Laboratoire de Génie ÉEectríque de París (CNNS)
bossavit@lgep.supelec.fr

Geometric structures underlying

 mimetic approachesto the discretization of
Maxwell's equations

A tour of the workshop

Vector:

Covector:

$$
\langle\mathrm{v} ; \omega\rangle=\mathrm{b} / \mathrm{a}
$$

velocity, ... are vectors
$\mathrm{v} \rightarrow$ <virt. work> is linear map, i.e., a covector, say f. $<$ virt. work> $=\langle\mathrm{v} ; \mathrm{f}\rangle$
force, momentum, ... are covectors

Vector:

Covector:

$$
\langle\mathrm{v} ; \omega\rangle=\mathrm{b} / \mathrm{a}
$$

$\langle\mathrm{v} ; \omega\rangle=\mathrm{v} \cdot \Omega-$ but "proxy vector" Ω depends on (most often, irrelevant) metric of ambient space

Vector

Covector

Come also in
"twisted" variety
(also called "axial" vectors or covectors)
p-vectors:
Case $\mathrm{p}=2$ (bivector)
(Grassmann algebra)
(denoted $\mathrm{v} \wedge \mathrm{w}$ or $\mathrm{v} \vee \mathrm{w}$) ("wedge") ("join")

p-covectors:
V V W

$$
\langle v \vee w ; \omega \wedge \eta\rangle=\langle v ; \omega\rangle\langle w ; \eta\rangle-\langle w ; \omega\rangle\langle v ; \eta\rangle
$$

Orientation, twisted objects

Or $\in\{$ direct, skew $\}$

$$
\mathrm{Or}=仓 \Leftrightarrow-\mathrm{Or}=\subseteq \text {, }
$$

On the set of pairs $\{\omega$, Or $\}$, equivalence relation:

$$
\{\omega, \text { Or }\} \sim\{-\omega,-\mathrm{Or}\}
$$

Then $\widetilde{\omega} \hat{=}$ equivalence class

Outer orientation:

- Of vector subspace: an orientation of (one of its) complement(s)
- Of affine subspace: an outer orientation of the vector subspace parallel to it
- Of submanifold: consistent orientations of all its tangent spaces

Objects we'tl work with - straight

O Affine 3D space, with associated vector space, but no orientation, no metric structure (for a while)

O Points, vectors, multivectors (Grassmann algebra)

O Smooth sub-manifolds, with own orientation:

- +

Objects we'll work with - twisted

O Affine 3D space, with associated vector space, but no orientation, no metric structure (for a while)

O Points, vectors, multivectors

(Grassmann algebra)

O Sub-manifolds, with own outer orientation:

Mathematical physics
Calculus Computers

Numerical models
Discrete calculus?

Reformulating theories:

$\mathrm{B}, \mathrm{H}, \mathrm{E}, \ldots$ are just elements of a mathematical representation of electromagnetic phenomena, and not necessarily the right objects to deal with

Most physical fields are covector-fields rather than vector fields

Ambient electric field ... a field of covectors...

$\ldots \mathrm{E}=-\operatorname{grad} \mathrm{v}$
$\ldots \mathrm{x} \rightarrow \mathrm{e}(\mathrm{x})$, denoted e.

Ground at potential 0

Most physical fields are covector-fields rather than vector fields

Ambient
electric field ...
a field of covectors...

Ground at potential 0

Most physical fields are covector-fields rather than vector fields

Ambient electric field ... a field of covectors...

$\ldots \mathrm{x} \rightarrow \mathrm{e}(\mathrm{x})$, denoted e.

Ground at potential 0

$$
\mathrm{V}=\lim \sum_{\mathrm{i}}\left\langle\mathrm{v}_{\mathrm{i}} ; \mathrm{e}\left(\mathrm{x}_{\mathrm{i}}\right)\right\rangle \equiv \int_{\mathrm{c}} \mathrm{e} \equiv\langle\mathrm{c} ; \mathrm{e}\rangle
$$

E

as a proxy for

e (the 1-form)
(the vector field)

Change"•", change E (and τ), for same e
The observable is not E but e , the form

So what counts is the

ORIENTED_LINE \rightarrow REAL
map, denoted e here
(later called cochain)

Same about magnetic induction b:

A field of 2-covectors

Same about magnetic induction b:

A field of 2-covectors

B

ield) as a proxy for
(the vector field)

Change "•", change B (and n), for same b The observable is not B but b , the 2-form

