first upper concentration bound ...

For $v=\Phi x,\|x\|_{2}=1$, we have that

$$
\begin{aligned}
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} & \leq \frac{\mathrm{E}\left[e^{\lambda\|v\|_{2}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda \sum_{m} v_{m}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda v_{1}^{2}} e^{\lambda v_{2}^{2}} \cdots e^{\lambda v_{M}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right] \mathrm{E}\left[e^{\lambda v_{2}^{2}}\right] \cdots \mathrm{E}\left[e^{\lambda v_{M}^{2}}\right]}{e^{\lambda(1+\delta)}}
\end{aligned}
$$

A first upper concentration bound ...

For $v=\Phi x,\|x\|_{2}=1$, we have that

$$
\begin{aligned}
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} & \leq \frac{\mathrm{E}\left[e^{\lambda\|v\|_{2}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda \sum_{m} v_{m}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda v_{1}^{2}} e^{\lambda v_{2}^{2}} \cdots e^{\lambda v_{M}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right] \mathrm{E}\left[e^{\lambda v_{2}^{2}}\right] \cdots \mathrm{E}\left[e^{\lambda v_{M}^{2}}\right]}{e^{\lambda(1+\delta)}} \\
& =\frac{\left(\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right]\right)^{M}}{e^{\lambda(1+\delta)}} \quad \text { (since } v_{m} \text { i.i.d.) }
\end{aligned}
$$

A first upper concentration bound ...

For $v=\Phi x,\|x\|_{2}=1$, we have that

$$
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} \leq \frac{\left(\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right]\right)^{M}}{e^{\lambda(1+\delta)}}, \quad v_{1} \sim \operatorname{Normal}\left(0, M^{-1}\right)
$$

A first upper concentration bound ...

For $v=\Phi x,\|x\|_{2}=1$, we have that

$$
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} \leq \frac{\left(\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right]\right)^{M}}{e^{\lambda(1+\delta)}}
$$

$$
v_{1} \sim \operatorname{Normal}\left(0, M^{-1}\right)
$$

It is known that

$$
\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right]=\frac{1}{\sqrt{1-2 \lambda / M}} \quad \text { for } \lambda<M / 2
$$

A first upper concentration bound ...

For $v=\Phi x,\|x\|_{2}=1$, we have that

$$
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} \leq \frac{\left(\mathrm{E}\left[e^{\lambda v_{1}^{2}}\right]\right)^{M}}{e^{\lambda(1+\delta)}}, \quad v_{1} \sim \operatorname{Normal}\left(0, M^{-1}\right)
$$

And so

$$
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} \leq\left(\frac{e^{-2 \lambda(1+\delta) / M}}{1-2 \lambda / M}\right)^{M / 2} \quad \forall \lambda<M / 2
$$

A first upper concentration bound ...

We have

$$
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} \leq\left(\frac{e^{-2 \lambda(1+\delta) / M}}{1-2 \lambda / M}\right)^{M / 2} \quad \forall \lambda<M / 2
$$

Choose

$$
\lambda=\frac{M \delta}{2(1+\delta)}
$$

(easy to see that in this case $\lambda<M / 2$).

A first upper concentration bound ...

We have

$$
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} \leq\left(\frac{e^{-2 \lambda(1+\delta) / M}}{1-2 \lambda / M}\right)^{M / 2} \quad \forall \lambda<M / 2
$$

Choose

$$
\lambda=\frac{M \delta}{2(1+\delta)}
$$

(easy to see that in this case $\lambda<M / 2$).
And so

$$
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} \leq\left((1+\delta) e^{-\delta}\right)^{M / 2}
$$

The upper concentration bound

We have

$$
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} \leq\left((1+\delta) e^{-\delta}\right)^{M / 2}
$$

blue: $1+\delta$, red: $e^{\delta-\left(\delta^{2}-\delta^{3}\right) / 2}$

The upper concentration bound

We have

$$
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} \leq\left((1+\delta) e^{-\delta}\right)^{M / 2}
$$

and so

$$
\mathrm{P}\left\{\|v\|_{2}^{2}>1+\delta\right\} \leq e^{-\left(\delta^{2}-\delta^{3}\right) M / 4}
$$

