An Introduction to Compressive Sensing and its Applications

Justin Romberg

Georgia Tech, School of ECE

Dutch-Flemish Numerical Analysis Conference

October 5, 2011
Woudschoten, Zeist, Netherlands
Acquisition as linear algebra

Small number of samples = underdetermined system
Impossible to solve in general

If x is \textit{sparse} and Φ is \textit{diverse}, then these systems can be “inverted”
Signal processing trends

DSP: sample first, ask questions later

Explosion in sensor technology/ubiquity has caused two trends:

- Physical capabilities of hardware are being stressed, increasing speed/resolution becoming *expensive*
 - gigahertz+ analog-to-digital conversion
 - accelerated MRI
 - industrial imaging
- Deluge of data
 - camera arrays and networks, multi-view target databases, streaming video...

Compressive Sensing: sample smarter, not faster
Sparsity/Compressibility

N pixels

$S \ll N$
large wavelet coefficients

N wideband signal samples

$S \ll N$
large Gabor coefficients
Wavelet approximation

Take 1% of \textit{largest} coefficients, set the rest to zero (adaptive)

\begin{itemize}
 \item original
 \item approximated
\end{itemize}

rel. error $= 0.031$
If x is \textit{sparse} and Φ is \textit{diverse}, then these systems can be “inverted”
Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

$$M \begin{bmatrix} y \\ A \end{bmatrix} = \begin{bmatrix} x \end{bmatrix}$$

Q: When is this recovery stable? That is, when is $\|\hat{x} - x_0\|^2 \sim \|\text{noise}\|^2$?
Classical: When can we stably “invert” a matrix?

- Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

- Standard way to recover x_0, use the pseudo-inverse

$$\text{solve } \min_x \|y - Ax\|_2^2 \iff \hat{x} = (A^T A)^{-1} A^T y$$
Classical: When can we stably “invert” a matrix?

- Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

 \[y = Ax_0 + \text{noise} \]

- Standard way to recover x_0, use the pseudo-inverse

 \[\text{solve } \min_x \|y - Ax\|_2^2 \iff \hat{x} = (A^T A)^{-1} A^T y \]

- Q: When is this recovery stable? That is, when is

 \[\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2 \quad ? \]
Classical: When can we stably “invert” a matrix?

- Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

\[y = Ax_0 + \text{noise} \]

- Standard way to recover x_0, use the pseudo-inverse

\[
\text{solve } \min_x \|y - Ax\|^2_2 \iff \hat{x} = (A^T A)^{-1} A^T y
\]

- Q: When is this recovery stable? That is, when is

\[
\|\hat{x} - x_0\|^2_2 \sim \|\text{noise}\|^2_2 \ ?
\]

- A: When the matrix A is an approximate isometry...

\[
\|Ax\|^2_2 \approx \|x\|^2_2 \text{ for all } x \in \mathbb{R}^N
\]

i.e. A preserves lengths
Classical: When can we stably “invert” a matrix?

- Suppose we have an \(M \times N \) observation matrix \(A \) with \(M \geq N \) (MORE observations than unknowns), through which we observe

\[
y = Ax_0 + \text{noise}
\]

- Standard way to recover \(x_0 \), use the pseudo-inverse

\[
solve \min_x \|y - Ax\|_2^2 \iff \hat{x} = (A^T A)^{-1} A^T y
\]

- Q: When is this recovery stable? That is, when is

\[
\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2
\]

- A: When the matrix \(A \) is an approximate isometry...

\[
\|A(x_1 - x_2)\|_2^2 \approx \|x_1 - x_2\|_2^2 \quad \text{for all} \ x_1, x_2 \in \mathbb{R}^N
\]

i.e. \(A \) preserves \textit{distances}
Classical: When can we stably “invert” a matrix?

- Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

$$y = Ax_0 + \text{noise}$$

- Standard way to recover x_0, use the pseudo-inverse

$$\text{solve } \min_x \|y - Ax\|_2^2 \iff \hat{x} = (A^T A)^{-1} A^T y$$

- Q: When is this recovery stable? That is, when is

$$\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2$$

- A: When the matrix A is an approximate isometry...

$$(1 - \delta) \leq \sigma_{\min}^2(A) \leq \sigma_{\max}^2(A) \leq (1 + \delta)$$

i.e. A has clustered singular values
Classical: When can we stably “invert” a matrix?

- Suppose we have an $M \times N$ observation matrix A with $M \geq N$ (MORE observations than unknowns), through which we observe

\[y = Ax_0 + \text{noise} \]

- Standard way to recover x_0, use the pseudo-inverse

\[
\text{solve } \min_x \|y - Ax\|_2^2 \iff \hat{x} = (A^T A)^{-1} A^T y
\]

- Q: When is this recovery stable? That is, when is

\[
\|\hat{x} - x_0\|_2^2 \sim \|\text{noise}\|_2^2
\]

- A: When the matrix A is an \textit{approximate isometry}...

\[
(1 - \delta) \|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta) \|x\|_2^2
\]

for some $0 < \delta < 1$
When can we stably recover an S-sparse vector?

Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$
When can we stably recover an S-sparse vector?

- Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

\[y = \Phi x_0 + \text{noise} \]

- We can recover x_0 when Φ is a *keeps sparse signals separated*

\[(1 - \delta)\|x_1 - x_2\|_2^2 \leq \|\Phi(x_1 - x_2)\|_2^2 \leq (1 + \delta)\|x_1 - x_2\|_2^2\]

for all S-sparse x_1, x_2
When can we stably recover an S-sparse vector?

- Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

 $$y = \Phi x_0 + \text{noise}$$

- We can recover x_0 when Φ is a **restricted isometry (RIP)**

 $$(1 - \delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta)\|x\|_2^2 \quad \text{for all } 2S\text{-sparse } x$$
When can we stably recover an S-sparse vector?

- Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

- We can recover x_0 when Φ is a defined restricted isometry (RIP)

$$(1 - \delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta)\|x\|_2^2 \quad \text{for all } 2S\text{-sparse } x$$

- To recover x_0, we solve

$$\min_{x} \|x\|_0 \quad \text{subject to} \quad \Phi x \approx y$$

$$\|x\|_0 = \text{number of nonzero terms in } x$$

- This program is intractable
When can we stably recover an S-sparse vector?

- Now we have an underdetermined $M \times N$ system Φ (FEWER measurements than unknowns), and observe

$$y = \Phi x_0 + \text{noise}$$

- We can recover x_0 when Φ is a restricted isometry (RIP)

$$(1 - \delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta)\|x\|_2^2$$

for all $2S$-sparse x

- A relaxed (convex) program

$$\min_x \|x\|_1 \quad \text{subject to} \quad \Phi x \approx y$$

$$\|x\|_1 = \sum_k |x_k|$$

- This program is very tractable (linear program)
Graphical intuition for ℓ_1

$$\min_x \|x\|_2 \quad \text{s.t.} \quad \Phi x = y$$

$$\min_x \|x\|_1 \quad \text{s.t.} \quad \Phi x = y$$

$\{x' : y = \Phi x'\}$

$\{x' : y = \Phi x'\}$
Sparse recovery algorithms

- Given y, look for a sparse signal which is consistent.
- One method: ℓ_1 minimization (or *Basis Pursuit*)

$$
\min_x \|\Psi^T x\|_1 \quad \text{s.t.} \quad \Phi x = y
$$

$\Psi = \text{sparsifying transform}$, $\Phi = \text{measurement system}$
(need RIP for $\Phi\Psi$)

Convex (linear) program, can relax for robustness to noise

Performance has theoretical guarantees

- Other recovery methods include greedy algorithms and iterative thresholding schemes
Stable recovery