Change \subseteq to \circlearrowright, change B to -B , for same b

Slightly different for h and j :

(the vector field)

$$
\begin{aligned}
& \text { as a proxy for } \begin{array}{c}
\mathrm{j}_{\mathrm{j}} \mathrm{j} \\
\text { (the 2-form) }
\end{array} \\
& \int_{\mathrm{S}} \mathrm{j}=\int_{\mathrm{S}} \mathrm{n} \cdot \mathrm{~J}
\end{aligned}
$$

Change "•", change J (and n), for same j
The observable is not J but j, the $\widetilde{2}$-form
Ambient space orientation, \subseteq or \circlearrowright, irrelevant

Fields of p-covectors are called p-forms (for "differential forms of degree p ") Quite often, physical fields are usefully modelled by p-forms p-forms, meant to be integrated over psubmanifolds (of space, or spacetime)

- Two kinds of forms, depending on which kind of orientation is conferred to the manifold:

Highly meaningful distinction in physics: straight [resp. twisted] forms represent intensive [resp. extensive] entities

The concept of chain:

1-chains: 2-chains:
Embed set of curves in vector space of singular 1-
 chains

$$
\mathrm{c}=\mathrm{r}^{1} \mathrm{c}_{1}+\mathrm{r}^{2} \mathrm{c}_{2}+\mathrm{r}^{3} \mathrm{c}_{3} \quad \text { e.g., } \mathrm{S}=\mathrm{S}_{1}-\mathrm{S}_{2}^{\mathrm{p} \text {-chains }}
$$

Boundary operator ∂ :

$$
\left(\text { Linear map: } \partial\left(S_{1}-S_{2}\right)=\partial S_{1}-\partial S_{2}\right)
$$

What about dual objects (finear functionals), called cochains?

Chains model probes. Cochains model fields.

Voltmeter:

$$
(p=1)
$$

Fluxmeter:

$$
(\mathrm{p}=2)
$$

$$
\text { e.m.f. } V=\int_{c} e
$$

Electric field seen as map
$\mathrm{c} \rightarrow$ <emf along c>,
map here denoted e, a 1-cochain.

Magnetic induction as map b, the 2-cochain
$\mathrm{S} \rightarrow$ <flux embraced by $\mathrm{S}>$.

Small probe $<\longrightarrow$ p-vector
Local field $<\longrightarrow$ p-covector

Maxwell's

Theory

Faraday's law, in terms of cochains:
$\int_{\partial S} \mathrm{e}$
volts

$\underbrace{\int_{s} b}_{\text {webers }}$

for all 2-chains S ,

$$
\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{S}} \mathrm{~b}+\int_{\partial \mathrm{S}} \mathrm{e}=0
$$

1-cochain
or $\partial_{t} b+d e=0$, with d defined by $\int_{S} d e=\int_{\partial S} e$

Ampère-Maxwell's law, in terms of cochains:

$\int_{\partial \Sigma} h$

ampères

$\underbrace{\int_{\Sigma} d}$
coulombs
for all $\tilde{2}$-chains Σ,
$-\frac{\mathrm{d}}{\mathrm{dt}} \int_{\Sigma} \mathrm{d}+\int_{\partial \Sigma} \mathrm{h}=\underset{\widetilde{\Sigma}}{\int_{\Sigma} \mathrm{j}} \overbrace{\tilde{1} \text {-cochain }}^{\text {- }{ }^{\text {givechain }}}$

$$
\text { or }-\partial_{t} d+d h=j
$$

$$
\begin{gathered}
-\partial_{\mathrm{t}} \int_{\Sigma} \mathrm{d}+\int_{\partial \Sigma} \mathrm{h}=\int_{\Sigma} \mathrm{j} \quad \forall \Sigma \uparrow \\
\partial_{\mathrm{t}} \int_{\mathrm{S}} \mathrm{~b}+\int_{\partial \mathrm{S}} \mathrm{e}=0 \quad \forall \mathrm{~S} \\
\int_{\Omega} \mathrm{q} \hat{=} \int_{\partial \Omega} \mathrm{d} \quad \Omega \not \partial_{\mathrm{t}} \mathrm{f}+\int_{\partial \Omega} \mathrm{j}=0
\end{gathered}
$$

$\left(-\partial_{t} \mathrm{D}+\operatorname{rot} \mathrm{H}=\mathrm{J}, \quad \partial_{\mathrm{t}} \mathrm{B}+\operatorname{rot} \mathrm{E}=0\right)$