The lower concentration bound

The lower bound follows the exact same sequence of steps (work them out at home!):

$$
\begin{aligned}
\mathrm{P}\left\{\|v\|_{2}^{2}<1-\delta\right\} & \leq\left(\frac{e^{2(1-\delta) \lambda / M}}{1+2 \lambda / M}\right)^{M / 2} \\
& \leq\left((1-\delta) e^{\delta}\right)^{M / 2} \quad \text { by taking } \lambda=\frac{M \delta}{2(1-\delta)} \\
& \leq e^{-\left(\delta^{2}-\delta^{3}\right) M / 4}
\end{aligned}
$$

The Johnson-Lindenstrauss Lemma

We have shown that for any fixed $x \in \mathbb{R}^{N}$

$$
(1-\delta)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2}
$$

with probability exceeding $1-2 e^{-c \delta^{2} M}$.
(Can take $c=1 / 8$.)
A simple application of the union bound means that for any set of K vectors $x_{1}, x_{2}, \ldots, x_{K}$, the above holds with probability exceeding $1-K e^{-\delta^{2} M / 8} \ldots$

The Johnson-Lindenstrauss Lemma

Theorem: (J\&L, 1984): Let \mathcal{Q} be a arbitrary set of Q vectors in \mathbb{R}^{N}, and let Φ be an $M \times N$ random linear mapping. Then

$$
(1-\delta)\left\|x_{1}-x_{2}\right\|_{2}^{2} \leq\left\|\Phi\left(x_{1}-x_{2}\right)\right\|_{2}^{2} \leq(1+\delta)\left\|x_{1}-x_{2}\right\|_{2}^{2}
$$

for all $x_{1}, x_{2} \in \mathcal{Q}$ with

$$
\mathrm{P}\{\text { Failure }\} \leq 2 Q^{2} e^{-\delta^{2} M / 8} \leq \epsilon
$$

when

$$
M \geq \frac{8}{\delta^{2}}\left[2 \log (Q)+\log \left(\frac{1}{\epsilon}\right)+0.7\right]
$$

The Johnson-Lindenstrauss Lemma

Φ embeds to precision δ with probability ϵ when

$$
M \geq \frac{8}{\delta^{2}}\left[2 \log (Q)+\log \left(\frac{1}{\epsilon}\right)+0.7\right]
$$

Concentration bound

We have: For any fixed $x \in \mathbb{R}^{N}$

$$
(1-\delta)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2}
$$

with probability exceeding $1-2 e^{-c \delta^{2} M}$.
(Can take $c=1 / 8$.)
We want: this for all $2 S$-sparse x simultaneously...

A single $2 S$-dimensional subspace

Theorem: Let V be a $2 S$-dimensional subspace of \mathbb{R}^{N}. Then

$$
\mathrm{P}\left\{\sup _{x \in V}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|>\delta\right\} \leq 2 \cdot 9^{2 S} \cdot e^{-c^{\prime} \delta^{2} M}
$$

where the constant $c^{\prime}=c / 4$ with c from the previous theorem.
As before, it is enough to prove this for

$$
x \in B_{V}=\left\{x \in V:\|x\|_{2}=1\right\}
$$

Covering the sphere

An ϵ-net for B_{V} :

for every $x \in B_{V}$, there is a $y \in$ Net such that $\|x-y\|_{2} \leq \epsilon$
$N\left(B_{V}, \epsilon\right)$ is the size of the smallest ϵ-net

Covering the sphere

It is a fact that

$$
N\left(B_{V}, \epsilon\right) \leq\left(1+\frac{2}{\epsilon}\right)^{2 S}
$$

From discrete to continuous

Lemma: Fix $0 \leq \epsilon<1 / 2$, and let \mathcal{N}_{ϵ} be the minimal ϵ-net for B_{V}. Then

$$
\sup _{x \in B_{V}}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right| \leq \frac{1}{1-2 \epsilon} \max _{y \in \mathcal{N}_{\epsilon}}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|
$$

A single $2 S$-dimensional subspace

Theorem: Let V be a $2 S$-dimensional subspace of \mathbb{R}^{N}. Then

$$
\mathrm{P}\left\{\sup _{x \in V}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|>\delta\right\} \leq 2 \cdot 9^{2 S} \cdot e^{-c^{\prime} \delta^{2} M}
$$

where the constant $c^{\prime}=c / 4$ with c from the previous theorem.

