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Geometric structures
underlying

mimetic approaches

to the discretization of
Maxwell's equations



A tour of the workshop



Vector: Covector:
(v ;w)=Dbl/a

(VlI‘tllE.ll) displacement, e <vitt, waek> force,
velocity, ... 15 Imear map, L.¢., momentum, ...

a covector, say f.

are vectors wit.work>=(v:f)  QI'€¢ COVEeCtors



Vector: Covector:

(v ;w)=Dbl/a
s

/ % D
Q

<V X (D> =V - 2 —but "proxy vector" €2 depends

on (most often, irrelevant) metric of ambient space



Vector

Covector

Come also in @
"twisted" variety w

(also called "axial" vectors or covectors)



p_Vect()I‘S : (Grassmann algebra)

Case p =2 (bivector) (denoted v AW or vvw)
) ("wedge") ("join")

{v,w} ~ {v',w} ~ {v',w'}

p-COV@CtOrS Grassmann algebra
of multi-covectors, too W AT
VVW
W wedge T N
v product D

(VVw,; wA’ﬂ) (V; oXW;Nn)—(W; w)(Vﬂ])



Orientation, twisted objects

Or e {direct, skew } Or=2 & -0r=%,

On the set of pairs {w, Or}, equivalence relation:

{w,Or} ~{-m,-0r}

Then o = equivalence class



Outer orientation:

Of vector subspace: an orientation of (one of
1ts) complement(s)

Of affine subspace: an outer orientation of the
vector subspace parallel to 1t

Of submanifold: consistent orientations of all
its tangent spaces




O@’ects we'll work with - stmigﬁt

O Affine 3D space, with associated vector space,
but no orientation, no metric structure (for a while)

O Points, vectors, multivectors  (Grassmann algebra)

; , 2 3 —

O Smooth sub-manifolds, with own orientation:




O@’ects we'll work with - twisted

O Affine 3D space, with associated vector space,
but no orientation, no metric structure (for a while)

O Points, vectors, multivectors  (Grassmann algebra)

Q:+

O Sub-manifolds, with own outer orientation:

) &\C/\\j;)@




Mathematical physics

Calculus

—>
Computers

Numerical models

Discrete calcul

us?

Retormulating theories:

B,H, E, ... are just elements of a mathematical

representation of electromagnetic phenomena, and
not necessarily the right objects to deal with




Most physical fields are covector-fields
rather than vector fields

..BE=—gradv

Ambient = /Z

electric field ... Charged body at
potential V

a field of B T .. X = e(X),
covectors... T denoted e.

/

—_ e

Ground at potential O



Most physical fields are covector-fields
rather than vector fields

Ambient / . |

electric field ... Charged body at .. B=—grad v
potential V

a field of . X = e(X),

covectors... denoted e.

Ground at potential O



Most physical fields are covector-fields
rather than vector fields

Ambient =

electric field ... Charged body at .. BE=— grad \Y%
potential V

a field of . X = e(X),

covectors... denoted e.

Ground at potential O

V=limZ (v ; ex))=f e=(c;e)



E
(the vector field)

as a JOT' oxyfor

C
(the 1-form)

Cﬁcmge e cﬁcmge E (and 1), for same e

The observable 1s not E but e, the form




So what counts 1s the

ORIENTED LINE — REAL

map, denoted ¢ here

(later called cochain)



Same about magnetic induction b:

A field of 2-covectors
b(x) (S;b)=limX. (v;Vw,;b(x))

G




Same about magnetic induction b:

A field of 2-covectors
b(x) (S;b)=limX. (v;Vw,;b(x))

@ = be Faraday:
X

d|[J] b]+ =0

TN

(S :b)+(dS;e)=0

i.e.,1f one defines d by
(S ;de)=(aS ;e),

8p+de=0




B
(the vector field)
S

as a JOTO)CnyT

b
(the 2-form)

Cﬁange e cﬁange B (and n), for same b

The observable 1s not B but b, the 2-form

Cﬁcmge & o O, cﬁange B to -B, for same b




Slightly different for h and j:

x J(x)

] 1s a field of "twisted" 2-covectors

h a field of twisted covectors

~Vector: ~ Covector:
O Iy
e

Ampere (in statics): dh = j



] as ad Jomxyfor J

(the vector field) (the 2-form)
y >
[iz [ 0o
S J S

Cﬁange e cﬁange J (and n), for same |
The observable 1s not J but j, the 2-form

Ambient space orientation, or 22, frrelevant



° Fields of p-covectors are called p-forms
(for "differential forms of degree p")
o Quite often, physical fields are usefully
modelled by p-forms