The real nature of μ ("Jodge operator"):

b: a map of type SURFACE \rightarrow REAL ("2-cochain")

$\mathrm{h}:$ a map of type $L I N E \rightarrow R E A L$ ("1-cochain")

$$
b=\mu h
$$

$\vec{S}=$ vectorial area of S
 $\vec{\gamma}=$ vector along γ

$$
\frac{1}{\operatorname{area}(S)} \int_{\mathrm{S}} \mathrm{~b}=\mu \frac{1}{\operatorname{lgth}(\gamma)} \int_{\gamma} \mathrm{h}
$$

which defines 2-form b knowing scalar factor μ and 1-form h

The Hodge operator:

$$
\mathrm{b}=\mu \mathrm{h} \quad \Leftrightarrow \quad \mathrm{~h}=v \mathrm{~b}
$$

Further structuration of space: the Hodge map

$$
\text { VECTOR } \rightarrow(\mathrm{n}-1) \text {-VECTOR }
$$

twisted or straight straight or twisted

Equip space with such a map, v. (Another one, denoted ε, will be needed.)

Only requirement, "non-degeneracy". (Volume $v \vee v v$, built on v and its image, must be $\neq 0$.)

Determines a metric (" v-adapted")

(Select reference 3-vector Δ and real λ. Set $\lambda^{2} v \vee v v=|v|_{\lambda}^{2} \Delta$, hence a norm, scaling as λ. Adjust λ for λ-volume of Δ to be λ^{2}.)

By duality, yields Hodge map on covectors:

$$
\sim 1 \text {-VECTOR } \xrightarrow{\nu} \text { 2-VECTOR }
$$

$$
\begin{aligned}
& \text { 1-covector 2-covector } \\
& \langle\mathrm{v} ; \mathrm{vb}\rangle=\langle\mathrm{vv} ; \mathrm{b}\rangle \\
& \text { 1-vector } \\
& \text { 2-vector } \\
& \text { ~1-COVECTOR } \stackrel{\nu}{\longleftarrow} \text {-COVECTOR }
\end{aligned}
$$

Hence relation $h=v b$ (and also $d=\varepsilon e$) between cochains, i.e., fields

So space geo-metry (in the strong sense of assigning metric properties-distances, areas, angles, etc.- to the space we inhabit) amounts to specifying constitutive laws in electrodynamics.

O Should not sound strange: Don't we use light rays to measure the Earth?
O Why two metrics ($v \equiv \mu^{-1}$ and ε)? Because 3D shadows of Minkowski's 4D (pseudo-)metric

○ $\quad \varepsilon \neq \varepsilon_{0}$ and $\mu \neq \mu_{0}$ when we wish to ignore details of microscopic interactions and geometrize them wholesale

Maxwell, in terms of cochains:

$$
\begin{array}{cc}
-\partial_{\mathrm{t}} \int_{\Sigma} \mathrm{d}+\int_{\partial \Sigma} \mathrm{h}=\int_{\Sigma} \mathrm{j} \forall \Sigma \neq \mathrm{h} \\
\mathrm{~d}=\varepsilon \mathrm{e} \quad \mathrm{~h}=\mathrm{b} \\
\partial_{\mathrm{t}} \mathrm{f}_{\mathrm{S}} \mathrm{~b}+\int_{\partial \mathrm{S}} \mathrm{e}=0 \quad \forall
\end{array} \quad \begin{gathered}
\partial_{\mathrm{t}} \mathrm{~d}+\mathrm{dh}=\mathrm{j} \\
\mathrm{~d}=\varepsilon \mathrm{e} \\
\mathrm{~h}=v \mathrm{~b} \\
\partial_{\mathrm{t}} \mathrm{~b}+\mathrm{de}=0
\end{gathered}
$$

	straight	twisted
1	e	h
2	b	$\mathrm{~d}, \mathrm{j}$

Maxwell, in terms of cochains:

$$
\begin{gathered}
-\partial_{\mathrm{t}} \int_{\Sigma} \mathrm{d}+\int_{\partial \Sigma} \mathrm{h}=\int_{\Sigma} \mathrm{j} \forall \Sigma \uparrow \\
\mathrm{~d}=\varepsilon \mathrm{e} \quad \mathrm{~h}=v \mathrm{~b} \\
\partial_{\mathrm{t}} \int_{\mathrm{S}} \mathrm{~b}+\int_{\partial \mathrm{S}} \mathrm{e}=0 \quad \forall \quad \begin{array}{l}
\partial_{\mathrm{t}} \mathrm{~d}+\mathrm{dh}=\mathrm{j} \\
\mathrm{~d}=\varepsilon \mathrm{e} \\
\mathrm{~h}=v \mathrm{~b}
\end{array} \\
\partial_{\mathrm{t}} \mathrm{~b}+\mathrm{de}=0
\end{gathered}
$$

Discretization strategy: Only enforce these laws for finite system of surfaces S or Σ : those made of faces of a mesh. DoF's are then face-integrals of b, d, and relate to edge-integrals of e, h.

