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Geometric structures 
underlying

 mimetic approaches
to the discretization of 
Maxwell's equations



A tour of the workshop



Vector: Covector:

v
ω

b

a

〈v ; ω〉 = b/a

〈v ; ω〉 = v · Ω – but "proxy vector"  Ω  depends
on (most often, irrelevant) metric of ambient space 

(virtual) displacement, 
velocity, ...
are vectors

force,
momentum, ...

are covectors
v → <virt. work>
is linear map, i.e.,
a covector, say  f.

<virt. work> = 〈v ; f〉 



Vector: Covector:

v
ω

b

a

〈v ; ω〉 = b/a

〈v ; ω〉 = v · Ω – but "proxy vector"  Ω  depends
on (most often, irrelevant) metric of ambient space 



Vector Covector

v


b

a

〈v ; 〉 = b/a

Come also in 
"twisted" variety

(also called "axial" vectors or covectors)



{v, w} ~ {v', w} ~ {v', w'}

v

w

v'

w

v'

w'

x x x

Case  p = 2  (bivector) (denoted  v ∧ w  or  v ∨ w) 
p-vectors: (Grassmann  algebra)

〈v ∨ w ; ω ∧ η 〉 = 〈v ; ω〉〈w ; η〉 – 〈w ; ω〉〈v ; η〉

wedge
product

v ∨ w ω ∧ η

v

w
ω

η

Grassmann algebra
of multi-covectors, too

p-covectors:

("join")("wedge")

ω
η∧ =



Orientation, twisted objects

Or ∈ {direct, skew} Or =     ⇔ – Or =     ,

On the set of pairs  {, Or}, equivalence relation:  

~{, Or} {–, –Or}

Then   = equivalence class ~ ^

∂1

∂3
∂2 ∂1

∂3

∂2



Outer orientation:

Of vector subspace:  an orientation of (one of 
its) complement(s) 

Of submanifold:  consistent orientations of all 
its tangent spaces

Of affine subspace:  an outer orientation of the 
vector subspace parallel to it



Objects we’ll work with – straight

Affine 3D space, with associated vector space,
but no orientation, no metric structure (for a while)

Points, vectors, multivectors (Grassmann algebra)

0 1 2 3

Smooth sub-manifolds, with own orientation:

+ c S
D

+–
D



Objects we’ll work with – twisted

Affine 3D space, with associated vector space,
but no orientation, no metric structure (for a while)

Points, vectors, multivectors (Grassmann algebra)

0 1 2 3

Sub-manifolds, with own outer orientation:

c S
D +

+



Computers

Mathematical physics

Calculus

Numerical models
Discrete calculus?

Reformulating theories:

not necessarily the right objects to deal with

B, H, E, ...  are just elements of a mathematical 
representation of electromagnetic phenomena, and



Most physical fields are covector-fields 
rather than vector fields

Ground at potential 0

Charged body at 
potential  V 

Ambient 
electric field ... ... E = – grad v

a field of 
covectors...

... x → e(x),
denoted  e.



Most physical fields are covector-fields 
rather than vector fields

Ground at potential 0

Charged body at 
potential  V 

Ambient 
electric field ... ... E = – grad v

a field of 
covectors...

... x → e(x),
denoted  e.c



Most physical fields are covector-fields 
rather than vector fields

Ground at potential 0

Charged body at 
potential  V 

Ambient 
electric field ... ... E = – grad v

a field of 
covectors...

... x → e(x),
denoted  e.

V = lim ∑  〈v  ;  e(x )〉 ≡ ∫  e ≡ 〈c ; e〉 
ci i i

c

xi

vi



E
(the vector field)

e
(the 1-form)

as a proxy for

Change “ • ”, change E  (and  ), for same  e

c


 ∫e =   E
c

 ∫
c

The observable is not  E  but  e, the form



(later called cochain)

