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Krylov Subspace Methods
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Image Deblurring

Sharp image
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Forward problem This talk:

Blurred image

Regularization
Projection

CGLS

Other iterations
Noise propagation
Subspace precond.
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e small perturbation in data —
e |arge errors in reconstruction

Image deblurring is an inverse problem; hence it is ill posed:
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Sources of Blurred Images =
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The Deblurring Problem

Fredholm integral equation of the first kind:

1 1
/ / K(z,y;2",y') f(z,y)dedy = g(2',y"), 0<2,y <1
0 0

Think of f as an unknown sharp image, and g as the blurred version.

Think of K as a model for the point spread function.

out of focus motion Gaussian

Examples of
point spread functions :> n . n

Discretization yields a LARGE system of linear equations: Ax = b.

But the matrix A is very ill conditioned, and therefore

Do not solve Ax =10 ! 9
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Regularize!

We must apply regularization in order to deal with the ill conditioning of the
problem and suppress the influence of the noise in the data.

Tikhonov regularization:

min {[| Az — b3 + X | L3}

The choice of smoothing norm, together with the choice of A, forces = to be

effectively dominated by components in a low-dimensional subspace, determined
by the GSVD of (A, L) — or the SVD of A if L = 1.

Regularization by projection:

min ||[Az — b||2  subject to x € Wy
xT

where W is a k-dimensional subspace — works well if this subspace is spanned
by desirable basis vectors (think of TSVD: W), = span{vy,va,...,vr}).
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The Projection Method

A more practical formulation of regularization by projection.
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We are given the matrix Wy, = (wy,...,wy) € R"** such that W, = R(Wy).

We can write the requirement as x = Wy y, leading to the formulation

Example:

DCT basis
—

6

Operations
often do not
require W

explicitly.

(k) — Wi y(k)7

y(k’) = argmin,, |I(AWy)y — b|2.

u Projected problem

2l k=1 n 2lk=2 n 20k=3 n 2lk=4 n
i i I I
T st 11 » 1 1 i 1 i
F L1 bl | A | A |

of of of of
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Some Thought on the Basis Vectors

The DCT basis (and similar bases that define fast transforms):
e computationally convenient to work with, but
e may not be well suited for the particular problem.

The SVD basis (or GSVD basis if L = I) gives an “optimal”
basis for representation of the matrix A, but ...

e it is computationally expensive, and
e it does not involve information about the rhs b.

Is there a basis that is computationally attractive and also
involves information about b and thus the given problem?

— Krylov subspaces!
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Regularizing Iterations

Apply CG to the normal equations for the least squares problem
min ||[Ax — b2 .
This algorithm, called CGLS, produces a sequence of iterates 2(¥) which solve
min ||Ax — b2 subject to e K,
where K} is the k-dimensional Krylov subspace
K = span{ATb, ATAATH, (ATA)*ATp, ..} .

These methods are referred to as regularizing iterations.

[terative methods are based on multiplications with A and A? (blurring).

How come repeated blurings can lead to reconstruction?

— CGLS constructs a polynomial approximation to (A7 A + \2I)~1 AT,
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The Behavior of of CGLS =

P

CGLS algorithm solves the problem without forming the Krylov basis explicitly.
Finite precision: convergence slows down, but no deterioration of the solution.

The solution and residual norms are monotone functions of k:

[2 P2 > [V, (|42 —blla < A2V b2, k=1,2,..

Same example as before: CGLS iterates

21k=5 21k=6
1/\N 1W\
0 0

0O 5 100 0 50 100
21 k= 2 1kI411

1 1 !.,_J'

0 0

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100

9 P. C. Hansen - Image Deblurring Woudschoten Conference 2011



1

Semi-Convergence

During the first iterations, the Krylov subspace K captures the

“important” information in the noisy right-hand side b.

e In this phase, the CGLS iterate z(*) approaches the exact solution.

At later stages, the Krylov subspace K starts to capture undesired

noise components in b.

e Now the CGLS iterate ¥ diverges from the exact solution and

approach the undesired solution A'h to the least squares problem.

The iteration number k£ (= the dimension of the Krylov subspace Kj)

plays the role of the regularization parameter.

This behavior is called semi-convergence.
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Illustration of Semi-Convergence
/ x(4)
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Advantages of the Krylov Subspace

The SVD basis vectors vy, v2, ... are well suited for representation of A.

But this basis “does not know” about the given problem — it can not utilize
information about the right-hand side b.

The Krylov subspace K “knows” about the right-hand side and therefore adapts
itself to the given problem, through the starting vector

ATb = AT Agexact 4 ATe =5 o2 (v a®@) 9, + 377 0 (ul e) v;.

i

Hence the Krylov basis vectors are rich in those directions that are needed.

(k) 2
B =n (k) uTb (k) _ 7k 9~
(%) —Zizl fz o, Ui fz —Lllj=1" &
J

Here 9‘5—!{] are the Ritz values, i.e., the eigenvalues of the projection
of AT A on the Krylov subspace K. They converge to those o?

whose corresponding SVD components u! b are large.

SVD analysis
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CGLS Focuses on Significant Components

Example: phillips (from Regularization Tools).

Exact solution has many zero SVD coefficients.

e TSVD solution x, includes all coef. from 1 thru k.

e CGLS solution xt) includes only those coef. we need.