0 p-forms, meant to be integrated over p-
submanifolds (of space, or spacetime)

o Two kinds of forms, depending on which kind of
orientation 1s conferred to the manifold:

Qstraight twisted
(inner orientation) (outer oriente@

o Highly meaningful distinction in physics: straight [resp. twisted]
forms represent intensive [resp. extensive] entities



The concept of chain:

I-chains: 2-chains:
Embed set Same with
of curves in “1 S surfaces
vector space 9 Cjy @ etc.:
of singular 1- — p
chains p-chains
<:=1r1<:1+r2(:2+r3c:3 e.g., S=5,-5,

C
Boundary operator 0: @% dS =C, —C,+Cj
2

(Linear map: (9(81 — Sz) = 881 — 882 )

What about dual oﬁjects (linear ﬂncﬂ’onafs), called cochains?



Chains model probes. Cochains model fields.

v
Voltmeter- /;3 emtf. V= fc e
p=1 Electric field seen as map

¢ — <emf along c>,

map here denoted e,
Fluxmeter: a 1-cochain.

Magnetic induction as map b,

(P=2) @ (D the 2-cochain

S — <flux embraced by S>.

Small probe <—> p-vector Local field <—> p-covector



Maxwell's
Theory



Faraday's law, in terms of cochains:

Le o 4
as

VO [fS W€ 661’5

for all 2-chains S,

élt f b + f G
S 0S
?2-cochain J L I-cochain

or d.b+de=0, with d defined by fS de = fas C



Ampere-Maxwell's law, 1n terms of cochains:
L= L
amperes | 02 coulombs

for all 2-chains >,

glven
f d +f h f J (—2 cochain
2-cochain J k ~

I-cochain
or —d.d + dh =}







-9 Jd+ [ h=]] v@

b=ph >? < d=ce

atfsb+fase:0 V@

(—d D+rotH=1J, 0, ,B+rotE=0)



The real nature @C o (“’l—ﬁ)o@e cyemtvr”):

b:a map of type SURFACE — REAL

("2-cochain")

h : amap of type LINE — REAL

("T—cochain")




_> °
S = vectorial area of S
_>

vector along vy /S

—> -

S ¥
area(S)  length(y)




S = vectorial area of S
_>

vector along vy /S s /

—> -

S
area(S) _ length(y) ° MH

B e

1 1
area(S) f 0 =gy -[y h

which defines 2-form b knowing
scalar factor u and 1-form h



Tﬁe ’J—[oc{('qe (?}081’ ator:




Further structuration of space: the Hodge map

VECTOR —s (n— 1)-VECTOR

twisted or straight straight or twisted
Equip space with Only requirement,
such a map, v. "non-degeneracy".
(Another one, (Volume v v vv, built
denoted ¢, will / on v and its image,

be needed.) must be #0.)
V
P @

Determines a metric ("v-adapted")

(Select reference 3-vector A and real A. Set vV vy = IVI;ZL A,

hence a norm, scaling as A. Adjust A for A-volume of Atobe A2)



By duality, yields Hodge map on covectors:

1-VECTOR~— 2-VECTOR

_V.@

1-covector 2-covector

(Vv ;Vb) = <VV ' b)

1-vector 2-vector

~1-COVECTOR «— 2-COVECTOR

Hence relation h = vb (and also d = ce) between cochains, i.e., fields



S0 space geo-metry (1n the strong sense of
assigning metric properties —distances, areas,
angles, etc.—to the space we inhabit) amounts to
specitying constitutive laws 1n electrodynamics.

O  Should not sound strange: Don't we use
light rays to measure the Earth?

O  Why two metrics (v = u_l and ¢)? Because 3D
shadows of Minkowski's 4D (pseudo-)metric

O e#¢,and pu#p, when we wish to ignore
details of microscopic interactions and
geometrize them wholesale



Maxwell, in terms of cochains:

_atfzd-l_ ‘gzhzfzj VQ —dd+dh=]

d=¢ce h=vb d=¢e
h=vb
atfsb-l_fase:() VQ db+de=0
straight twisted
1 e h

2 b d, ]



Maxwell, in terms of cochains:

_atfzd-l_ ‘gzhzfzj VQ —dd+dh=]

d= ce h=vDb d=ce

h=vb
o0 b+] e=0 VQ 9 b+de =0

Discretization strategy: Only enforce these laws for
finite system of surfaces S or 2: those made of faces
of a mesh. DoF's are then face-integrals of b, d, and
relate to edge-integrals of e, h.