ORIENTED_LINE → REAL

map, denoted  e  here

So what counts is the



Same about magnetic induction  b: 
A field of  2-covectors

S

xi

v ∨ wi i

b(x)

x

〈S ; b〉 = lim ∑  〈v ∨ w ; b(x )〉 
iii

≡     b
S

∂S

i

∫



Same about magnetic induction  b: 
A field of  2-covectors

S

xi

v ∨ wi i

b(x)

x

〈S ; b〉 = lim ∑  〈v ∨ w ; b(x )〉 
iii

≡     b
S

∂S

Faraday:

∂ b + de = 0

∂ [∫  b] + ∫   e = 0
S ∂St

∂ 〈S ; b〉 + 〈∂S ; e〉 = 0  t
i.e., if one defines  d  by

〈S ; de〉 = 〈∂S ; e〉,

∀ S,

t

i

∫



B
(the vector field)

b
(the 2-form)

as a proxy for

Change “ • ”, change B  (and  n), for same  b

 ∫ b = n  B
S

 ∫
S

The observable is not  B  but  b, the 2-form

S

n

∂S

Change       to       , change B to –B, for same  b



Slightly different for  h  and  j:

j  is a field of  "twisted" 2-covectors

Σ

xi

v ∨ wi i

j(x)

x

dh = j 
∂Σ

h  a field of twisted covectors

Covector:Vector:~ ~

v~ ω~

Ampère (in statics):



J
(the vector field)

j
(the 2-form)

as a proxy for

Change “ • ”, change J  (and  n), for same  j

 ∫ j = n  J
S

 ∫
S

Σ

n

Ambient space orientation,       or      , irrelevant

~

The observable is not  J  but  j, the 2-form~



Two kinds of forms, depending on which kind of 
orientation is conferred to the manifold:

Fields of  p-covectors are called  p-forms 
(for "differential forms of degree  p")

Quite often, physical fields are usefully 
modelled by  p-forms 

p-forms, meant to be integrated over  p-
submanifolds (of space, or spacetime) 

Highly meaningful distinction in physics: straight [resp. twisted] 
forms represent intensive [resp. extensive] entities

straight twisted
(inner orientation) (outer orientation)



T he concept of chain:

Embed set 
of curves in 
vector space 
of singular 1-
chains

c c
c1

2 3

c = r  c  + r  c  + r  c1
1

2
2

3
3

S1
S

2

c1

c2

c3
S ∂S = c  – c  + c321Boundary operator  ∂:

1-chains: 2-chains:

e.g.,  S = S   – S 1 2

Same with 
surfaces

etc.:
 

p-chains

(Linear map:                                     )

What about dual objects (linear functionals), called cochains?

∂(S  – S ) = ∂S  – ∂S1 2 1 2



Chains model probes.  Cochains model fields.

Voltmeter:
V

(p = 1)

e.m.f.  V = ∫  e
c

c

a 1-cochain.

Electric field seen as map  
c →  <emf along  c>, 
map here denoted  e,

Magnetic induction as map  b, 
the 2-cochain  

S →  <flux embraced by  S>. 

Small probe <––> p-vector Local field <––> p-covector

Fluxmeter:

(p = 2) 
S



Maxwell's 
Theory



Faraday's law, in terms of cochains:

webers

 ∫  b
S

∂S

S

or  ∂ b + de = 0,  with  d  defined by  ∫  de = ∫    et S ∂S

volts

 ∫  e
∂S

2-cochain 1-cochain

d
dt

 
S
b + e

∂S
= 0∫∫

for all 2-chains  S,



Ampère-Maxwell's law, in terms of cochains:

coulombs

 ∫  d
Σ

∂Σ

Σ

or  –∂ d + dh = j t

ampères

 ∫  h
∂Σ

2-cochain 1-cochain

d
dt

 
Σ
d + h

∂Σ
=     j∫∫

for all 2-chains  Σ,~

~ ~
∫
Σ

– 2-cochain~
given



∫


q = ∫
∂

d  ∫

q∂t

+∫∂ j = 0

- ∂ ∫ d + ∫   h = ∫  j
 ∂ t

S ∂ ∫ b + ∫   e = 0
S ∂St



d = eb = µh

- ∂ ∫ d + ∫  h = ∫ j
 ∂ t

S ∂ ∫ b + ∫   e = 0
S ∂St

(– ∂  D + rot H = J,    ∂  B + rot E = 0)tt

?



