Image Deblurring with Krylov Subspace Methods

Per Christian Hansen
Technical University of Denmark

For some details:
see extended abstract.

For more details and references:
see my books.

DTU Informatics
Department of Informatics and Mathematical Modeling
Image deblurring is an inverse problem; hence it is ill posed:
- small perturbation in data →
- large errors in reconstruction

This talk:
- Regularization
- Projection
- CGLS
- Other iterations
- Noise propagation
- Subspace precond.
Sources of Blurred Images
The Deblurring Problem

Fredholm integral equation of the first kind:

\[\int_0^1 \int_0^1 K(x, y; x', y') f(x, y) \, dx \, dy = g(x', y') , \quad 0 \leq x', y' \leq 1. \]

Think of \(f \) as an unknown sharp image, and \(g \) as the blurred version. Think of \(K \) as a model for the point spread function.

Examples of point spread functions:
- Out of focus
- Motion
- Gaussian

Discretization yields a LARGE system of linear equations: \(A x = b \).
But the matrix \(A \) is very ill conditioned, and therefore

Do not solve \(A x = b \)!
Regularize!

We must apply regularization in order to deal with the ill conditioning of the problem and suppress the influence of the noise in the data.

Tikhonov regularization:

$$\min_x \left\{ \| A x - b \|_2^2 + \lambda^2 \| L x \|_2^2 \right\}$$

The choice of smoothing norm, together with the choice of \(\lambda \), forces \(x \) to be effectively dominated by components in a low-dimensional subspace, determined by the GSVD of \((A, L) \) – or the SVD of \(A \) if \(L = I \).

Regularization by projection:

$$\min_x \| A x - b \|_2 \quad \text{subject to} \quad x \in \mathcal{W}_k$$

where \(\mathcal{W}_k \) is a \(k \)-dimensional subspace – works well if this subspace is spanned by desirable basis vectors (think of TSVD: \(\mathcal{W}_k = \text{span}\{v_1, v_2, \ldots, v_k\} \)).
The Projection Method

A more practical formulation of regularization by projection.

We are given the matrix $W_k = (w_1, \ldots, w_k) \in \mathbb{R}^{n \times k}$ such that $\mathcal{W}_k = \mathcal{R}(W_k)$.

We can write the requirement as $x = W_k y$, leading to the formulation

$$x^{(k)} = W_k y^{(k)}, \quad y^{(k)} = \operatorname{argmin}_y \| (AW_k) y - b \|_2.$$

Example: DCT basis

- Operations often do not require W_k explicitly.

- Projected problem
Some Thought on the Basis Vectors

The DCT basis (and similar bases that define fast transforms):

- computationally convenient to work with, but
- may not be well suited for the particular problem.

The SVD basis (or GSVD basis if $L \neq I$) gives an “optimal” basis for representation of the matrix A, but ...

- it is computationally expensive, and
- it does not involve information about the rhs b.

Is there a basis that is computationally attractive and also involves information about b and thus the given problem?

→ Krylov subspaces!
Regularizing Iterations

Apply CG to the normal equations for the least squares problem

$$\min \|A x - b\|_2.$$

This algorithm, called CGLS, produces a sequence of iterates $x^{(k)}$ which solve

$$\min \|A x - b\|_2 \quad \text{subject to} \quad x \in \mathcal{K}_k,$$

where \mathcal{K}_k is the k-dimensional Krylov subspace

$$\mathcal{K}_k = \text{span}\{A^T b, A^T A A^T b, (A^T A)^2 A^T b, \ldots\}.$$

These methods are referred to as regularizing iterations.

Iterative methods are based on multiplications with A and A^T (blurring).
How come repeated blurrings can lead to reconstruction?

\rightarrow CGLS constructs a polynomial approximation to $(A^T A + \lambda^2 I)^{-1} A^T$.
The Behavior of CGLS

CGLS algorithm solves the problem without forming the Krylov basis explicitly. Finite precision: convergence slows down, but no deterioration of the solution. The solution and residual norms are monotone functions of k:

$$\|x^{(k)}\|_2 \geq \|x^{(k-1)}\|_2, \quad \|Ax^{(k)} - b\|_2 \leq \|Ax^{(k-1)} - b\|_2, \quad k = 1, 2, \ldots$$

Same example as before: CGLS iterates
Semi-Convergence

During the first iterations, the Krylov subspace \mathcal{K}_k captures the “important” information in the noisy right-hand side b.