Maxwell, in terms of cochains:

_atfzd-l_ ‘gzhzfzj \VIQ —dd+dh=]

d= ce h=vDb d=ce

h=vb
o0 b+] e=0 VQ 9 b+de =0

Problem: Should be same number of DoF's for b and h
(resp. for d and ¢) for discrete versions € and v

(matrices) of hodges ¢ and v to be square (since they
must be invertible).






Select centers inside 3D \

primal simplexes. Join
them to make dual. >

Orient all primal cells,
independently. Take
induced orientation /

on dual cells: e , — : primal cells

/ , — . dual cells

2D
ane 'y

“ )




N S F X F D, vy

grad rot div

Approximate representation of the field by degrees of
freedom assigned to both kinds of cells

b at faces h at dual edges
| i.e. faces)
e, a d,j
at 60@65 at dual faces
fluxes '
b={bf:fe T} v , h={h -fem'g?fs
e.m.f.'s cumulated) intensities

e={e :eef} < > d={d :eek}



Enforce Faraday's law, 9, J. b+ [ e=0

not for all surfaces S, but for all those made of primal

faces. This requires (when S =1, a primal face),
thf+€1—€2—€3=0 3 //
1.e., 1

db+Re=0



Enforce Ampere's law, -9, J d+ ] h=0

not for all surfaces 2, but for all those made of dual
faces such as e here. This gives

~dd+Rh=j

because

R =R,

ef e




The final product:
db+Re=0 _9gd+Rh=j
h=vb d=ce

Leap-frog time discretization gives

k+1/2 k—1/2

b —b kK _
55 + Re =0

k+1 k
e  _—e t k+172 . k+1/2

"Yee scheme" (1966), aka FDTD



t :
db+Re=0 —dd+Rh=}j
h=vb d=¢ce
Recall that th — Gt ]j=0,

(because 9 q+divj=0,and - G'~ div)

hence — th =q



o.b+Re=0 —d,d + R'h =
h=vb d==ce
Use DR=0 and GR =0 to get

t
. G d =@ <@ Kirchhoff's node law—p Db = O

— L, _—
d =¢ce (6‘tq—GJ=O) th vb
Re = —atb <¢Kirchhotf's loop law—p R'h =®+ atd
"electric" network "magnetic" network

Two intzr[ocﬁeof, cross-m[ﬁing, networks

(.U: & OLTLC[ Vv cfiagonaf, See CLTLC[ fo can 66 seen as

branch imyedances



Discrete ("mimetic") structures

Space (comput. domain) — Cell complex

submanifolds (such as S,2) — cellular chains

fields (such as b, h,e, d) —s  cellular cochains

Hodge map(s) — Hodge matrix(es)

b - b
ﬁelds/ l\/ A% l \DoF arrays
R K
h - h

consistency required there, for convergence of numerical schemes



Discrete Hodge map:

T

‘F - set of mesh faces

Map extends to dual chains (by linearity)
and passes (by duality) to cochains

Consistency:

V[T—Vec(ff)] =) oV . [2—V€C(f)]

Also needed (for electrostatics and full Maxwell):
e —> Ze‘Ef gee ev

‘E : set of mesh edges



Consistency condition: V[T—vec(ff)] =Zf\’ff[2-vec(f')]

makes commutative abridged as
the diagram = .
g vi=>V 1
b - D
V l l V
h - h

when b and h are piecewise uniform:

hf=<f;Vb>!=<E Vb>=<vf;b>=2 fvff(ﬁ ;b)ézfyffbf



If dual mesh barycentric, criterion met by
the "Galerkin Hodge", defined as

{1’ f
v =fvwaw

f

where w' 1s Whitney form of facet f




Prop. 1: Select centers inside primal
simplexes. Join them to make dual.
Then unique v conforming to criterion.

But this v non-symmetric!! (Yet,pos.def.)



vec(f) = vectorial area

Prop. 2: If centers such that _of 1 here

vec(f) = vector along f
(with usual orientation

zfvec(f) X VeC(f) — O of ambient space)

Then v symmetric.

Corollary: If.at barycenters, »
then v symmetric for all

positions of « 1nside.