The real nature of µ (“Hodge operator”):

b :  a map of type SURFACE → REAL 
("2-cochain")

h :  a map of type LINE → REAL 

b = µ h
("1-cochain")~



S



S
area(S) = 

length()

S = vectorial area of  S
 = vector along  



1
area(S) ∫S

b = h
1 ∫lgth() 

S



S
area(S) = 

length()B   • •     H

=

S = vectorial area of  S
 = vector along  

µ

µ

which defines 2-form  b  knowing 
scalar factor  µ  and  1-form  h



T he Hodge operator:

S



1
area(S) ∫S

b= 1 ∫

hlength() µ

b = µ  h h = ν  b⇔



Further structuration of space:  the Hodge map

Determines a metric ("-adapted")

   VECTOR      (n – 1)-VECTOR  
twisted or straight straight or twisted

(Select reference 3-vector  ∆  and real  .  Set     v ∨ v = |v|   ∆, 
hence a norm, scaling as  .  Adjust    for  -volume of  ∆  to be   .)

2

2

2

 

Equip space with 
such a map,  .  
(Another one, 
denoted  , will 
be needed.)

Only requirement, 
"non-degeneracy".  

(Volume  v ∨ v, built 
on  v  and its image, 

must be ≠ 0.)  

→



By duality, yields Hodge map on covectors:

 

 =  

~1-VECTOR       2-VECTOR  → 

~1-COVECTOR      2-COVECTOR  ← 

Hence relation  h = b  (and also  d = e) between cochains, i.e., fields 

1-vector

1-covector

 〈v ; b〉
2-vector

2-covector

〈v ; b〉



So space geo-metry (in the strong sense of 
assigning metric properties—distances, areas, 

angles, etc.—to the space we inhabit) amounts to 
specifying constitutive laws in electrodynamics.

Should not sound strange:  Don't we use 
light rays to measure the Earth?

Why two metrics (ν ≡ µ    and  ε)?  Because 3D 
shadows of Minkowski's 4D (pseudo-)metric

–1

ε ≠ ε   and  µ ≠ µ   when we wish to ignore 
details of microscopic interactions and 
geometrize them wholesale

0 0



Maxwell, in terms of cochains:

-∂ ∫ d + ∫  h =∫ j
 ∂  

d =    e h =    b
t

S ∂ ∫ b +∫  e = 0
S ∂St

– ∂ d + dh = jt

∂ b + de = 0t

h =  b 

d =  e 

b
1
2

straight twisted
e

d,  j
h



Maxwell, in terms of cochains:

-∂ ∫ d + ∫  h =∫ j
 ∂  

d =    e h =    b
t

S ∂ ∫ b +∫  e = 0
S ∂St

– ∂ d + dh = jt

∂ b + de = 0t

h =  b 

d =  e 

Discretization strategy:  Only enforce these laws for 
finite system of surfaces  S  or  Σ:  those made of faces 
of a mesh.  DoF's are then face-integrals of  b, d, and 
relate to edge-integrals of  e, h.



Maxwell, in terms of cochains:

-∂ ∫ d + ∫  h =∫ j
 ∂  

d =    e h =    b
t

S ∂ ∫ b +∫  e = 0
S ∂St

– ∂ d + dh = jt

∂ b + de = 0t

h =  b 

d =  e 

Problem:  Should be same number of DoF's for b and h 
(resp. for d and e) for discrete versions  ε  and  ν  
(matrices) of hodges  ε  and  ν  to be square (since they 
must be invertible).  



Gen = – 1
Rfe = – 1

vfD = 1
v

e
nf +

DR = 0,   RG = 0

+
N E F V



Select centers inside 
primal simplexes.  Join 
them to make dual.  