- In this phase, the CGLS iterate $x^{(k)}$ approaches the exact solution.

At later stages, the Krylov subspace \mathcal{K}_k starts to capture undesired noise components in b.

- Now the CGLS iterate $x^{(k)}$ diverges from the exact solution and approach the undesired solution $A^\dagger b$ to the least squares problem.

The iteration number k (= the dimension of the Krylov subspace \mathcal{K}_k) plays the role of the regularization parameter.

This behavior is called semi-convergence.
Illustration of Semi-Convergence

$x^{(0)} \rightarrow x^{(4)} \rightarrow x^{(10)} \rightarrow x^{(50)} \rightarrow x^{(100)} \rightarrow x^{(200)} \rightarrow A^\dagger b$
Advantages of the Krylov Subspace

The SVD basis vectors v_1, v_2, \ldots are well suited for representation of A.

But this basis “does not know” about the given problem – it can not utilize information about the right-hand side b.

The Krylov subspace \mathcal{K}_k “knows” about the right-hand side and therefore adapts itself to the given problem, through the starting vector

$$A^T b = A^T A x^{\text{exact}} + A^T e = \sum_{i=1}^n \sigma_i^2 (v_i^T x^{\text{exact}}) v_i + \sum_{i=1}^n \sigma_i (u_i^T e) v_i.$$

Hence the Krylov basis vectors are rich in those directions that are needed.

$$x^{(k)} = \sum_{i=1}^n f_i^{(k)} \frac{u_i^T b}{\sigma_i} v_i, \quad f_i^{(k)} = \prod_{j=1}^k \frac{\theta_j^{(k)} - \sigma_i^2}{\theta_j^{(k)}}$$

Here $\theta_j^{(k)}$ are the Ritz values, i.e., the eigenvalues of the projection of $A^T A$ on the Krylov subspace \mathcal{K}_k. They converge to those σ_i^2 whose corresponding SVD components $u_i^T b$ are large.
CGLS Focuses on Significant Components

Example: **phillips** (from Regularization Tools).
Exact solution has many zero SVD coefficients.
- TSVD solution x_k includes all coef. from 1 thru k.
- CGLS solution $x^{(k)}$ includes only those coef. we need.

CGLS suppresses noise better than TSVD in this case.
Another Story: CGLS for Tikhonov

Of course, one could also use CGLS to solve the Tikhonov problem in the form

$$\min_x \left\| \begin{pmatrix} A \\ \lambda L \end{pmatrix} - \begin{pmatrix} b \\ 0 \end{pmatrix} \right\|_2^2.$$

But this approach typically requires that the system is solved many times, for many different values of λ.

Also, preconditioning is often necessary – but it can be difficult to design a good preconditioner for the Tikhonov problem.

We shall not pursue this aspect further in this talk.
Other Krylov Subspace Methods

Sometimes it is impractical to use methods that need A^T, e.g., if A is symmetric or if we have a black-box function that computes $y = Ax$.

MINRES and GMRES come to mind – these methods are based on the Krylov subspace:

$$K_k = \text{span}\{b, Ab, A^2b, \ldots, A^{k-1}b\}.$$

Unfortunately it is a bad idea to include the noisy vector b in the subspace. A better choice is the “shifted” Krylov subspace:

$$\tilde{K}_k = \text{span}\{Ab, A^2b, \ldots, A^kb\}.$$

The corresponding methods are called MR-II and RRGMRES (they are now included in Regularization Tools).

Example on next slide.
We find:

♥ The absence of b in the Krylov subspace is essential for MR-II.

♦ MR-II computes a filtered SVD solution.

♣ Negative eigenvalues of A do not inhibit the regularizing effect of MR-II, but they can slow down the convergence.

♦ RRGMRES mixes the SVD components in each iteration and $x^{(k)}$ is not a filtered SVD solution.

♣ RRGMRES works well if the mixing is weak (e.g., if $A \approx A^T$), or if the Krylov basis vectors are well suited for the problem.
Progress of the Iterations

CGLS:
k = 4, 10
and 25 iterations

Initially, the image gets sharper – then “freckles” start to appear.

Low frequencies carry the main information.