- Despite its nonlinearity, sparse recovery is stable in the presence of:
 - *modeling mismatch* (approximate sparsity), and
 - *measurement error*

- If we observe $y = \Phi x_0 + e$, with $\|e\|_2 \leq \epsilon$, the solution \hat{x} to

 $$\min_x \|\Psi^T x\|_1 \quad \text{s.t.} \quad \|y - \Phi x\|_2 \leq \epsilon$$

 will satisfy

 $$\|\hat{x} - x_0\|_2 \leq \text{Const} \cdot \left(\epsilon + \frac{\|x_0 - x_{0,S}\|_1}{\sqrt{S}}\right)$$

 where

 - $x_{0,S} = S$-term approximation of x_0
 - S is the largest value for which $\Phi \Psi$ satisfies the RIP

- Similar guarantees exist for other recovery algorithms:
 - *greedy* (Needell and Tropp ’08)
 - *iterative thresholding* (Blumensath and Davies ’08)
What kind of matrices are restricted isometries?

- They are very hard to design, but they exist everywhere!

For any fixed $x \in \mathbb{R}^N$, each measurement is

$$y_k \sim \text{Normal}(0, \|x\|_2^2 / M)$$
What kind of matrices are restricted isometries?

- They are very hard to design, but they exist everywhere!

For any fixed $x \in \mathbb{R}^N$, we have

$$\mathbb{E}[\|\Phi x\|^2] = \|x\|^2$$

the mean of the measurement energy is exactly $\|x\|^2$
What kind of matrices are restricted isometries?

- They are very hard to design, but they exist everywhere!

For any fixed $x \in \mathbb{R}^N$, we have

$$
P \left\{ \left| \| \Phi x \|_2^2 - \| x \|_2^2 \right| < \delta \| x \|_2^2 \right\} \geq 1 - e^{-M\delta^2/4}$$
What kind of matrices are restricted isometries?

- They are very hard to design, but they exist everywhere!

\[\Phi \]

For all \(2S\)-sparse \(x \in \mathbb{R}^N\), we have

\[
\mathbb{P} \left\{ \max_x \| \Phi x \|_2^2 - \|x\|_2^2 < \delta \|x\|_2^2 \right\} \geq 1 - e^{c \cdot S \log(N/S)} e^{-M\delta^2/4}
\]

So we can make this probability close to 1 by taking

\[M \gtrsim S \log(N/S) \]
What other types of matrices are restricted isometries?

Four general frameworks:

- Random matrices (iid entries)
- Random subsampling
- Random convolution
- (Randomly modulated integration — we’ll skip this today)

Note the role of randomness in all of these approaches

Slogan: *random projections keep sparse signal separated*
Random matrices (iid entries)

Random matrices are provably efficient

We can recover S-sparse x from

$$M \gtrsim S \cdot \log(N/S)$$

measurements
Rice single pixel camera

(Duarte, Davenport, Takhar, Laska, Sun, Kelly, Baraniuk ’08)
Georgia Tech analog imager

- Bottleneck in imager arrays is data readout
- Instead of quantizing pixel values, take CS inner products in analog
- Potential for tremendous (factor of 10000) power savings
Compressive sensing acquisition

10k DCT measurements

10k random measurements

(Robucci, Chiu, Gray, R, Hasler ’09)
Random matrices

Example: Φ consists of random rows from an orthobasis U

$$\begin{align*}
\mathbf{y} & \quad \Phi \\
\mathbf{x} & \quad = \\
\end{align*}$$

Can recover S-sparse x from

$$M \gtrsim \mu^2 S \cdot \log^4 N$$

measurements, where

$$\mu = \sqrt{N} \max_{i,j} |(U^T \Psi)_{ij}|$$

is the coherence
Examples of incoherence

- Signal is sparse in time domain, sampled in Fourier domain
 \[x(t) \quad \hat{x}(\omega) \]
 - Time domain: \(S' \) nonzero components
 - Frequency domain: measure \(m \) samples