, : primal cells
: dual cells, 

2D

3D

Orient all primal cells, 
independently.  Take  
induced orientation 
on dual cells:



N   →  E   →   F   →   V  G R D
grad rot div

h = {h  : f ∈ F}fb = {b  : f ∈ F}
f

e = {e  : e ∈ E}e d = {d  : e ∈ E}e

ν
ε

here,  R   = – 1
fe

at edges

h  at dual edges
(i.e., faces)

at dual faces

e

f

b  at faces

Approximate representation of the field by degrees of
freedom assigned to both kinds of cells

fluxes

e.m.f.'s

m.m.f.'s

(cumulated) intensities

e, a d, j



not for all surfaces  S, but for all those made of primal 
faces.  This requires (when  S = f, a primal face),  

∂ b + Re = 0t

∂  ∫  b + ∫   e = 0t S ∂SEnforce Faraday's law, 

i.e.,
f

2

3

1

Rf 2
= – 1 

∂ b  + e  – e  – e  = 0   t f 321



not for all surfaces  Σ, but for all those made of dual 
faces such as  e  here.  This gives

∂  ∫  d + ∫   h = 0t Σ ∂Σ
Enforce Ampère's law, –

∂ d + R h = jt–
t

ee~

~

f~
f

because

Re f~~ = Rf e

+
–



∂ b + Re = 0t

h = ν b
–∂ d + R h = jt

t

d = ε e

The final product:

Leap-frog time discretization gives

"Yee scheme" (1966), aka FDTD

b       – bk + 1/2 k – 1/2
+ Re  = 0k

t

ε– e     – ek + 1 k

t + R    b      = jνt k + 1/2k + 1/2



–∂ d + R h = jt
t∂ b + Re = 0t

h =    bν d =    eε

D  of this: G  of that:t

Recall that  ∂ q – G j = 0,t
t

(because ∂ q + div j = 0, and  – G ~ div)  t
t

hence – G d = q
t



–∂ d + R h = jt∂ b + Re = 0t
h =    bν d =    eε

Use  DR = 0  and  G R  = 0 to gettt

t

d = ε e
– G d = qt

Re = – ∂ bt
h = ν b
Db = 0

tR h = j + ∂ dt

Kirchhoff's node law

(∂ q – G j = 0)t
t

If  ε  and  ν  diagonal,  ε    and  ν    can be seen as 
branch impedances      

ee ff

Two interlocked, cross-talking, networks

Kirchhoff's loop law
"electric" network "magnetic" network



Discrete ("mimetic") structures
Space (comput. domain)  Cell complex→

Hodge map(s) → Hodge matrix(es)

 cellular chains

 cellular cochains

consistency required there, for convergence of numerical schemes

b b

h h
ν νfields DoF arrays

submanifolds (such as  S, Σ) →
fields (such as  b, h, e, d) →



e

f

e
f

~
~

Discrete Hodge map:

f  → ∑       ν   f'f' ∈ F
ff'~

Consistency:

ν[1-vec(f)] = ∑  ν   [2-vec(f')]ff'
f'

~ ~

Also needed (for electrostatics and full Maxwell):

Map extends to dual chains (by linearity)
and passes (by duality) to cochains 

F : set of mesh faces

e → ∑        ε    e'e' ∈ E 
ee'~

E : set of mesh edges



e

f

e
f

~
~

Consistency condition: ν[1-vec(f)] = ∑ ν  [2-vec(f')]ff'
f'

~ ~

b b

h h
ν ν

makes commutative 

when  b  and  h  are piecewise uniform:

ff'~ ~ = ∑ ν  〈f'; b〉f'
hf 〈f ; νb〉= 〈νf ; b〉= =∑ν  bff'

f' f'

the diagram  = ∑ ν   f'
ff'

f'νf
~→ →

abridged as

=〈f ; νb〉
→~ → →! !



If dual mesh barycentric, criterion met by 
the "Galerkin Hodge", defined as

ν   = ∫ ν w ∧ wff' f f'

where  w   is Whitney form of facet  ff

f



Prop. 1:  Select centers inside primal 
simplexes.  Join them to make dual.  
Then unique  ν  conforming to criterion.  

But this ν non-symmetric!!  (Yet, pos. def.)



