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Our “Tool”: Total Variation

Total Variation is a well-known mathematical and 
computational tool for image reconstruction.

Example: image in-painting.

We will discuss its application in tomographic imaging.
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Our Problem: Tomography

Image reconstruction

from projections

Medical scanning

Mapping of metal grains

100 m
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The Origin of Tomography

Johan Radon, Über die Bestimmung von Funktionen 
durch ihre Integralwerte Längs gewisser Mannings- 
faltigkeiten, Berichte Sächsische Akadamie der 
Wissenschaften, Leipzig, Math.-Phys. Kl., 69, pp. 
262-277, 1917.

Main result: An object can be perfectly reconstructed 
from a full set of projections.

NOBELFÖRSAMLINGEN KAROLINSKA INSTITUTET
THE NOBEL ASSEMBLY AT THE KAROLINSKA INSTITUTE
11 October 1979
The Nobel Assembly of Karolinska Institutet has decided today to 
award the Nobel Prize in Physiology or Medicine for 1979 jointly to 

Allan M Cormack and Godfrey Newbold Hounsfield 

for the "development of computer assisted tomography".
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Reconstruction via “Analytic” Transform

The medical CT reconstruction method of choice is often the  
Inverse Radon Transform, implemented as the Filtered Back 
Projection or Feldkamp-Davis-Kreiss methods (2D & 3D).

Implementation: FFTs + low-pass filtering + interpolation.

Advantages:

• Fast – relies on the FFT

• Low memory requirements

Drawbacks:

• Needs lots of data for accurate images

• Difficult to incorporate requirements on the reconstruction
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Reconstruction via an Algebraic Model

Damping of i-th X-ray through domain:

bi =
R
rayi

(s) d`, (s) = attenuation coef.

Discretization leads to a large, 
sparse, ill-conditioned system:

Ax = b

Geometry

Image

Projections Noise

b̄ = A x̄

b = b̄+ e
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Analytic reconstruction (e.g., FBP, FDK):
• Fast, limited memory, many years of experience.
• May need lots of data.
Algebraic reconstruction (e.g., TV):
• Potential for better reconstructions.
• Slow, memory demanding, limited understanding of parameters

Comparison (Cone Beam + Head Phantom)

J. Bian et al., 
Phys. Med. Biol. 
55 (2010), 6575
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Tomographic Imaging = Inverse Problem

Inverse problems are ill posed.

Discretizations of inverse problems are ill conditioned.

We must use regularization to define/compute a stable solution.

No regularization:

reconstruction has artifacts (often severe) from the noise.

Regularization:

reduces noise artifacts but introduces other types of artifacts!

ringing stair-
casing
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Regularization = Incorp. of Prior Information

The regularized problem is an optimization problem of the form

minx 0 f(x), f(x) = 1
2kAx bk22 + (x).

The regularization function expresses prior information 
about the solution.  1-D examples:

(x) = kxk22
(x) = kDxk22 D = some deriv. op.

(x) = kD1xk1 D1 = 1. deriv. op.

Solution is smooth (compressible repr. in spectral basis):

Solution is piecewise smooth (sparse repr. of the gradient):
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Total Variation Allows Steep Gradients

1-D continuous formulation:

Example (2-norm penalizes steep gradients, TV doesn’t):

TV (g) =
°°g0
°°
1
=

Z
|g0(t)| dt

2-D and 3-D continuous TV formulations:

TV (g) =
°° k gk2

°°
1
=

Z
k g(t)k2 dt
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TV Produces a Sparse Gradient Magnitude

Underlying assumption or prior knowledge: 
the image consists (approx.) of regions with 
constant intensity.

Hence the gradient magnitude (2-norm of 
gradient in each pixel) is sparse.
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Experience shows that the TV prior is often 
so “strong” that it can compensate for a 
reduced amount – or quality – of data.

This talk: a closer study of this claim.

TV = 1-norm of the gradient magnitude,

= sum of 2-norm of gradients.
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Is TV Really Better?  No Simple Answer!

Is the TV prior so strong that it can compensate for a reduced 
amount – or quality – of data?

A careful study must consider all steps in the solution process.

Medical 
scanner

Mathemati- 
cal model

Reconstruc. 
model

Numerical 
algorithm

dose/intensity
# views
# detector bins

noise model
# data
# pixels/voxels reg. function

reg. param.

stopping criterion
initial point

Parameters
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Case Studies – Micro-Calcifications in Breasts

Micro-calcifications 
 

an early 
indicator of a developing cancer.

Their tiny size and high contrast 
make accurate imaging a challenge.

Simulated test image: cross section of a female breast, four 
tissue types with different gray level intensities

1. skin,

2. fat,

3. fibro-glandular tissue (having 
a realistic complex structure),

4. micro-calcifications.