Maxwell, in terms of cochains:

$$
\begin{gathered}
-\partial_{\mathrm{t}} \int_{\Sigma} \mathrm{d}+\int_{\partial \Sigma} \mathrm{h}=\int_{\Sigma} \mathrm{j} \forall \Sigma \\
\mathrm{~d}=\varepsilon \mathrm{e} \quad \mathrm{~h}=v \mathrm{~b} \\
\partial_{\mathrm{t}} \int_{\mathrm{S}} \mathrm{~b}+\int_{\partial \mathrm{S}} \mathrm{e}=0 \quad \forall \quad \begin{array}{c}
\partial_{\mathrm{t}} \mathrm{~d}+\mathrm{dh}=\mathrm{j} \\
\mathrm{~d}=\varepsilon \mathrm{e} \\
\mathrm{~h}=v \mathrm{~b}
\end{array} \\
\partial_{\mathrm{t}} \mathrm{~b}+\mathrm{de}=0
\end{gathered}
$$

Problem: Should be same number of DoF's for b and h (resp. for d and e) for discrete versions ε and (matrices) of hodges ε and v to be square (since they must be invertible).

Select centers inside primal simplexes. Join them to make dual.

Orient all primal cells, independently. Take induced orientation on dual cells:

3D

-, _ : primal cells

2D

Approximate representation of the field by degrees of freedom assigned to both kinds of cells
b at faces

e, a

at edges
fluxes

$$
\mathbf{b}=\left\{b_{f}: f \in \mathcal{F}\right\}
$$

e.m.f.'s
$\mathbf{e}=\left\{\mathrm{e}_{\mathrm{e}}: \mathrm{e} \in \mathbb{E}\right\}$

here, $\mathbf{R}_{\mathrm{fe}}=-1$
h at dual edges $\begin{gathered}\text { (ie., faces) }\end{gathered}$
d, j
at dual faces
$\mathbf{h}=\left\{\mathrm{h}_{\mathrm{f}}: \mathrm{f} \in \underset{\mathrm{f}}{\mathrm{m} . \mathrm{m} . \mathrm{f}}\right\}$
(cumulated) intensities
$\mathbf{d}=\left\{\mathrm{d}_{\mathrm{e}}: \mathrm{e} \in \mathcal{E}\right\}$

Enforce Faraday's law, $\quad \partial_{\mathrm{t}} \int_{\mathrm{S}} \mathrm{b}+\int_{\partial S} \mathrm{e}=0$

 not for all surfaces S, but for all those made of primal faces. This requires (when $S=f$, a primal face),$$
\partial_{\mathrm{t}} \mathrm{~b}_{\mathrm{f}}+\mathrm{e}_{1}-\mathrm{e}_{2}-\mathrm{e}_{3}=0
$$

$\partial_{t} \mathbf{b}+\operatorname{Re}=0$

Enforce Ampère's law, $\quad-\partial_{\mathrm{t}} \int_{\Sigma} \mathrm{d}+\int_{\partial \Sigma} \mathrm{h}=0$ not for all surfaces Σ, but for all those made of dual faces such as $\widetilde{\mathrm{e}}$ here. This gives

$$
-\partial_{t} d+R^{t} h=\mathbf{j}
$$

because

$$
R_{\widetilde{\mathrm{e}} \tilde{\mathrm{f}}}=R_{\mathrm{fe}}
$$

The final product:

$$
\begin{array}{cc}
\partial_{\mathrm{t}} \mathbf{b}+\mathrm{Re}=0 & -\partial_{\mathrm{t}} \mathbf{d}+\mathrm{R}^{\mathrm{t}} \mathbf{h}=\mathbf{j} \\
\mathbf{h}=\mathbf{v} \mathbf{b} & \mathbf{d}=\boldsymbol{\varepsilon} \mathbf{e}
\end{array}
$$