Prop. 2:  If centers such that  

Then  ν  symmetric.  
∑  vec(f) × vec(f) = 0 

~
f

f f~
Corollary:  If   at barycenters,  
then  ν  symmetric for all  
positions of    inside. 

Proof.  True if    at barycenter (Galerkin  ν).  Now,   

∑  vec(f) × vec(f + v) = 0 + (∑  vec(f)) × v = 0.  
f f

~
if    ←    + v,   and because  ∑  vec(f) = 0,  f

☐

vec(f) = vectorial area 
of  f  here

vec(f) = vector along  f  
(with usual orientation 

of ambient space)

~ ~



An interesting solution (Weiland, Tonti et al., ...)

f f~

Centers at circumcenters:

ν   f =  ν fff ~
Then,  f // f, so ~

ffi.e.,  ν   = ν length(f)/area(f)   

, other terms 0,   
→ →

~



(vectorial
area)

f
f
~

f~

 f   
f~ f

Highly desirable mutual orthogonality
of primal and dual meshes

Here,  f  //  f, and 

   f =   fff ~

→~ →

→ →

→ →



?

?
Alas ... 

Only specially designed primal meshes 
will admit an orthogonal dual 

and besides, Delaunay 
doesn't quite make it:



A sufficient condition:
The "circumcenter inside" property



... satisfied by the Sommerville tetrahedron:

D.M.Y. Sommerville:  "Space-filling Tetrahedra in Euclidean Space", 
Proc. Edinburgh Math. Soc., 41 (1923), pp. 49-57.

D.M.Y. Sommerville:  "Division of Space by Congruent Triangles and 
Tetrahedra", Proc. Roy. Soc. Edinburgh, 43 (1923), pp. 85-116.



a
b

a
b

bb

a

a

a

a

a

b b

a

b bb

The Sommerville tetrahedron,
a space-filler:

3 a  = 4 b2 2We'll take

a = 2, b = √3



One may now stack the hexahedra thus obtained,
which amounts to combine octahedra and
tetrahedra in the familiar "octet truss" pattern:
First lay the octahedra side by side, like this,



then add S-tetrahedra, two for each octahedron, like this:



so one is left with a horizontal egg-crate shaped slab,
with pyramidal holes, ready to be filled by a similar
slab, superposed, thus filling space.



No privileged direction: 



Notorious “staircase” problem, alleviated:



The dual mesh:

(truncated octahedron, aka 
tetrakaidecahedron)





"More isotropic" than the Yee lattice:

√5/2

√3/2

√5/√3 < √3

2

All dual-edge  
lengths  1/√2

area 1/2

area  3√3/4

area(f)

length(f)
~ =           = 2

√2

1/√2

area(e)

length(e)

~
=           or1/2

2

3√3/4
 √3



Convergence issues



(r  h)   = ∫  h(r  b)  = ∫ bm f f m f f~

Computed fluxes

Forms

D.o.F.
pmrm

bpmb

b brm

hpmh

h hrm
Computed mmf’s

b= {b  :  f ∈ F}f h= {h  :  f ∈ F}f

True ones



k

n

ly

m
x

k

n

l

y

m

x

z

k

n

l

x

m

0 1 2 k

n

l

y

m
x

z

3
w

wn w{m, n} w{l, m, n} w{k, l, m, n}

n

  d  –   dn m m n

  d ∧ d  + ... + ...]l m n2[

Whitney forms

6 d ∧ d ∧ d k l m



k

n

l

x

m

0

wn

n

k

n

ly

m
x

1

w{m, n}

  d  –   dn m m n

v = y – x = ∑      〈v ; w (x)〉 e 
e ∈ E

e

(last  e, by notational abuse, is  vec(e), aka  e)   →

Mapping points to cellular 0-chains, 
weights given by Whitney 0-forms:

Mapping (bound) vectors to cellular 1-chains, 
weights given by Whitney 1-forms:

x = ∑      w (x) n 
n ∈ N

n



Sketch of convergence proof, in 
magnetostatics

(easy extension to full Maxwell, by using 
Laplace transform)