Proof. True if e at barycenter (Galerkin v). Now,

if <~ e + v, and because X fVec(f) =0,

Zf vec(l) X VGC(F+ v) =0+ (vaec(f)) X v=0.




An 1nteresting solution (Weiland, Tont1 et al., ...)
Centers at circumcenters:
.

Then, f/ Eso fof — v {, other terms 0,

e, vi=v length(ﬁ/area(f)



’J—[igﬁfy desirable mutual ortﬁogona[ﬁy
@C Jorima[ and dual meshes

(vectorial
|J area)

- 1

) > ~ Here, £/ f),and

X ff—> =
Vv = vi




N
T N

N\

N

P
Y

—
|

Onfy Sjaecm[[y 6[651(91166[]91’11’1101[7”65665

Wl[[ CIO[WHT,' an ortﬁogona[ cfua[

and besides, Delaunay
doesn't quite make it:



gl suﬁ"icient condition:

The "circumcenter inside" property




... satisfied by the Sommerville tetrahedron:

D.M.Y. Sommerville: "Space-filling Tetrahedra in Euclidean Space",
Proc. Edinburgh Math. Soc., 41 (1923), pp. 49-57.

D.M.Y. Sommerville: "Division of Space by Congruent Triangles and
Tetrahedra", Proc. Roy. Soc. Edinburgh, 43 (1923), pp. 85-116.



The Sommerville tetrahedron,

a space-filler

We'll take p) p)
a=2,b=V3 3 d =4b




One may now stack the hexahedra thus oﬁminea[,
which amounts to combine octahedra and
tetrahedra in the famifiar "octet truss" pattern:

First fay the octahedra side Ey side, like this,

/
™ 4
//
S/
S/
/
S/
S/
/
v
.
v
v
/ vy
/// \u— - - "//
/2 2
//
S/ e
S .
S N s
Yy 7
/4 ‘ /4
V4 a )
Y P
A
AW
LV
e




then add S-tetrahedra, two for each octahedron, [ike this:




SO one 1s [eﬁ with a horizontal egg-crate sﬁajaec[ slab,
with Jaymmicfa[ holes, reow[y to be ﬁ[fec[ Ey a similar
slab, supmjoosecf, thus ﬁ’[fing space.

< o
A
~_
J
Y. Y _
A 4
vl /
S/ /
s /
S
S S
/ // h
/e h
S
A —
i
/ L/




No Jorivi[egec[ direc

tion:




Notorious “staircase” ]aroﬁfem, alleviated:

= N




The dual mesh:

4 ~ // \
~ y 4
Py S/
VA / S/ \
/ S/ ™~
A y S/
S/ p ~ 7 / A
/4/ LA — — X / /// // \
S S \ BN S \
S \ < S/ \
S S < Y \
Y - N S \
S Y s \
ay 4 \ I ~ y 4 \ .
s \ \/
e > ,/ Yyd T \ /S
/ ,, / /S
1 \ ™ N4

(truncatea[ OCl'Clﬁed/TOTl, aﬁa

tetrakaidecahedron)







"“More isotropic" than the Yee lattice:

A \/3/2\J

JSV3 < V3

All dual-edge
lengths 1/V?2

area(f) _ . =2

length (B »

2 ]
area 1/2

area(e) 172 »
_ or
length(e) : .

area 3v3/4



Convergence 1Ssues



Pmb b Forms pnh h

SRR

r.b DoF h Tr1.h

b
(ﬂmf@ Computed mmf's

b=1b:: feF} h={h;: feF}

(rmb)f — ff b cw (rmh)f — J:f h



Wﬁimey forms

A A A

{m n} {lmn} {klmn}
}\‘n
A od =X d
o[ A dX"A dAM+ N
6dﬁAdkAdk



Mapping points to cellular 0-chains,

I weights given by Whitney 0-forms:
n
B n
o X=) W(X)n
\%% ne N
7\}1
Mapping (bound) vectors to cellular 1-chains,
1 K weights given by Whitney 1-forms:
1
i o - . e
n / V—y—X—ZeE£<V,W(X)>€

(last e, by notational abuse, is vec(e), aka ¢)

A d =X d



Sketch of convergence proof, 1n
magnetostatics

(easy extension to full Maxwell, by using
Laplace transform)



. . 2

Db=0,h=vb, Rh=]j
Drb=0  Rrh=r ]