Leap-frog time discretization gives

$$
\begin{gathered}
\frac{\mathbf{b}^{k+1 / 2}-\mathbf{b}^{k-1 / 2}}{\delta t}+R \mathbf{e}^{k}=0 \\
-\boldsymbol{E} \frac{e^{k+1}-e^{k}}{\delta t}+R^{t} \mathbf{v} b^{k+1 / 2}=j^{k+1 / 2}
\end{gathered}
$$

"Yee scheme" (1966), aka FDTD

D of this:

$h=v b$
$\mathbf{d}=\varepsilon \mathbf{e}$
Recall that $\partial_{\mathrm{t}} \mathbf{q}-\mathbf{G}^{\mathbf{t}} \mathbf{j}=0$,
(because $\partial_{t} q+\operatorname{div} j=0$, and $-G^{t} \sim \operatorname{div}$)
hence $-\mathbf{G}^{\mathbf{t}} \mathbf{d}=\mathbf{q}$

$$
\begin{array}{cc}
\partial_{\mathrm{t}} \mathbf{b}+\mathrm{Re}=0 & -\partial_{\mathrm{t}} \mathbf{d}+\mathrm{R}^{\mathrm{t}} \mathbf{h}=\mathbf{j} \\
\mathbf{h}=\mathbf{v} \mathbf{b} & \mathbf{d}=\boldsymbol{\varepsilon} \mathbf{e}
\end{array}
$$ Use $D R=0$ and $G^{t} R^{t}=0$ to get

$-G^{t} \mathbf{d}=\mathbf{q} \triangleleft$ Kirchhoff's node law $\triangleright \mathrm{Db}=0$
$d=\varepsilon e$
$\left(\partial_{\mathrm{t}} \mathbf{q}-\mathrm{G}^{\mathrm{t}} \mathbf{j}=0\right)$
$\operatorname{Re}=-\partial_{\mathrm{t}} \mathbf{b} \triangleleft$ Kirchhoff's loop law "electric" network "magnetic" network
Two interlocked, cross-talking, networks If ε and v diagonal, $\varepsilon^{\mathrm{ee}}$ and v^{ff} can be seen as branch impedances

Discrete ("mimetic") structures

Space (comput. domain) \rightarrow Cell complex

 submanifolds (such as S, Σ) \longrightarrow cellular chains fields (such as $\mathrm{b}, \mathrm{h}, \mathrm{e}, \mathrm{d}$) \longrightarrow cellular cochains
Hodge map(s) \rightarrow Hodge matrix(es)

consistency required there, for convergence of numerical schemes

Discrete Hodge map:

$$
\tilde{\mathrm{f}} \rightarrow \sum_{\mathrm{f}^{\prime} \in \mathcal{F}} v^{\mathrm{ff}} \mathrm{f}^{\prime}
$$

\mathcal{F} : set of mesh faces

Map extends to dual chains (by linearity) and passes (by duality) to cochains

Consistency:

$$
v[\tilde{1}-\operatorname{vec}(\tilde{\mathrm{f}})]=\sum_{\mathrm{f}^{\prime}} \mathbf{v}^{\mathrm{ff}^{\prime}}\left[2-\operatorname{vec}\left(\mathrm{f}^{\prime}\right)\right]
$$

Also needed (for electrostatics and full Maxwell):

$$
\widetilde{\mathrm{e}} \rightarrow \sum_{\mathrm{e}^{\prime} \in \mathcal{E}} \mathcal{E}^{\mathrm{ee}^{\prime}} \mathrm{e}^{\prime}
$$

\mathcal{E} : set of mesh edges

Consistency condition: $\quad v[\tilde{1}-\operatorname{vec}(\widetilde{f})]=\sum_{f} v^{f f}\left[2-\operatorname{vec}\left(f^{\prime}\right)\right]$ makes commutative the diagram

$$
\mathrm{b} \longrightarrow \mathbf{b}
$$

$$
v \overrightarrow{\tilde{\mathrm{f}}}=\sum_{f^{\prime}} v^{\mathrm{ff}^{\prime}} \overrightarrow{\mathrm{f}^{\prime}}
$$

when b and h are piecewise uniform:

$\mathbf{h}_{\mathrm{f}}=\langle\tilde{\mathrm{f}} ; v b\rangle \stackrel{!}{=}\langle\overrightarrow{\mathrm{f}} ; v b\rangle=\langle v \overrightarrow{\mathrm{f}} ; \mathrm{b}\rangle=\sum_{\mathrm{f}^{\prime}} \mathbf{v}^{\mathrm{ff}}\left\langle\overrightarrow{\mathrm{f}^{\prime}} ; b\right\rangle \stackrel{!}{=} \sum_{\mathrm{f}^{\prime}} \mathbf{f}^{\mathrm{ff}^{\prime}} \mathbf{b}_{\mathrm{f}^{\prime}}$

If dual mesh barycentric, criterion met by

 the "Galerkin Hodge", defined as$$
v^{f f^{\prime}}=\int v W^{f} \wedge W^{f^{\prime}}
$$

where w^{f} is Whitney form of facet f

Prop. 1: Select centers inside primal simplexes. Join them to make dual. Then unique v conforming to criterion.

But this v non-symmetric!! (Yet, pos.def.)

Prop. 2: If centers such that

$$
\Sigma_{f} \operatorname{vec}(f) \times \operatorname{vec}(\tilde{f})=0
$$

$\operatorname{vec}(\mathrm{f})=$ sectorial area of f here $\operatorname{vec}(\widetilde{f})=$ vector along $\widetilde{\mathrm{f}}$ (with usual orientation of ambient space)

Then v symmetric.

Corollary: If • at barycenters, then v symmetric for all positions of • inside.
Proof. True if oat barycenter (Galerkin v). Now, if $\bullet \leftarrow \bullet+\mathrm{v}$, and because $\Sigma_{\mathrm{f}} \operatorname{vec}(\mathrm{f})=0$,

$$
\Sigma_{\mathrm{f}} \operatorname{vec}(\mathrm{f}) \times \operatorname{vec}(\tilde{f}+\mathrm{v})=0+\left(\Sigma_{\mathrm{f}} \operatorname{vec}(\mathrm{f})\right) \times \mathrm{v}=0 .
$$

\square

An interesting solution (Weiland, Tonti et al., ...) Centers at circumcenters:

Then, $\overrightarrow{\mathrm{f}} / / / \overrightarrow{\mathrm{f}}$, so $\quad v^{\mathrm{ff}} \mathrm{f}=v \widetilde{\mathrm{f}}$, other terms 0 ,
i.e., $v^{\mathrm{ff}}=v$ length $(\widetilde{\mathrm{f}}) / \operatorname{area}(\mathrm{f})$

Highly desirable mutual orthogonality
of primal and dual meshes

Here, $\overrightarrow{\mathrm{f}} / / \overrightarrow{\mathrm{f}}$, and

$$
v^{\mathrm{ff}} \overrightarrow{\mathrm{f}}=v \overrightarrow{\mathrm{f}}
$$

Alas ...

Only specially designed primal meshes will admit an orthogonal dual and besides, Delaunay doesn't quite make it:

\mathcal{A} sufficient condition:

The "circumcenter inside" property

... satisfied by the Sommerville tetrahedron:
D.M.Y. Sommerville: "Space-filling Tetrahedra in Euclidean Space", Proc. Edinburgh Math. Soc., 41 (1923), pp. 49-57.
D.M.Y. Sommerville: "Division of Space by Congruent Triangles and Tetrahedra", Proc. Roy. Soc. Edinburgh, 43 (1923), pp. 85-116.

The Sommerville tetrahedron,

 a space-filler:

We'll take
$\mathrm{a}=2, \mathrm{~b}=\sqrt{ } 3$
$3 a^{2}=4 b^{2}$

One may now stack the hexahedra thus obtained, which amounts to combine octahedra and tetrahedra in the familiar "octet truss" pattern: First lay the octahedra side by side, Cike this,

then add S-tetrahedra, two for each octahedron, like this:

so one is left with a horizontal egg-crate shaped slab, with pyramidal holes, ready to be filled by a similar slab, superposed, thus filfing space.

No privileged direction:

Notorious "staírcase" problem, allevíated:

The dual mesh:

(truncated octahedron, aka tetrakaidecahedron)

"More isotropic" than the Yee lattice:

Convergence issues

$\mathrm{p}_{m} \mathbf{b}$
 $\mathrm{p}_{\mathrm{m}} \mathrm{h} \quad \mathrm{h}$ $\mathrm{p}_{\mathrm{n}} \mathrm{h} \quad \mathrm{h}$

 Forms b $\quad \mathbf{r}_{m} \mathrm{~b} \quad$ D.o.F. $\quad \mathbf{h} \quad \mathbf{r}_{m} \mathrm{~h}$