Notation:  ||b||   = ∑    ν   b  bν
2

f, f '
ff'

f 'f ("ν–norm"), (b, h) = ∑  b  hf f f 

Db h = jRth =   b, = 0, ν
D b = 0rm h =    jRt rmrm

(h – r  h) – ν(b – r  b) =m m m m (νr  – r  )b
∈ ker(R )t ∈ ker(D)

(because  Dr  = r  d)m m (because  R r  = r  d)m m
t

||b – r  b||  + ||h – r  h||   = ||(r  – r  )b||
2 2 2

µm m m m ≡ ||(µr  – r  µ)h||ν
2

m mν µ



p  r  b → bConsistency
+

Stability :
=

Convergence :

  (νr  – r  )b   → 0

  p  b     ≤  b  νm

  p  (b – r  b)    ≤       b – r  b  m m
1
m

≤ –   (νr  – r  )b    → 0 
1

m m ⇒

m

µ

when "m → 0"

µ

ν

p  b → bm

ν

m

m m



Why Galerkin method fulfills

 consistency requirement:



k

n

ly

m
x

k

n

l

y

m

x

z

k

n

l

x

m

0 1 2 k

n

l

y

m
x

z

3
w

wn w{m, n} w{l, m, n} w{k, l, m, n}

n

  ∇  –   ∇n m m n

  ∇ × ∇  + ... + ...]l m n2[

Whitney form proxies

1/vol({k, l, m, n})



etc.

∑  w  (x) ⊗  e = 1          x

Whitney forms as a partition of unity

∑  w  (x) = 1           xn
n



e
e

i.e.,  ∑  (v · w  (x)) e = v   v e
e

∑  w  (x) ⊗ f = 1   xf
f

•
•

•





Consequence:   T he “mass matrix”  ε  
of edge elements ...

∑   ε     e' = ∫ εw  (x) = εe    (!) e'
ee' e ~

∑  (εw  (x) · w  (x)) e' = εw  (x) e'
e e' e

∑   ∫  (ε w (x) · w  (x)) e' = ∫   εw  (x) e'
e e' e

D D

... satisfies the consistency requirement 
D



l
n

mn

k

lmn

mkn

o

kl

lmn

k
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∫  ∇w  = {k, l, m}/3 
T

n

∫  w    ∇w  – w   ∇w   = 
({k, l, m}/3 + {k, l, n}/3)/4 = e

T
m n m n

~

e



So Galerkin is a mimetic method too!

But non-diagonal  ε, 
making Yee scheme 

implicit, thus expensive



A.B. and L. Kettunen, paper #128 at http://butler.cc.tut.fi/~bossavit/Papers.html

Diagonal lumping at the rescue

But note that               requires acute dihedral angle at  e! ε     > 0 ee
diag

There is a unique diagonal matrix ε    , indexed over 
edges, such that  G (ε     – ε   )G = 0. Its entries aret

Galdiag

for each edge e going from node m to node n.  If  ε    > 0   

ε = ε     and ε = ε     have the same limit when  "m → 0" 

–(G  ε   G)   Gal

mntε     = ee
diag

diag

diag Gal

ee
diag

(plus mild stability assumptions), the Yee schemes with



which discrete Hodge?
Galerkin works on all simplicial meshes

But non-diagonal  ε  and  ν.  Diagonal lumping?
Yes, for  ε  (not for  ν) if acute dihedral angles

but require mutual orthogonality of 
primal/dual cell pairs.

FIT/CM make diagonal hodges

Which primal mesh, 



Definition.  Acute  n-simplex:  Dihedral angles (i.e., angles 
between hyperplanes subtending  (n – 1)-faces) all < 90°.  

Converse not true:

Proposition.  Faces of an acute  n-simplex are acute.

with acute facets:

x y

z
n

n

x
y

z (Push  n  a bit  
to the left)

A non-acute tetrahedron
Proof:





h h





 < 



Couldn’t acute tetrahedra be preferable?
A Venn diagram:

Acute tetra

cc of tetra
inside

cc of facets
inside



T he  A15  acute tiling of space*

To nodes of
Sommerville
mesh, add 
centers of 
one S. tetra 
out of two...