(because Dr =r d) (because Rtrm= r,d)

(\h — rmh/) — vgb — rml?) = (Vrm— r V)b
= kevr(Rt) = k;,r(D)

) . 2
Ib 1, bil,+ lh . hli = li(vr, ~ 1 V)bl = li(ur, —r, hIl




’ S pT b—b
Conszstzncy ] e

when "m — 0"

s \ |(vr, — rm\/)bHu—> 0

Smﬁi(ﬁy: o HpmbHV SHbHV

Convergence : I, (b—1,b)] < é [b-r b

<

|
o |01, >0 = pb—b



Why Galerkin method fulfills

consistency requirement:



Wﬁimey form Joroxies

DA A A

wms {lmn}  to L. n}
kn
A VA — N VL
O A VA VAR L+ ]

1/vol({k, 1, m, n})



Wﬁi’mey forms as a Joam’tion of um’ty

@ ann(x)=1 Y X

OEeWe(X)@) c—-1 VX
1.€., Ze(v-we(x))e=v Vv
° waf(x)@)f:l V X

etc.



Conseoluence: T he “mass matrix” ¢

@Cedge e[emem‘s
> (ewe(x) - wE(x)) €' = ew (x)
I W) - we)) el = [ ew (x)

e =fewt(x)=ec (1)

Sau’sﬁes the consistzncy requiremenf



| Vw"={k,1, m}/3

T

fT wl Vwi— w Vw" =

({k,1,m}/3 +{k,1,n}/3)/4=¢



So Galerkin is a mimetic method too!

But non-diagonal &,
making Yee scheme
implicit, thus expensive



Diagonal lumping at the rescue

There is a unique dzaganal matrix €4,,, indexed over
edges, such that G (€40y — €.,)CG = 0. Its entries are

— —(G £, G)

dlag

for each edge ¢ going from node m to node n. If <, > 0

(plus mild stability assumptions), the Yee schemes wzth
£ = &4, and € = £, have the same limit when "m — 0"

But note that €~ >0 requires acute dihedral angle at e!

diag

A.B. and L. Kettunen, paper #128 at http://butler.cc.tut.fi/~bossavit/Papers.html



Which Jom’ma[ mesh,
which discrete ‘J—[oo@e?

o Galerkin works on all simplicial meshes

But non-diagonal ¢ and v. Diagonal lumping?
Yes, for € (not for v) if acute dihedral angles

o FIT/CM make diagonal hodges

but require mutual orthogonality of
primal/dual cell pairs.




Definition. Acute n-simplex: Dihedral angles (1.e., angles
between hyperplanes subtending (n — 1)-faces) all < 90°.

Proposition. Faces of an acute n-simplex are acute.

Proof:

Converse not true:

A non-acute tetrahedron
with acute facets:

(Push n a bt
to the left)




Couldn’t acute tetrahedra be yrqfemﬁfe?

A Venn diagram:

cc of facets cc of tetra

NN

i B
s e 4 )




The Al5 acute u’fing qf syace*

To nodes of ... build Voronoi
Sommendile |\ X r e
centers of \|/ It)lzgutﬁlg
gﬁf OSf tt\it:l" / tetras of this.

* D. Eppstein, J.M. Sullivan, A. Ungor: "Tiling
space and slabs with acute tetrahedra”,
arXiv:cs.CG/0302027 v1 (19 Feb. 2003).




The tools 1n the box:

Surfaces, curves, etc. > Cell chains

Fields b, h, ... » Cell cochains (DoF arrays) b, h, ...
Constitutive laws — »"Discrete hodges", €,Vv, O ...
G, R, D (primal side),

gr ad, rot, div > Dt R, —Gt (dual side)
products, ExH, J-E  » "wedge" product, eAh, jae
—9D+rotH=1J, D=¢E —9d+Rh=j, d=ee
B +rotE=0, H=vB ab+Re 0, h=vb
divD=Q, divB=0 - _G'd= q, Db=0

E =—grad ¢ — 0;A e=—-G@p-da



Good, but not enough:

What about "force related" entities, like
E x H (Poynting) ?

Q(E + v x B) (Lorentz) ?

J x B (Laplace) ?

B ®H (Maxwell) ?

Heuristic hint: force is a covector, cf. v — (v ;)

O O O O




Flux ot Poynting "vector"

Computing | (e A h, for primal triangle t,

knowing DoF-arrays e, h, would be simple:
C b
(1) a

1
Jieah=¢le,hy+e h +eh, —he—he—he,]

(get ¢ and h from e and h using 2D Whitney 1-forms and develop)

But ...



