An Introduction to Compressive Sensing and its Applications

Justin Romberg

Georgia Tech, School of ECE

Dutch-Flemish Numerical Analysis Conference

October 5, 2011 Woudschoten, Zeist, Netherlands

Acquisition as linear algebra

- Small number of samples = underdetermined system Impossible to solve in general
- If x is *sparse* and Φ is *diverse*, then these systems can be "inverted"

DSP: sample first, ask questions later

Explosion in sensor technology/ubiquity has caused two trends:

- Physical capabilities of hardware are being stressed, increasing speed/resolution becoming *expensive*
 - gigahertz+ analog-to-digital conversion
 - accelerated MRI
 - industrial imaging
- Deluge of data
 - camera arrays and networks, multi-view target databases, streaming video...

Compressive Sensing: sample smarter, not faster

${\sf Sparsity}/{\sf Compressibility}$

 $N \\ {\rm pixels}$

 $S \ll N$ large wavelet coefficients

N wideband signal samples

 $S \ll N$ large Gabor coefficients

time

Wavelet approximation

Take 1% of *largest* coefficients, set the rest to zero (adaptive)

original

approximated

rel. error = 0.031

• If x is *sparse* and Φ is *diverse*, then these systems can be "inverted"

• Suppose we have an $M \times N$ observation matrix A with $M \ge N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

$$M \begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} A \\ A \end{bmatrix} \begin{bmatrix} x \\ x \end{bmatrix} N$$

• Suppose we have an $M \times N$ observation matrix A with $M \ge N$ (MORE observations than unknowns), through which we observe

 $y = Ax_0 + \text{noise}$

• Standard way to recover x_0 , use the *pseudo-inverse*

solve
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Suppose we have an $M \times N$ observation matrix A with $M \ge N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover x_0 , use the *pseudo-inverse*

solve
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• Suppose we have an $M \times N$ observation matrix A with $M \ge N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover x_0 , use the *pseudo-inverse*

solve
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• A: When the matrix A is an *approximate isometry*...

$$||Ax||_2^2 \approx ||x||_2^2$$
 for all $x \in \mathbb{R}^N$

i.e. A preserves *lengths*

• Suppose we have an $M \times N$ observation matrix A with $M \ge N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover x_0 , use the *pseudo-inverse*

solve
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• A: When the matrix A is an *approximate isometry*...

$$||A(x_1 - x_2)||_2^2 \approx ||x_1 - x_2||_2^2$$
 for all $x_1, x_2 \in \mathbb{R}^N$

i.e. A preserves *distances*

• Suppose we have an $M \times N$ observation matrix A with $M \ge N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover x_0 , use the *pseudo-inverse*

solve
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• A: When the matrix A is an *approximate isometry*...

$$(1-\delta) \le \sigma_{\min}^2(A) \le \sigma_{\max}^2(A) \le (1+\delta)$$

i.e. A has clustered singular values

• Suppose we have an $M \times N$ observation matrix A with $M \ge N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

• Standard way to recover x_0 , use the *pseudo-inverse*

solve
$$\min_{x} \|y - Ax\|_2^2 \quad \Leftrightarrow \quad \hat{x} = (A^T A)^{-1} A^T y$$

• Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$
 ?

• A: When the matrix A is an *approximate isometry*...

$$(1-\delta)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1+\delta)\|x\|_2^2$$

for some $0 < \delta < 1$

• Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

 $y = \Phi x_0 + \text{noise}$

When can we stably recover an S-sparse vector?

• Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• We can recover x_0 when Φ is a *keeps sparse signals separated*

$$(1-\delta) \|x_1 - x_2\|_2^2 \leq \|\Phi(x_1 - x_2)\|_2^2 \leq (1+\delta) \|x_1 - x_2\|_2^2$$

for all S-sparse x_1, x_2

• Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

 $y = \Phi x_0 + \text{noise}$

• We can recover x_0 when Φ is a *restricted isometry (RIP)*

 $(1-\delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\delta)\|x\|_2^2$ for all 2S-sparse x

When can we stably recover an S-sparse vector?

• Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• We can recover x_0 when Φ is a *restricted isometry (RIP)*

 $(1-\delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\delta)\|x\|_2^2$ for all 2S-sparse x

• To recover x_0 , we solve

 $\min_{x} \ \|x\|_0 \quad \text{subject to} \quad \Phi x \approx y$

 $||x||_0 =$ number of nonzero terms in x

• This program is intractable

When can we stably recover an S-sparse vector?

• Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

• We can recover x_0 when Φ is a *restricted isometry (RIP)*

 $(1-\delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\delta)\|x\|_2^2$ for all 2S-sparse x

• A relaxed (convex) program

 $\min_{x} \|x\|_1 \quad \text{subject to} \quad \Phi x \approx y$

 $||x||_1 = \sum_k |x_k|$

• This program is very tractable (linear program)

Graphical intuition for ℓ_1

Sparse recovery algorithms

- Given y, look for a sparse signal which is consistent.
- One method: ℓ_1 minimization (or *Basis Pursuit*)

$$\min_{x} \|\Psi^T x\|_1 \quad \text{s.t.} \quad \Phi x = y$$

 $\Psi =$ sparsifying transform, $\Phi =$ measurement system (need RIP for $\Phi\Psi$)

Convex (linear) program, can relax for robustness to noise

Performance has theoretical guarantees

• Other recovery methods include greedy algorithms and iterative thresholding schemes

Stable recovery

- Despite its nonlinearity, sparse recovery is stable in the presence of
 - modeling mismatch (approximate sparsity), and
 - measurement error
- If we observe $y = \Phi x_0 + e$, with $||e||_2 \le \epsilon$, the solution \hat{x} to

$$\min_{x} \|\Psi^T x\|_1 \quad \text{s.t.} \quad \|y - \Phi x\|_2 \le \epsilon$$

will satisfy

$$\|\hat{x} - x_0\|_2 \leq \operatorname{Const} \cdot \left(\epsilon + \frac{\|x_0 - x_{0,S}\|_1}{\sqrt{S}}\right)$$

where

- $x_{0,S} = S$ -term approximation of x_0
- $\blacktriangleright~S$ is the largest value for which $\Phi\Psi$ satisfies the RIP
- Similar guarantees exist for other recovery algorithms
 - greedy (Needell and Tropp '08)
 - iterative thresholding
 (Blumensath and Davies '08)

• They are very hard to design, but they exist everywhere!

• For any fixed $x \in \mathbb{R}^N$, each measurement is

 $y_k \sim \text{Normal}(0, ||x||_2^2/M)$

• They are very hard to design, but they exist everywhere!

• For any fixed $x \in \mathbb{R}^N$, we have

$$\mathbf{E}[\|\Phi x\|_2^2] = \|x\|_2^2$$

the mean of the measurement energy is exactly $||x||_2^2$

• They are very hard to design, but they exist everywhere!

• For any fixed $x \in \mathbb{R}^N$, we have

$$P\left\{ \left| \|\Phi x\|_{2}^{2} - \|x\|_{2}^{2} \right| < \delta \|x\|_{2}^{2} \right\} \geq 1 - e^{-M\delta^{2}/4}$$

• They are very hard to design, but they exist everywhere!

• For all 2S-sparse
$$x \in \mathbb{R}^N$$
, we have

$$P\left\{\max_x \left|\|\Phi x\|_2^2 - \|x\|_2^2\right| < \delta \|x\|_2^2\right\} \ge 1 - e^{c \cdot S \log(N/S)} e^{-M\delta^2/4}$$
So we can make this probability close to 1 by taking
 $M \gtrsim S \log(N/S)$

Four general frameworks:

- Random matrices (iid entries)
- Random subsampling
- Random convolution
- (Randomly modulated integration we'll skip this today)

Note the role of randomness in all of these approaches

Slogan: random projections keep sparse signal separated

Random matrices (iid entries)

- Random matrices are provably efficient
- We can recover S-sparse x from

$$M \gtrsim S \cdot \log(N/S)$$

measurements

Rice single pixel camera

(Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk '08)