© Geneva Foundation for Medical 
Education and Research 

Our simulated image, with 
”region of interest” inserted
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Simulation Studies

1. Dose and number of views

2. Number of views and bins on detector

3. TV versus 2-norm regularization

4. Regularization parameter

5. Stopping criterion

Medical 
scanner Mathemati- 

cal model Reconstruc. 
model

Numerical 
algorithm

dose/intensity
# views
# detector bins

noise model
# data
# pixels/voxels reg. function

reg. param.
stopping criterion
initial point

1.
2.

3. 4.

5.
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1: Dose and Number of Views

Max accumulated X-ray dose:

• safety requirements in a medical scan,

• material limitations in nondestructive testing.

The product of dose intensity and #views is constant.

What is better:

• few views with high dose and high SNR, or

• many views with low dose and lower SNR?

Measurements are photon counts – Poisson statistics:

SNRpixel =
count
st.dev.

count
count

= count,

i.e., high dose 
 

high SNR.
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FB
P

T
V

64 128 256 512 views

FBP: Results improve slightly with #views; lots of HF-structure noise.

TV: Visual appearance varies significantly with #views; cartoon artifacts 
dominate. As the SNR deteriorates:

• size of piecewise-constant regions increases,
• while their number decreases.

Conclusion: very 
different images!
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2: Number of Views and Bins on Detector

The condition number reflects the “difficulty” of the problem.

Our observations for TV reconstruction:

• cond(A) decays fast with increasing #bins and slower with #views.

• Suggests the choice #bins 
 

2N & #views 
 

2N for this problem.

• Increasing parameters further reduces cond(A) marginally.

Conclusion: “small” no. of views or bins gives well-cond. problem.

Image is
N N with
N = 32.
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3. TV versus 2-Norm Regularization

(x) = kxk2
(x) =

P
i kDi xk2

Main observations:
• TV model gives much lower RMSE than the 2-norm model as 

#views decreases.
• RMSE for TV is almost independent of #views as long as 

#views > 100, and increases dramatically for fewer views.
• RMSE for 2-norm increases steadily as #views decreases.
Conclusion: TV represents a strong prior which is able to 

compensate for the reduction in the amount of data.

RMSE = || exact image – reconstruction ||2

Two models 

 

two different types of artifacts 

 

RMSE does not tell the whole story.
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4. The TV Regularization Parameter

Image deblurring 
example illustrates 
the role of the regu- 
larization parameter.

Small :
• noise dominates
Large 

 

:
• cartoon artifacts
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4a. The Influence of 
 

on the Reconstruction

 
is too large: the inverted 

noise is suppressed but the 
regions of constant intensity 
are too large.

 
is too small: f(x) is domi- 

nated by the residual norm, 
and the solution is domi- 
nated by inverted noise.

Many details without being 
influenced by the noise.

Conclusion: must 
choose a good .
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4b. The Influence of 
 

on the Problem

GP Standard gradient projection algorithm.
GPBB GP with Barzilai-Borwein acceleration.
UPN0 Optimal first-order method.
UPN Ditto that exploits strong convexity.
The four methods differ by the amount of 
information about the problem they exploit.
UPN0 and UPN estimate the needed infor- 
mation during the iterations.

As 

 
increases, the TV regularization term in 

f(x) becomes increasingly important and the 
problem becomes more difficult to solve.

 

increasing no. of iterations for all methods.

Conclusions:
• GPBB is always superior to GP.
• For large 

 
(harder problems) the optimal 

first-order methods are even faster.
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5. The Stopping Criterion

Profile through a single 
micro-calcification

• As the number of iterations increases the sharp peak gets better resolved.
• Low-frequency components are captured after a small number of iterations.
• Many more iterations are needed to capture the peak’s shape and magnitude.

Conclusion: The TV model focuses on providing an accurate representation 
of the gradient, and it is important to be close to the minimum of f(x).
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Summing Up

 

TV is useful for image processing (denoising, deblurring).

 

TV regularization is also useful in tomography for 
reconstructing sharp edges under low-SNR conditions.

 

Reason: TV enforces a useful type of sparsity.

 

Important to choose the correct regularization parameter.

 

TV regularization is computationally demanding when the 
TV-term dominates the objective function.

 

Important to be close to minimum of objective function.

 

The interplay between model and algorithm parameters is 
quite complicated.

 

More research needed to make TV practically useful in 
tomography! 
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1-norm: Enforcing sparsity

• Last decade: Explosion in signal proc. Work 
using L1-norm as sparsity inducing prior, e.g. 
Compressed Sensing, Sparse Approximation.

• Core idea: Use L1-norm penalty on the signal 
or some transform or function of the signal.

• p smaller than 1: More sparsity enforcing
• p larger than or equal to 1: Convex opt. prob.
• p = 1: Good compromise.
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“Nitty Gritty” Details of TV
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