- Signal is sparse in wavelet domain, measured with noiselets
 (Coifman et al '01)
Accelerated MRI

(Lustig et al. '08)
Empirical processes and structured random matrices

- For matrices with this type of \textit{structured randomness}, we simply do not have enough concentration to establish

\[
(1 - \delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta)\|x\|_2^2
\]

“the easy way”

- Re-write the RIP as a the \textit{supremum of a random process}

\[
\sup_x |G(x)| = \sup_x |x^* \Phi^* \Phi x - x^* x| \leq \delta
\]

where the sup is taken over all $2S$-sparse signals

- Estimate this sup using tools from probability theory (e.g. the Dudley inequality) — approach pioneered by Rudelson and Vershynin
Random convolution

- Many active imaging systems measure a pulse convolved with a reflectivity profile (Green’s function).

Applications include:
 - radar imaging
 - sonar imaging
 - seismic exploration
 - channel estimation for communications
 - super-resolved imaging

Using a random pulse = compressive sampling
 (Tropp et al. ’06, R ’08, Herman et al. ’08, Haupt et al. ’09, Rauhut ’09)
Coded aperture imaging
Super-resolved imaging

Ground truth

Uncoded observation (1/16 as many pixels)

Coded observation (1/16 as many pixels)

Reconstruction

CS Reconstruction

(Marcia and Willet '08)
Random convolution for CS, theory

- Signal model: sparsity in *any orthobasis* Ψ
- Acquisition model:
 - generate a “pulse” whose FFT is a sequence of random phases (unit magnitude),
 - convolve with signal,
 - sample result at m *random* locations Ω

$$\Phi = R_\Omega \mathcal{F}^* \Sigma \mathcal{F}, \quad \Sigma = \text{diag}(\{\sigma_\omega\})$$

- The RIP holds for (R ’08)

$$M \gtrsim S \log^5 N$$

Note that this result is *universal*

- Both the random sampling and the flat Fourier transform are needed for universality
Randomizing the phase

local in time

local in freq

not local in M

sample here
Seismic forward modeling

- Run a single simulation with all of the sources activated simultaneously with random waveforms
- The channel responses interfere with one another, but the randomness “codes” them in such a way that they can be separated later

Related work: Herrmann et. al ’09
Restricted isometries for multichannel systems

\[\left[y_k \right] = \Phi h_k \]

- With each of the pulses as iid Gaussian sequences, \(\Phi \) obeys

 \[(1 - \delta) \| h \|_2^2 \leq \| \Phi h \|_2^2 \leq (1 + \delta) \| h \|_2^2 \quad \forall \text{2\text{-}sparse} \ h \in \mathbb{R}^{nc} \]

 when

 \[M \gtrsim S \cdot \log^5(nc) + n \]

 (R and Neelamani '09)

- **Consequence:** we can separate the channels using short random pulses (using \(\ell_1 \) min or other sparse recovery algorithms)
Sampling correlated signals

Goal: acquire an *ensemble* of *M* signals

Bandlimited to *W*/2

“Correlated” → *M* signals are ≈ linear combinations of *R* signals
Sampling correlated signals

Goal: acquire an ensemble of M signals

Bandlimited to $W/2$

“Correlated” \rightarrow M signals are \approx linear combinations of R signals
Sensor arrays
Low-rank matrix recovery

- Given \(P \) linear samples of a matrix,

\[
y = \mathcal{A}(X_0), \quad y \in \mathbb{R}^P, \quad X_0 \in \mathbb{R}^{M \times W}
\]

we solve

\[
\min_X \|X\|_* \quad \text{subject to} \quad \mathcal{A}(X) = y
\]

where \(\|X\|_* \) is the nuclear norm: the sum of the singular values of \(X \).
Low-rank matrix recovery

- Given P linear samples of a matrix,

$$y = \mathcal{A}(X_0), \quad y \in \mathbb{R}^P, \quad X_0 \in \mathbb{R}^{M \times W}$$

we solve

$$\min_{X} \|X\|_* \quad \text{subject to} \quad \mathcal{A}(X) = y$$

where $\|X\|_*$ is the nuclear norm: the sum of the singular values of X.