... build Voronoi 
cells of lattice 
thus obtained, 

then take 
Delaunay 

tetras of this.

* D. Eppstein, J.M. Sullivan, A. Üngör:  "Tiling 
space and slabs with acute tetrahedra", 
arXiv:cs.CG/0302027 v1 (19 Feb. 2003).



Surfaces, curves, etc. Cell chains

Fields  b, h, ... Cell cochains (DoF arrays)  b, h, ...
Constitutive laws "Discrete hodges",  εεεε, νννν, σσσσ ...

grad, rot, div G, R, D  (primal side), 
–D , R , –G   (dual side)t t t

The tools in the box:

–∂ D + rot H = J,  D = εE

 ∂ B + rot E = 0,  H = νB
div D = Q,   div B = 0

t

t

E = – grad ϕ – ∂ At

t
–∂ d + R h = j,  d = εεεεe
 ∂ b + R e = 0,  h = ννννb

–G d = q,  Db = 0

t

t t

e = –G ϕϕϕϕ – ∂ at
etc.

products,  E × H,  J · E "wedge" product,  e ∧ h,  j ∧ e



What about "force related" entities, like 

Good, but not enough:

 E × H  (Poynting) ?  
 

 J × B  (Laplace) ?

Q(E + v × B)  (Lorentz) ?

 B ⊗ H  (Maxwell) ?

Heuristic hint:  force is a covector, cf.  v → 〈v ; f〉 



Flux of Poynting "vector"
Computing  ∫  e ∧ h, for primal triangle  t,t

knowing DoF-arrays  e, h, would be simple:

a
bc

t

 ∫  e ∧ h = – [e  h   + e  h   + e  h   t a b cb ac
1
6 a b b c c a– h  e  – h  e  – h  e ] 

(get  e  and  h  from  e  and  h  using 2D Whitney 1-forms and develop)

But ...



1

e1

e3

e4

e5

h
h

Flux of Poynting "vector"
... we want ∫  e ∧ h  with    a dual 2-chain,


i.e., a sum of integrals

e2

h  ill-defined
there

like  ∫   e ∧ h  here:

and needed edge values of  h  not available.  Reconstruct 
them from  h , h   shown here, thanks to the fact that  h = νb 
= νda  (only way to obtain  h) is uniform in the tetrahedron

T

2

h1

1 2

Get  h , h   from1 2
h = ν  bT



1

e1

e3

e4

e5

h
h

Flux of Poynting "vector"
     Final recipe for ∫  e ∧ h  :

e2
T

2

Get  h , h   from1 2

h = ν  bT

h

h h + 3
2

h

h h+ 
23

e + e + e + e 
1 2 3 4

8

e + e + 2e 
1 4 5

12

e + e  
1 3

6
1

1

1
2

2

2

c a

b c c a

 ∫  e ∧ h = – [e h  + e h  + e h   a bb c

a b– h e  – h e  – h e ] ...
a

bc
t

1
6t

with these values and orientations:
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e1

e3

e4

e5

h
h

Flux of Poynting "vector"
     Final recipe for ∫  e ∧ h  :

e2
T

2

Get  h , h   from1 2

h = ν  bT

h

h h + 3
2

h

h h+ 
23

e + e + e + e 
1 2 3 4

8

e + e + 2e 
1 4 5

12

e + e  
1 3

6
1

1

1
2

2

2

c a

b c c a

 ∫  e ∧ h = – [e h  + e h  + e h   a bb c

a b– h e  – h e  – h e ] ...
a

bc
t

1
6t

with these values and orientations:



The Lorentz force
F = E + v × B on unit chargeForce

B  proxy for  b: 〈v ∨ w ; b〉 = B · (v × w) ≡ – (v × B) · w  

Define  i b  as the covector   w → 〈v ∨ w ; b〉 v

called interior product of  b  and  v

v × B        proxy for       – i  bv

E        proxy for       e

is the  covector  e – i bLorentz force 
on unit charge passing 

through point  x  
with velocity  v

at 
point  xv

v

w v ∨ w



So how to "mimic" the inner product

i  b?v



ext(c, v, t)