A single $2 S$-dimensional subspace

Theorem: Let V be a $2 S$-dimensional subspace of \mathbb{R}^{N}. Then

$$
\mathrm{P}\left\{\sup _{x \in V}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|>\delta\right\} \leq 2 \cdot 9^{2 S} \cdot e^{-c^{\prime} \delta^{2} M}
$$

where the constant $c^{\prime}=c / 4$ with c from the previous theorem.

So Φ is "well-conditioned" on V when

$$
M \geq \text { Const } \cdot S
$$

A single $2 S$-dimensional subspace

Theorem: Let V be a $2 S$-dimensional subspace of \mathbb{R}^{N}. Then

$$
\mathrm{P}\left\{\sup _{x \in V}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|>\delta\right\} \leq 2 \cdot 9^{2 S} \cdot e^{-c^{\prime} \delta^{2} M}
$$

where the constant $c^{\prime}=c / 4$ with c from the previous theorem.
We want this for all subspaces in which $2 S$-sparse signals live...

A single $2 S$-dimensional subspace

Theorem: Let V be a $2 S$-dimensional subspace of \mathbb{R}^{N}. Then

$$
\mathrm{P}\left\{\sup _{x \in V}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|>\delta\right\} \leq 2 \cdot 9^{2 S} \cdot e^{-c^{\prime} \delta^{2} M}
$$

where the constant $c^{\prime}=c / 4$ with c from the previous theorem.

We want this for all subspaces in which $2 S$-sparse signals live...
There are $\binom{N}{2 S} \leq\left(\frac{N e}{2 S}\right)^{2 S}$ such subspaces...

All $2 S$-dimensional subspaces

For $\Gamma \subset\{1, \ldots, N\}$, let

$$
B_{\Gamma}=\left\{x \in \mathbb{R}^{N}: x_{\gamma}=0, \gamma \notin \Gamma,\|x\|_{2}=1\right\} .
$$

Theorem:

$$
\mathrm{P}\left\{\max _{|\Gamma| \leq 2 S} \sup _{x \in B_{\Gamma}}\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right|>\delta\right\} \leq 2\left(\frac{N e}{2 S}\right)^{2 S} 9^{2 S} e^{-c^{\prime} \delta^{2} M}
$$

All $2 S$-dimensional subspaces

Theorem:

$$
\begin{aligned}
\mathrm{P}\left\{\sup _{\text {all } 2 S \text { sparse } x}| |\left|\Phi x\left\|_{2}^{2}-\right\| x \|_{2}^{2}\right|>\delta\right\} & \leq 2\left(\frac{N e}{2 S}\right)^{2 S} 9^{2 S} e^{-c^{\prime} \delta^{2} M} \\
& =e^{\log 2+2 S \log (N e / 2 S)+2 S \log 9-c^{\prime} \delta^{2} M}
\end{aligned}
$$

Which is to say

$$
(1-\delta)\|x\|_{2}^{2} \leq\|\Phi x\|_{2}^{2} \leq(1+\delta)\|x\|_{2}^{2} \quad \forall 2 S-\text { sparse } x
$$

with high probability when

$$
M \geq \frac{\mathrm{Const}}{\delta^{2}} \cdot S \log (N / S)
$$

SUCCESS!!!

Next up ...

Theorem: Let Φ be an $M \times N$ matrix that is an approximate isometry for $3 S$-sparse vectors. Let x_{0} be an S-sparse vector, and suppose we observe $y=\Phi x_{0}$. Given y, the solution to

$$
\min _{x}\|x\|_{1} \quad \text { subject to } \quad \Phi x=y
$$

is exactly x_{0}.