Computed fluxes

$\mathbf{b}=\left\{\mathbf{b}_{f}: f \in \mathcal{F}\right\} \quad \mathbf{h}=\left\{\mathbf{h}_{f}: f \in \mathcal{F}\right\}$
$\left(\mathrm{r}_{m} \mathrm{~b}\right)_{\mathrm{f}}=\int_{\mathrm{f}} \mathrm{b} \leftrightharpoons$ True ones $\simeq\left(\mathrm{r}_{m} \mathrm{~h}\right)_{\mathrm{f}}=\int_{\mathrm{f}} \mathrm{h}$

Whitney forms

$$
2\left[\lambda^{1} \mathrm{~d} \lambda^{\mathrm{m}} \wedge \mathrm{~d} \lambda^{\mathrm{n}}+\ldots+\ldots\right]
$$

$6 d \lambda^{k} \wedge d \lambda^{l} \wedge d \lambda^{m}$

Mapping points to cellular 0-chains, weights given by Whitney 0 -forms:

$$
\mathrm{x}=\sum_{\mathrm{n} \in \mathcal{N}} \mathrm{w}^{\mathrm{n}}(\mathrm{x}) \mathrm{n}
$$

Mapping (bound) vectors to cellular 1-chains, weights given by Whitney 1 -forms:

$$
\mathrm{V}=\mathrm{y}-\mathrm{x}=\sum_{\mathrm{e} \in \mathcal{E}}\left\langle\mathrm{~V} ; \mathrm{W}^{\mathrm{e}}(\mathrm{x})\right\rangle \mathrm{e}
$$

$W^{\{m, n\}}$
(last e, by notational abuse, is vec(e), aka $\overrightarrow{\mathrm{e}}$)
$\lambda^{\mathrm{n}} \mathrm{d} \lambda^{\mathrm{m}}-\lambda^{\mathrm{m}} \mathrm{d} \lambda^{\mathrm{n}}$

Sketch of convergence proof, in magnetostatics

(easy extension to full Maxwell, by using Laplace transform)

Notation: $\|b\|_{v}^{2}=\sum_{f, f} v^{f f} \mathbf{b}_{f} \mathbf{b}_{f^{\prime}}\left({ }^{\prime} v-\right.$ norm" $),(\mathbf{b}, \mathbf{h})=\sum_{f} \mathbf{b}_{f} \mathbf{h}_{f}$

$$
\begin{aligned}
& \mathrm{Db}=0, \mathbf{h}=\mathbf{v b} \mathbf{b}, \mathrm{R}^{\mathrm{t}} \mathbf{h}=\mathbf{j} \\
& \mathrm{Dr}_{m} \mathrm{~b}=0 \quad \mathrm{R}^{\mathrm{t}} \mathbf{r}_{m} \mathrm{~h}=\mathrm{r}_{m} \mathrm{j}
\end{aligned}
$$

(because $\mathrm{Dr}_{m}=\mathrm{r}_{m} \mathrm{~d}$) (because $\mathrm{R}^{\mathrm{t}} \mathrm{r}_{m}=\mathrm{r}_{m} \mathrm{~d}$)

$$
(\underbrace{\left.\mathbf{h}-\mathbf{r}_{m} \mathrm{~h}\right)}_{\in \operatorname{ker}\left(\mathbf{R}^{\prime}\right)}-\mathbf{v}(\underbrace{\left(\mathbf{b}-\mathbf{r}_{m} \mathbf{b}\right)}_{\in \operatorname{ker}(\mathbf{D})}=\left(v \mathrm{r}_{m}-\mathrm{r}_{m} v\right) b
$$

$$
\left\|\mathbf{b}-\mathbf{r}_{m} b\right\|_{v}^{2}+\left\|\mathbf{h}-\mathbf{r}_{m} h\right\|_{\mu}^{2}=\left\|\left(\nu \mathbf{r}_{m}-\mathbf{r}_{m} v\right) b\right\|_{\mu}^{2} \equiv\left\|\left(\mu \mathbf{r}_{m}-\mathbf{r}_{m} \mu\right) \mathrm{h}\right\|_{v}^{2}
$$

Consistency $\left\{\mathrm{p}_{m} \mathrm{r}_{m} \mathrm{~b} \rightarrow \mathrm{~b}\right.$ when $" m \rightarrow 0 "$ $+$

$$
\left\|\left(\mathbf{v r}_{m}-\mathbf{r}_{m} \nu\right) b\right\|_{\mu} \rightarrow 0
$$