Georgia Tech analog imager

Compressive sensing acquisition

Random matrices

Example: Φ consists of *random rows* from an *orthobasis* U

Can recover S-sparse x from

$$M \gtrsim \mu^2 S \cdot \log^4 N$$

measurements, where

$$\mu = \sqrt{N} \max_{i,j} |(U^T \Psi)_{ij}|$$

is the *coherence*

Examples of incoherence

• Signal is sparse in time domain, sampled in Fourier domain

freq domain $\hat{x}(\omega)$

S nonzero components $\,$ measure m samples

• Signal is sparse in wavelet domain, measured with noiselets

example noiselet

wavelet domain

(Coifman et al '01)

noiselet domain

Accelerated MRI

(Lustig et al. '08)

Empirical processes and structured random matrices

• For matrices with this type of *structured randomness*, we simply do not have enough concentration to establish

$$(1-\delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1+\delta)\|x\|_2^2$$

"the easy way"

• Re-write the RIP as a the supremum of a random process

$$\sup_{x} |G(x)| = \sup_{x} |x^* \Phi^* \Phi x - x^* x| \le \delta$$

where the sup is taken over all $2S\mbox{-sparse}$ signals

• Estimate this sup using tools from probability theory (e.g. the Dudley inequality) — approach pioneered by Rudelson and Vershynin

Random convolution

 Many active imaging systems measure a pulse convolved with a reflectivity profile (Green's function)

- Applications include:
 - radar imaging
 - sonar imaging
 - seismic exploration
 - channel estimation for communications
 - super-resolved imaging
- Using a random pulse = compressive sampling (Tropp et al. '06, R '08, Herman et al. '08, Haupt et al. '09, Rauhut '09)

Coded aperture imaging

Super-resolved imaging

(Marcia and Willet '08)

Random convolution for CS, theory

- \bullet Signal model: sparsity in any orthobasis Ψ
- Acquisition model: generate a "pulse" whose FFT is a sequence of random phases (unit magnitude),

convolve with signal,

sample result at m random locations Ω

$$\Phi = R_{\Omega} \mathcal{F}^* \Sigma \mathcal{F}, \quad \Sigma = \operatorname{diag}(\{\sigma_{\omega}\})$$

• The RIP holds for (R '08)

$$M \gtrsim S \log^5 N$$

Note that this result is *universal*

• Both the random sampling and the flat Fourier transform are needed for universality

Randomizing the phase

sample here

Seismic forward modeling

- Run a single simulation with all of the sources activated simultaneously with random waveforms
- The channel responses interfere with one another, but the randomness "codes" them in such a way that they can be separated later

Related work: Herrmann et. al '09

Restricted isometries for multichannel systems

• With each of the pulses as iid Gaussian sequences, Φ obeys

$$M \gtrsim S \cdot \log^5(nc) + n$$

• **Consequence:** we can separate the channels using short random pulses (using ℓ_1 min or other sparse recovery algorithms)

Sampling correlated signals

- Goal: acquire an *ensemble* of M signals
- \bullet Bandlimited to $W\!/2$
- "Correlated" $\rightarrow M$ signals are \approx linear combinations of R signals

Sampling correlated signals

- \bullet Goal: acquire an *ensemble* of M signals
- Bandlimited to W/2
- "Correlated" $\rightarrow M$ signals are \approx linear combinations of R signals

Sensor arrays

Low-rank matrix recovery

• Given *P* linear samples of a matrix,

$$y = \mathcal{A}(\mathbf{X}_0), \quad y \in \mathbb{R}^P, \quad \mathbf{X}_0 \in \mathbb{R}^{M \times W}$$

we solve

$$\min_{\mathbf{X}} \|\mathbf{X}\|_* \quad \text{subject to} \quad \mathcal{A}(\mathbf{X}) = y$$

where $\|\mathbf{X}\|_*$ is the nuclear norm: the sum of the singular values of \mathbf{X} .