Moving to the solution

$$
\min _{x}\|x\|_{1} \quad \text { such that } \quad \Phi x=y
$$

Call the solution to this x^{\sharp}. Set

$$
h=x^{\sharp}-x_{0} .
$$

Moving to the solution

$$
\min _{x}\|x\|_{1} \quad \text { such that } \quad \Phi x=y
$$

Call the solution to this x^{\sharp}. Set

$$
h=x^{\sharp}-x_{0} .
$$

Two things must be true:

- $\Phi h=0$

Simply because both x^{\sharp} and x_{0} are feasible: $\Phi x^{\sharp}=y=\Phi x_{0}$

- $\left\|x_{0}+h\right\|_{1} \leq\left\|x_{0}\right\|_{1}$

Simply because $x_{0}+h=x^{\sharp}$, and $\left\|x^{\sharp}\right\|_{1} \leq\left\|x_{0}\right\|_{1}$

Moving to the solution

$$
\min _{x}\|x\|_{1} \quad \text { such that } \quad \Phi x=y
$$

Call the solution to this x^{\sharp}. Set

$$
h=x^{\sharp}-x_{0} .
$$

Two things must be true:

- $\Phi h=0$

Simply because both x^{\sharp} and x_{0} are feasible: $\Phi x^{\sharp}=y=\Phi x_{0}$

- $\left\|x_{0}+h\right\|_{1} \leq\left\|x_{0}\right\|_{1}$

Simply because $x_{0}+h=x^{\sharp}$, and $\left\|x^{\sharp}\right\|_{1} \leq\left\|x_{0}\right\|_{1}$

We'll show that if Φ is $3 S$-RIP, then these conditions are incompatible unless $h=0$

Geometry

SUCCESS

FAILURE

Two things must be true:

- $\Phi h=0$
- $\left\|x_{0}+h\right\|_{1} \leq\left\|x_{0}\right\|_{1}$

Cone condition

For $\Gamma \subset\{1, \ldots, N\}$, define $h_{\Gamma} \in \mathbb{R}^{N}$ as

$$
h_{\Gamma}(\gamma)= \begin{cases}h(\gamma) & \gamma \in \Gamma \\ 0 & \gamma \notin \Gamma\end{cases}
$$

Let Γ_{0} be the support of x_{0}. For any "descent vector" h, we have

$$
\left\|h_{\Gamma_{0}^{c}}\right\|_{1} \leq\left\|h_{\Gamma_{0}}\right\|_{1}
$$

Cone condition

For $\Gamma \subset\{1, \ldots, N\}$, define $h_{\Gamma} \in \mathbb{R}^{N}$ as

$$
h_{\Gamma}(\gamma)= \begin{cases}h(\gamma) & \gamma \in \Gamma \\ 0 & \gamma \notin \Gamma\end{cases}
$$

Let Γ_{0} be the support of x_{0}. For any "descent vector" h, we have

$$
\left\|h_{\Gamma_{0}^{c}}\right\|_{1} \leq\left\|h_{\Gamma_{0}}\right\|_{1}
$$

Why? The triangle inequality..

$$
\begin{aligned}
\left\|x_{0}\right\|_{1} \geq\left\|x_{0}+h\right\|_{1} & =\left\|x_{0}+h_{\Gamma_{0}}+h_{\Gamma_{0}^{c}}\right\|_{1} \\
& \geq\left\|x_{0}+h_{\Gamma_{0}^{c}}\right\|_{1}-\left\|h_{\Gamma_{0}}\right\|_{1} \\
& =\left\|x_{0}\right\|_{1}+\left\|h_{\Gamma_{0}^{c}}\right\|_{1}-\left\|h_{\Gamma_{0}}\right\|_{1}
\end{aligned}
$$

Cone condition

For $\Gamma \subset\{1, \ldots, N\}$, define $h_{\Gamma} \in \mathbb{R}^{N}$ as

$$
h_{\Gamma}(\gamma)= \begin{cases}h(\gamma) & \gamma \in \Gamma \\ 0 & \gamma \notin \Gamma\end{cases}
$$

Let Γ_{0} be the support of x_{0}. For any "descent vector" h, we have

$$
\left\|h_{\Gamma_{0}^{c}}\right\|_{1} \leq\left\|h_{\Gamma_{0}}\right\|_{1}
$$

We will show that if Φ is $3 S$-RIP, then

$$
\Phi h=0 \quad \Rightarrow \quad\left\|h_{\Gamma_{0}}\right\|_{1} \leq \rho\left\|h_{\Gamma_{0}^{c}}\right\|_{1}
$$

for some $\rho<1$, and so $h=0$.