Flux ot Poynting "vector"

... we want fz e A h with X a dual 2-chain,

1.., a sum of integrals

like | e Ah here:
>

h i[t%g[ee ’ne

Get hl, h2 from
h h=v.b

1

andedge values of h not available. Reconstruct
them from h,, h, shown here, thanks to the fact that h =vb
= vda (only way to obtain h) is uniform in the tetrahedron



Flux ot Poynting "vector"

Final recipe for | e Ah : Get h, h, from
h=v.b

ft eAh =% [eahb+ ebhc+ echa

d

with these values and orientations:

h + hz/ eretere,




Flux ot Poynting "vector"

Final recipe for | e Ah : Get hy, h, from

h=va

[ enh= % [eh +eh +eh

A. o haeb - hbec_ hcea]
(D a

with these values and orientations:

hl_j: hz/ & &7 %

12



The Lorentz force

Force F=E+vxB on unit charge
B proxyfor b:(vvw;by=B:-(vXw)=—(vXB)w
Define ivb as the covector w - <(vv w;b)

called interior productof b and v

v X B proxy for — iVb

E proxy for €

on unit charge passing
through point x

at
with velocity v v~ point X

[orentz force 1s the covector e—1Db



So how to "mimic" the inner product

1, b?



‘Extrusion (Ey the f[ow q"’ a vector fie[cf V):

® of apoint: Mt(x)

ext(x, v, t)
d.u (x) = v(u,(x))

U0 = x ,
® of a p-manifold: C o
g = e
Inner product: ext(c, v, t)

[i,b=lim 1

C t—0 tYext(c,v,1t)



The Lorentz force

vxB proxy for  —1.b

(vector fields) (1-cochain)
fe lvb = fext(e, V)b

Extrusion of an edge, as a chain of facets?



n (atpoint X, )

ext(e, v) = 2t (y,) nmk + A (y.) nml



I(e, €', ) = weight of facet 1 1n
extrusion of edge e by the field \' e

!

C
N

V~E N(X) v, —E K(X)V ¢’
b = Ebw
(i b)e=Ee.’fI(e, e', f) by v©



Well and good. But is it true that
(i_b), =G b),?

v

Needed: a discrete notion of "tangent
plane at n", or local affine structure

But there is a hitch: Missing the notion of tangent space at a node, we miss the linearity of inner product (and
hence, of Lie derivative) w.r.t. flow vector field




This structural element must be specified apart (just as discrete Hodge needed to be) w

I .ocal affine structure:

/
dimension D (2 here)

/
/ d(n) — p relations

, I of the form

d(n) edges
around n

/ s
\ Ze anée O

Now, one can assign a map from T to T toedge e:
Parallel transport from n to m, connection, etc.



The Laplace force

JxB proxyfor v—=1,baj
(vector field)  (covector-valued twisted g—form)

To be integrated over dual 3-cell n:

Similar to [e A h, but now

1 A 5 instead of 1 A T

Then, covector v — [ib A j is force exerted on n
n

Electric energy, [ ~e A d, treated like fﬁ ibAaj



EeEE e de EfecF hy by

(electric) (magnetic)



The Maxwell "tensor"

|

Start from wedge multiply by

—d,d + dh = A, b
a;b + de =0 A d D
add, integrate over D, use g =dd, set >

f=v— (di AC + iVb A])  (force density, covector-
valued twisted 3-form)
find eventually that fo is equal to

oL dabl +[[ihab+iend-7ihab+end)

momentum Maxwell (covector-valued, twisted) 2-form



The Maxwell "tensor"

D
fo - QS

Ot%inAb] +fS[th/\b+iVe/\d—%iV(h/\b+e/\d)]

momentum Maxwell (covector-valued, twisted) 2-form

f[1h/\b——1(h/\b)] f[1b/\h+ > i(hAab)]
treat [ike e/\hj 7

extrude dual faces Ey v, use result about haAb



Conclusion

O

Object-oriented programming agenda

Specific difficulty: infinite dimensional entities

(fields) vs finite data

structures

Candidates to "object" status (mesh-related

things) have been 1denti

1ed,

and procedures that app!

'y to them, described

Discrete avatars of geometrical objects, for

which traditional vector

fields are only proxies



Thanks
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