Low-rank matrix recovery

• Given *P* linear samples of a matrix,

$$y = \mathcal{A}(\mathbf{X}_0), \quad y \in \mathbb{R}^P, \quad \mathbf{X}_0 \in \mathbb{R}^{M \times W}$$

we solve

$$\min_{\mathbf{X}} \|\mathbf{X}\|_* \text{ subject to } \mathcal{A}(\mathbf{X}) = y$$

where $\|\mathbf{X}\|_*$ is the nuclear norm: the sum of the singular values of \mathbf{X} .

• If \mathbf{X}_0 is rank-R and \mathcal{A} obeys the mRIP: $(1-\delta)\|\mathbf{X}\|_F^2 \leq \|\mathcal{A}(\mathbf{X})\|_2^2 \leq (1+\delta)\|\mathbf{X}\|_F^2 \quad \forall \text{ rank-}2R \mathbf{X},$ then we can stably recover \mathbf{X}_0 from y. (Recht et. al '07)

Low-rank matrix recovery

• Given *P* linear samples of a matrix,

$$y = \mathcal{A}(\mathbf{X}_0), \quad y \in \mathbb{R}^P, \quad \mathbf{X}_0 \in \mathbb{R}^{M \times W}$$

we solve

$$\min_{\mathbf{X}} \|\mathbf{X}\|_* \quad \text{subject to} \quad \mathcal{A}(\mathbf{X}) = y$$

where $\|\mathbf{X}\|_*$ is the nuclear norm: the sum of the singular values of \mathbf{X} .

- If \mathbf{X}_0 is rank-R and \mathcal{A} obeys the mRIP: $(1-\delta) \|\mathbf{X}\|_F^2 \leq \|\mathcal{A}(\mathbf{X})\|_2^2 \leq (1+\delta) \|\mathbf{X}\|_F^2 \quad \forall \text{ rank-}2R \mathbf{X},$ then we can stably recover \mathbf{X}_0 from y. (Recht et. al '07)
- An 'generic' (iid random) sampler \mathcal{A} (stably) recovers \mathbf{X}_0 from y when

$$\begin{aligned} \# \mathsf{samples} &\gtrsim R \cdot \max(M, W) \\ &\gtrsim RW \quad \text{(in our case)} \end{aligned}$$

CS for correlated signals: modulated multiplexing

• If the signals are spread out uniformly in time, then the ADC and modulators can run at rate

$$\varphi \gtrsim RW \log^{3/2}(MW)$$

• Requires signals to be (mildly) spread out in time

Summary

Main message of CS:

We can recover an $S\text{-sparse signal in }\mathbb{R}^N$ from $\sim S\cdot \log N$ measurements

We can recover a rank-R matrix in $\mathbb{R}^{M \times W}$ from $\sim R \cdot \max(M, W)$ measurements

- Random matrices (iid entries)
 - easy to analyze, optimal bounds
 - universal
 - hard to implement and compute with
- Structured random matrices (random sampling, random convolution)
 - structured, and so computationally efficient
 - physical
 - much harder to analyze, bound with extra log-factors

Friday: Mathematical proof (analysis!)

We will prove two fundamental results in compressive sensing.

Not much background is required:

basic probability (Gaussian random variables, Markov inequality, union bound/Boole inequality,...)

basic linear algebra (operator norm, singular value,...) basic geometry (triangle inequality, covering a set, ...)

Agenda

On Friday, we will prove from top to bottom two things:

• That an $M \times N$ iid Gaussian random matrix satisfies

$$(1-\delta)\|x\|_2^2 \le \|\Phi x\|_2^2 \le (1+\delta)\|x\|_2^2 \quad \forall \ 3S$$
-sparse x (1)

with (extraordinarily) high probability when

$$M \geq \text{Const} \cdot S \log(N/S)$$

• Suppose an $M \times N$ matrix Φ obeys (1). Let x_0 be an S-sparse vector, and suppose we observe $y = \Phi x_0$. Given y, the solution to

$$\min_{x} \|x\|_{\ell_1} \quad \text{such that} \quad \Phi x_0 = y$$

is *exactly* x_0 .