Picard plot o Error histories
. , : 10 .
10° -8%“8030 | TSVD
890 10'1 +CGLS
-2 | OEO00, _
10 0 % "8gogopon)
10°1 o o 0 | 10°
lu'b|
-5 i -3
10 r : 10 ' .
0| ¢ l4bl 20 30 0 5 10 15

CGLS suppresses noise better than TSVD in this case.
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Another Story: CGLS for Tikhonov =
Of course, one could also use CGLS to solve the Tikhonov problem in the form
AN e\

) T \o)|,

But this approach typically requires that the system is solved many times, for
many diffrent values of A.

Also, preconditioning is often necessary — but it can be difficult to design a good
preconditioner for the Tikhonov problem.

We shall not pursue this aspect further in this talk.
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Other Krylov Subspace Methods =

Sometimes it is impractical to use methods that need A%, e.g, if A is symmetric
or if we have a black-box function that computes y = A x.

MINRES and GMRES come to mind — these methods are based on the Krylov
subspace:
Ky = span{b, Ab, A®b, ..., A¥=1p}.

Unfortunately it is a bad idea to include the noisy vector b in the subspace.

A better choice is the “shiftet” Krylov subspace:
K. = span{Ab, A%, ..., A*b}.

The corresponding methods are called MR-II and RRGMRES (they are now
included in Regularization Tools).

Example on next slide.
I
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Comparing Krylov Methods

MINRES CGLS

MR-11

16

O Iterations

P. C. Hansen - Image Deblurring
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20 iterations

=
=
—

i

We find:

v The absence of b in the
Krylov subspace is essen-
tial for MR-II.

& MR-II computes a filter-
ed SVD solution.

+« Negative eigenvalues of
A do not inhibit the regu-
larizing effect of MR-II,
but they can slow down
the convergence.

¢ RRGMRES mixes the
SVD components in each
iteration and x{) is not a
filtered SVD solution.

RRGMRES works well if
the mixing is weak (e.g, if
A = A7), or if the Krylov
basis vectors are well
suited for the problem.
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Progress of the Iterations =

CGLS:
k=410
and 25
iterations

Initially, the image gets sharper - then “freckles” start to appear.

Low pass Band pass High pass
. :ﬁ‘: 1o JaiT ._.. 2
Low frequencies carry e ;ég? 2 |
the main information. G 5 ; s | o
()
% -1

—

"Freckles” are band-
pass filtered noise.

spatial
domain
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Noise Propagation

CGLS solution can be written in terms of a matrix polynomium:

*) =P (AT A) ATb,

where Pr(0) = (1 — Ry(0))/0 and Ry is the Ritz polynomium

associated with the Krylov subspade ICy.

Thus Py, is fixed by A and b, and if 5°*?°* = b + e then

ZE(k) — Pk;(ATA) ATbexact 4 Pk(ATA) ATG — xl()]:zact 4+ xék)

Similarly for the other iterative methods.

(k)

I

Signal
component

Noise

component

Note that signal component ;... depends on the noise e via P.
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Signal and Noise Components

r*) = P (AT A) AT = Pi(ATA) ATo Py (AT A) ATe

Note that

the noise
components
(the freckles)
are correlated
with structures
in the image!

\

Tends to mask
the appearance
of the noise!!

g

Two different
matrices A
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Same Behavior in All Methods

Syvmmetric A Nonsymmetric A

CGLS

GMRES

RRGMRES

L |
L]

(k)

xbexact

The noise components are always correlated with the image!
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General-Form Tikhonov Regularization

CGLS is linked to the SVD of A and thru the Krylov subspace, the Ritz poly-
nomium, and the convergence of the Ritz values.

Thus CGLS is also related to Tikhonov regularization in standard form
min {]| Az — b3 + A2 Je3}
But occationally we prefer the general formulation
win { Ao — b5 +2* |Lal3},  LAT.
How do we modify CGLS such that it can incorporate the matrix L7

Use the standard-form transformation

min ||AZ — b||3 + \?||Z]|3 with A=AL¥ and xz=L"Z+zu,
where L# = oblique pseudoinverse of L and zx € N(L).

21 P. C. Hansen - Image Deblurring Woudschoten Conference 2011



Subspace Preconditioning

If we apply CGLS to the standard-form problem

min [ 4z - bJ} + X*|z/j3

WE

—

then the iterates, when transformed back via L#, lie in the affine space

span{MATY, (MAT A) MATb, (MATA?MATS, ..} + 2p

where M = L#(L#)T.

Hence L is a preconditioner for CGLS that provides a better suited subspace.

The Krylov subspace methods are implemented such that A is never formed.

How is the oblique pseudoinverse L# defined? And why this particular matrix?

|

Outside scope
of this talk.
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Splitting! =
R(AL7 L)+ R™
L _________ Aa
Az I
: R(AL¥ L)
’.Ji
A Ty

Write © = zaq + 2 with 2pr € N (L) and x being ATA-orthogonal to z .

This corresponds to an oblique splitting of the subspace R™.

Then the vector Ax = Az + A xp splits into two orthogonal components.

The Tikhonov problem reduces to two independent problems for x s and xas:
min [Azp — b3+ N2 Jzpl3  and  minfAzy — b3,
Since xaq = L# Lz we get Axpg = (AL¥) (L x) — the standard-form problem.
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Conclusion

An important area with plenty of
e theoretical aspects,

e computational challenges, and
e important applications.

More stuff not covered here:

24

Boundary conditions
Stopping criteria
Hybrid methods: projection + regularization
Nonnegativity constraints

Other iterative methods: ART, SIRT, Richardson-Lucy, ...
Blind deconvolution

Applications in astronomy, biometrics, computer-vision, ...
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