Some basic facts about ℓ_{p} norms

- $\left\|h_{\Gamma}\right\|_{\infty} \leq\left\|h_{\Gamma}\right\|_{2} \leq\left\|h_{\Gamma}\right\|_{1}$
- $\left\|h_{\Gamma}\right\|_{1} \leq \sqrt{|\Gamma|} \cdot\left\|h_{\Gamma}\right\|_{2}$
- $\left\|h_{\Gamma}\right\|_{2} \leq \sqrt{|\Gamma|} \cdot\left\|h_{\Gamma}\right\|_{\infty}$

Dividing up $h_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of x_{0}

Fix $h \in \operatorname{Null}(\Phi)$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,

Dividing up $h_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of x_{0}

Fix $h \in \operatorname{Null}(\Phi)$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,

Then

$$
0=\|\Phi h\|_{2}=\left\|\Phi\left(\sum_{j \geq 1} h_{\Gamma_{j}}\right)\right\|_{2} \geq\left\|\Phi\left(h_{\Gamma_{0}}+h_{\Gamma_{1}}\right)\right\|_{2}-\left\|\sum_{j \geq 2} \Phi h_{\Gamma_{j}}\right\|_{2}
$$

Dividing up $h_{\Gamma_{0}^{c}}$

Recall that Γ_{0} is the support of x_{0}

Fix $h \in \operatorname{Null}(\Phi)$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,

Then

$$
\begin{aligned}
0=\|\Phi h\|_{2}=\left\|\Phi\left(\sum_{j \geq 1} h_{\Gamma_{j}}\right)\right\|_{2} & \geq\left\|\Phi\left(h_{\Gamma_{0}}+h_{\Gamma_{1}}\right)\right\|_{2}-\left\|\sum_{j \geq 2} \Phi h_{\Gamma_{j}}\right\|_{2} \\
& \geq\left\|\Phi\left(h_{\Gamma_{0}}+h_{\Gamma_{1}}\right)\right\|_{2}-\sum_{j \geq 2}\left\|\Phi h_{\Gamma_{j}}\right\|_{2}
\end{aligned}
$$

Dividing up $h_{\Gamma_{0}^{\circ}}$

Recall that Γ_{0} is the support of x_{0}

Fix $h \in \operatorname{Null}(\Phi)$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,

Then

$$
\left\|\Phi\left(h_{\Gamma_{0}}+h_{\Gamma_{1}}\right)\right\|_{2} \leq \sum_{j \geq 2}\left\|\Phi h_{\Gamma_{j}}\right\|_{2}
$$

Dividing up $h_{\Gamma_{0}^{c}}$

Recall that Γ_{0} is the support of x_{0}

Fix $h \in \operatorname{Null}(\Phi)$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,

Applying the $3 S$-RIP gives

$$
\begin{aligned}
\sqrt{1-\delta_{3 S}}\left\|h_{\Gamma_{0}}+h_{\Gamma_{1}}\right\|_{2} & \leq\left\|\Phi\left(h_{\Gamma_{0}}+h_{\Gamma_{1}}\right)\right\|_{2} \\
& \leq \sum_{j \geq 2}\left\|\Phi h_{\Gamma_{j}}\right\|_{2} \leq \sum_{j \geq 2} \sqrt{1+\delta_{2 S}}\left\|h_{\Gamma_{j}}\right\|_{2}
\end{aligned}
$$

Dividing up $h_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of x_{0}

Fix $h \in \operatorname{Null}(\Phi)$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,

Applying the $3 S$-RIP gives

$$
\left\|h_{\Gamma_{0}}+h_{\Gamma_{1}}\right\|_{2} \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \sum_{j \geq 2}\left\|h_{\Gamma_{j}}\right\|_{2}
$$

Dividing up $h_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of x_{0}

Fix $h \in \operatorname{Null}(\Phi)$. Let

$$
\Gamma_{1}=\text { locations of } 2 S \text { largest terms in } h_{\Gamma_{0}^{c}},
$$