- If X_0 is rank-R and \mathcal{A} obeys the mRIP:

$$(1 - \delta)\|X\|_F^2 \leq \|\mathcal{A}(X)\|_2^2 \leq (1 + \delta)\|X\|_F^2 \quad \forall \text{ rank-}2R \text{ } X,$$

then we can stably recover X_0 from y.

(Recht et. al ’07)
Low-rank matrix recovery

- Given \(P \) linear samples of a matrix,
 \[
y = \mathcal{A}(\mathbf{X}_0), \quad y \in \mathbb{R}^P, \quad \mathbf{X}_0 \in \mathbb{R}^{M \times W}
\]
 we solve
 \[
 \min_{\mathbf{X}} \|\mathbf{X}\|_* \quad \text{subject to} \quad \mathcal{A}(\mathbf{X}) = y
 \]
 where \(\|\mathbf{X}\|_* \) is the nuclear norm: the sum of the singular values of \(\mathbf{X} \).

- If \(\mathbf{X}_0 \) is rank-\(R \) and \(\mathcal{A} \) obeys the mRIP:
 \[
 (1 - \delta)\|\mathbf{X}\|_F^2 \leq \|\mathcal{A}(\mathbf{X})\|_2^2 \leq (1 + \delta)\|\mathbf{X}\|_F^2 \quad \forall \text{ rank-}2R \mathbf{X},
 \]
 then we can stably recover \(\mathbf{X}_0 \) from \(y \). (Recht et. al '07)

- An 'generic' (iid random) sampler \(\mathcal{A} \) (stably) recovers \(\mathbf{X}_0 \) from \(y \) when
 \[
 \#\text{samples} \geq R \cdot \max(M, W) \\
 \geq RW \quad (\text{in our case})
 \]
If the signals are spread out uniformly in time, then the ADC and modulators can run at rate

\[\varphi \gtrsim RW \log^{3/2}(MW) \]

Requires signals to be (mildly) spread out in time
Summary

- Main message of CS:

 We can recover an S-sparse signal in \mathbb{R}^N from
 \[\sim S \cdot \log N \] measurements

 We can recover a rank-R matrix in $\mathbb{R}^{M \times W}$ from
 \[\sim R \cdot \max(M, W) \] measurements

- Random matrices (iid entries)
 - easy to analyze, optimal bounds
 - universal
 - hard to implement and compute with

- Structured random matrices (random sampling, random convolution)
 - structured, and so computationally efficient
 - physical
 - much harder to analyze, bound with extra log-factors
Friday: Mathematical proof (analysis!)

We will prove two fundamental results in compressive sensing.

Not much background is required:

basic probability (Gaussian random variables, Markov inequality, union bound/Boole inequality,...)

basic linear algebra (operator norm, singular value,...)

basic geometry (triangle inequality, covering a set, ...)
On Friday, we will prove from top to bottom two things:

- That an $M \times N$ iid Gaussian random matrix satisfies
 \[
 (1 - \delta)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \delta)\|x\|_2^2 \quad \forall\ 3S\text{-sparse } x
 \]
 with (extraordinarily) high probability when
 \[
 M \geq \text{Const} \cdot S \log(N/S)
 \]

- Suppose an $M \times N$ matrix Φ obeys (1). Let x_0 be an S-sparse vector, and suppose we observe $y = \Phi x_0$. Given y, the solution to
 \[
 \min_{x} \|x\|_{\ell_1} \quad \text{such that } \quad \Phi x_0 = y
 \]
 is exactly x_0.