Extrusion  (by the flow of a vector field  v):

 ∫  i  b = lim        ∫           bvc
1
tt → 0 ext(c, v, t)

of a point:

c

v

of a  p-manifold:

x

d u (x) = v(u (x))t

ext(x, v, t)

Inner product:

u (x)t

t t

u (x) = x0



The Lorentz force

v × B        proxy for       – i  bv

(vector fields) (1-cochain)

 ∫  i  b ~ ∫          be v ext(e, v)

Extrusion of an edge, as a chain of facets?



n  (at point      )

y  = x  + v(x  )n n n

e
xn

yn

k

l

m

ext(e, v) ≈  (y  ) nmk +  (y ) nmln n
k l



I(e, e', f) = weight of facet  f  in 
extrusion of edge  e  by the field  λ  e'n

e

n

f

e'

v ≈ ∑   λ (x) v  = ∑     λ (x) v   e'n
n n

n
n
e'

n, e'
b = ∑  b  w

f
f

f
(i  b)  = ∑      I(e, e', f) b  vv e e', f f n

e'



Well and good.  But is it true that

(i   b)  = – (i  b)  ?–v ve e

n

e

n

e

v

–v

Needed:  a discrete notion of "tangent 
plane at  n", or local affine structure

But there is a hitch:  Missing the notion of tangent space at a node, we miss the linearity of inner product (and
hence, of Lie derivative) w.r.t. flow vector field

But there is a hitch:  Missing the notion of tangent space at a node, we miss the linearity of inner product (and
hence, of Lie derivative) w.r.t. flow vector field



Now, one can assign a map from  T   to  T    to edge  e: n m
Parallel transport from  n  to  m, connection, etc.

∑   a   e = 0nee

d(n)  edges
around  n  of the form

d(n) – D  relations

n e m

dimension  D  (2  here)

,This structural element must be specified apart (just as discrete Hodge needed to be)

Local affine structure: 



The Laplace force
       proxy for       v → i  b ∧ jv

(vector field) (covector-valued twisted 3-form)
J × B

n

To be integrated over dual 3-cell  n:~

Electric energy,  ∫  e ∧ d, treated like  ∫  i b ∧ j
vn~ n~

Then, covector  v → ∫  i b ∧ j is force exerted on  n  ~
n~ v

Similar to  ∫ e ∧ h, but now
~ ~

 1 ∧ 2  instead of  1 ∧ 1 
n~



Energy

e

e~

ff
~

∑          e  d
e ∈ E e e

(electric)

∑          h  b
f ∈ F f f

(magnetic)



D
S

Start from

–∂ d + dh = j               ∧ i  b

wedge multiply by

 ∂ b + de = 0                ∧ i  dv

vt

t

add, integrate over  D, use  q = dd, set

valued twisted  3-form)
find eventually that  ∫  f  is equal to

The Maxwell "tensor"

D

∂ [∫  i d ∧ b] + ∫  [i h ∧ b + i e ∧ d – – i (h ∧ b + e ∧ d)]v v vD S
1
2

momentum Maxwell (covector-valued, twisted) 2-form

vt

f = v → (i q ∧ e + i b ∧ j)      (force density, covector- vv



D
S

 ∫  f  =

The Maxwell "tensor"

D

∂ [∫  i d ∧ b] + ∫  [i h ∧ b + i e ∧ d – – i (h ∧ b + e ∧ d)]v v vD S
1
2

momentum Maxwell (covector-valued, twisted) 2-form

vt

 ∫  [i h ∧ b – – i (h ∧ b)] =
S v

1
2v  ∫  [i b ∧ h + – i (h ∧ b)]

S v
1
2v

treat like  e ∧ h

extrude dual faces by v, use result about   h ∧ b  



Conclusion

and procedures that apply to them, described

Object-oriented programming agenda

Specific difficulty: infinite dimensional entities

Candidates to "object" status (mesh-related 
things) have been identified, 

Discrete avatars of geometrical objects, for 

(fields) vs  finite data structures

which traditional vector fields are only proxies



Thanks 
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