$\Gamma_{2}=$ locations next $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,

Then

$$
\left\|h_{\Gamma_{0}}+h_{\Gamma_{1}}\right\|_{2} \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \sum_{j \geq 2} \sqrt{2 S}\left\|h_{\Gamma_{j}}\right\|_{\infty}
$$

since $\left\|h_{\Gamma_{j}}\right\|_{2} \leq \sqrt{2 S}\left\|h_{\Gamma_{j}}\right\|_{\infty}$

Dividing up $h_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of x_{0}

Fix $h \in \operatorname{Null}(\Phi)$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$
$\Gamma_{2}=$ locations next $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$

Then

$$
\left\|h_{\Gamma_{0}}+h_{\Gamma_{1}}\right\|_{2} \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \sum_{j \geq 1} \frac{1}{\sqrt{2 S}}\left\|h_{\Gamma_{j}}\right\|_{1}
$$

since $\left\|h_{\Gamma_{j}}\right\|_{\infty} \leq \frac{1}{2 S}\left\|h_{\Gamma_{j-1}}\right\|_{1}$

Dividing up $h_{\Gamma_{0}^{c}}$

Recall that Γ_{0} is the support of x_{0}

Fix $h \in \operatorname{Null}(\Phi)$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,

Which means

$$
\left\|h_{\Gamma_{0}}+h_{\Gamma_{1}}\right\|_{2} \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \frac{\left\|h_{\Gamma_{0}^{c}}\right\|_{1}}{\sqrt{2 S}}
$$

Dividing up $h_{\Gamma_{0}^{\varepsilon}}$

Recall that Γ_{0} is the support of x_{0}

Fix $h \in \operatorname{Null}(\Phi)$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,

Working to the left

Dividing up $h_{\Gamma_{0}^{c}}$

Recall that Γ_{0} is the support of x_{0}

Fix $h \in \operatorname{Null}(\Phi)$. Let
$\Gamma_{1}=$ locations of $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,
$\Gamma_{2}=$ locations next $2 S$ largest terms in $h_{\Gamma_{0}^{c}}$,

Working to the left

$$
\frac{\left\|h_{\Gamma_{0}}\right\|_{1}}{\sqrt{S}} \leq\left\|h_{\Gamma_{0}}\right\|_{2} \leq\left\|h_{\Gamma_{0}}+h_{\Gamma_{1}}\right\|_{2} \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \frac{\left\|h_{\Gamma_{0}^{c}}\right\|_{1}}{\sqrt{2 S}}
$$

Wrapping it up

We have shown

$$
\begin{aligned}
\left\|h_{\Gamma_{0}}\right\|_{1} & \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \sqrt{\frac{S}{2 S}}\left\|h_{\Gamma_{0}^{c}}\right\|_{1} \\
& =\rho\left\|h_{\Gamma_{0}^{c}}\right\|_{1}
\end{aligned}
$$

for

$$
\rho=\sqrt{\frac{1+\delta_{2 S}}{2\left(1-\delta_{3 S}\right)}}
$$

Wrapping it up

We have shown

$$
\begin{aligned}
\left\|h_{\Gamma_{0}}\right\|_{1} & \leq \sqrt{\frac{1+\delta_{2 S}}{1-\delta_{3 S}}} \sqrt{\frac{S}{2 S}}\left\|h_{\Gamma_{0}^{c}}\right\|_{1} \\
& =\rho\left\|h_{\Gamma_{0}^{c}}\right\|_{1}
\end{aligned}
$$

for

$$
\rho=\sqrt{\frac{1+\delta_{2 S}}{2\left(1-\delta_{3 S}\right)}}
$$

Taking $\delta_{2 S} \leq \delta_{3 S}<1 / 3 \quad \Rightarrow \quad \rho<1$.

SUCCESS!!

Theorem: Let Φ be an $M \times N$ matrix that is an approximate isometry for $3 S$-sparse vectors. Let x_{0} be an S-sparse vector, and suppose we observe $y=\Phi x_{0}$. Given y, the solution to

$$
\min _{x}\|x\|_{1} \quad \text { subject to } \quad \Phi x=y
$$

is exactly x_{0}.