“Freckles” are band-pass filtered noise.
Noise Propagation

CGLS solution can be written in terms of a matrix polynomial:

\[x^{(k)} = \mathcal{P}_k(A^T A) A^T b, \]

where \(\mathcal{P}_k(\theta) = (1 - \mathcal{R}_k(\theta))/\theta \) and \(\mathcal{R}_k \) is the Ritz polynomial associated with the Krylov subspace \(\mathcal{K}_k \).

Thus \(\mathcal{P}_k \) is fixed by \(A \) and \(b \), and if \(b^{\text{exact}} = b + e \) then

\[x^{(k)} = \mathcal{P}_k(A^T A) A^T b^{\text{exact}} + \mathcal{P}_k(A^T A) A^T e \equiv x^{(k)}_{b^{\text{exact}}} + x^{(k)}_e. \]

Similarly for the other iterative methods.

Note that signal component \(x^{(k)}_{b^{\text{exact}}} \) depends on the noise \(e \) via \(\mathcal{P}_k \).
Signal and Noise Components

\[x^{(k)} = \mathcal{P}_k(A^T A) A^T b = \mathcal{P}_k(A^T A) A^T b^{\text{exact}} + \mathcal{P}_k(A^T A) A^T e. \]

Note that the noise components (the freckles) are correlated with structures in the image!

Two different matrices \(A \)

Tends to mask the appearance of the noise!!
Same Behavior in All Methods

The noise components are always correlated with the image!
General-Form Tikhonov Regularization

CGLS is linked to the SVD of A and thru the Krylov subspace, the Ritz polynomial, and the convergence of the Ritz values.

Thus CGLS is also related to Tikhonov regularization in standard form

$$\min_x \left\{ \|Ax - b\|_2^2 + \lambda^2 \|x\|_2^2 \right\}$$

But occasionally we prefer the *general* formulation

$$\min_x \left\{ \|Ax - b\|_2^2 + \lambda^2 \|Lx\|_2^2 \right\}, \quad L \neq I.$$

How do we modify CGLS such that it can incorporate the matrix L?

Use the *standard-form transformation*

$$\min_{\tilde{x}} \|\overline{A} \tilde{x} - b\|_2^2 + \lambda^2 \|\tilde{x}\|_2^2 \quad \text{with} \quad \overline{A} = AL^\# \quad \text{and} \quad x = L^\# \tilde{x} + x_N,$$

where $L^\# = \text{oblique pseudoinverse of } L$ and $x_N \in \mathcal{N}(L)$.

Subspace Preconditioning

If we apply CGLS to the standard-form problem

$$\min_{\bar{x}} \| \bar{A} \bar{x} - b \|_2^2 + \lambda^2 \| \bar{x} \|_2^2,$$

then the iterates, when transformed back via $L^\#, \text{ lie in the affine space}$

$$\text{span}\{MA^T b, (MA^T A) MA^T b, (MA^T A)^2 MA^T b, \ldots\} + x_N,$$

where $M = L^\#(L^\#)^T$.

Hence L is a preconditioner for CGLS that provides a better suited subspace.

The Krylov subspace methods are implemented such that \bar{A} is never formed.

How is the oblique pseudoinverse $L^\#$ defined? And why this particular matrix?

Outside scope of this talk.

Next slide please ...
Write $x = x_\mathcal{M} + x_\mathcal{N}$ with $x_\mathcal{N} \in \mathcal{N}(L)$ and $x_\mathcal{M}$ being $A^T A$–orthogonal to $x_\mathcal{N}$. This corresponds to an oblique splitting of the subspace \mathbb{R}^n.

Then the vector $A x = A x_\mathcal{M} + A x_\mathcal{N}$ splits into two orthogonal components.

The Tikhonov problem reduces to two independent problems for $x_\mathcal{M}$ and $x_\mathcal{N}$:

$$\min \|A x_\mathcal{M} - b\|_2^2 + \lambda^2 \|x_\mathcal{M}\|_2^2 \quad \text{and} \quad \min \|A x_\mathcal{N} - b\|_2^2.$$

Since $x_\mathcal{M} = L^\# L x$ we get $A x_\mathcal{M} = (A L^\#) (L x) \to$ the standard-form problem.
Conclusion

An important area with plenty of
• theoretical aspects,
• computational challenges, and
• important applications.

More stuff not covered here:
• Boundary conditions
• Stopping criteria
• Hybrid methods: projection + regularization
• Nonnegativity constraints
• Other iterative methods: ART, SIRT, Richardson-Lucy, ...
• Blind deconvolution
• Applications in astronomy, biometrics, computer-vision, ...