Stability: $\alpha\left\|p_{m} \mathbf{b}\right\|_{v} \leq\|\mathbf{b}\|_{v}$
$=$
Convergence:

$\leq \frac{1}{\alpha}\left\|\left(\operatorname{vr}_{m}-\mathrm{r}_{m} \nu\right) \mathrm{b}\right\|_{\mu} \rightarrow 0 \Rightarrow \mathrm{p}_{\mathrm{m}} \mathbf{b} \rightarrow \mathrm{b}$

Why Galerkin method fulfills

consistency requirement:

Whitney form proxies

$$
\begin{aligned}
& \lambda^{\mathrm{n}} \nabla \lambda^{\mathrm{m}}-\lambda^{\mathrm{m}} \nabla \lambda^{\mathrm{n}} \\
& \quad 2\left[\lambda^{1} \nabla \lambda^{\mathrm{m}} \times \nabla \lambda^{\mathrm{n}}+\ldots+\ldots\right]
\end{aligned}
$$

Whitney forms as a partition of unity

- $\sum_{\mathrm{n}} \mathrm{w}^{\mathrm{n}}(\mathrm{x})=1 \quad \forall \mathrm{x}$
- $\Sigma_{\mathrm{e}} \mathrm{w}^{\mathrm{e}}(\mathrm{x}) \otimes \mathrm{e}=1 \quad \forall \mathrm{x}$ i.e., $\sum_{\mathrm{e}}\left(\mathrm{v} \cdot \mathrm{w}^{\mathrm{e}}(\mathrm{x})\right) \mathrm{e}=\mathrm{v} \forall \mathrm{v}$
- $\sum_{\mathrm{f}} \mathrm{w}^{\mathrm{f}}(\mathrm{x}) \otimes \mathrm{f}=1 \quad \forall \mathrm{x}$
etc.

Consequence: \mathcal{T} he "mass matrix" \& of edge elements ...

$$
\begin{aligned}
& \sum_{\mathrm{e}^{\prime}}\left(\varepsilon \mathrm{W}^{\mathrm{e}}(\mathrm{x}) \cdot \mathrm{W}^{\mathrm{e}^{\prime}}(\mathrm{x})\right) \mathrm{e}^{\prime}=\varepsilon \mathrm{W}^{\mathrm{e}}(\mathrm{x}) \\
& \sum_{\mathrm{e}^{\prime}} \int_{\mathrm{D}}\left(\varepsilon \mathrm{~W}^{\mathrm{e}}(\mathrm{x}) \cdot \mathrm{W}^{\mathrm{e}^{\prime}}(\mathrm{x})\right) \mathrm{e}^{\prime}=\int_{\mathrm{D}} \varepsilon \mathrm{~W}^{\mathrm{e}}(\mathrm{x}) \\
& \sum_{\mathrm{e}^{\prime}} \varepsilon^{e \mathrm{ee}^{\prime}} \mathrm{e}^{\prime}=\int_{\mathrm{D}} \varepsilon \mathrm{~W}^{\mathrm{e}}(\mathrm{x})=\varepsilon \tilde{\mathrm{e}}
\end{aligned}
$$

... satisfies the consistency requirement

So Galerkin is a mimetic method too!

But non-diagonal ε,
making Yee scheme implicit, thus expensive

Diagonal lumping at the rescue

There is a unique diagonal matrix $\varepsilon_{\text {diag }}$, indexed over edges, such that $\mathrm{G}^{\mathrm{t}}\left(\varepsilon_{\text {diag }}-\varepsilon_{\text {cal }}\right) \mathrm{G}=0$. Its entries are

$$
\varepsilon_{\text {diag }}^{\mathrm{ee}}=-\left(\mathrm{G}^{\mathrm{t}} \varepsilon_{\mathrm{Gal}} \mathrm{G}\right)^{\mathrm{mn}}
$$

for each edge e going from node m to node n . If $\mathbb{\varepsilon}_{\text {diag }}^{\mathrm{ee}}>0$ (plus mild stability assumptions), the Yee schemes with $\varepsilon=\varepsilon_{\text {diag }}$ and $\varepsilon=\varepsilon_{\text {Gal }}$ have the same limit when " $m \rightarrow 0$ "

But note that $\varepsilon_{\text {diag }}^{\text {ee }}>0$ requires acute dihedral angle at e!
A.B. and L. Kettunen, paper \#128 at http://butler.cc.tut.fi/~bossavit/Papers.html

Which primal mesh, which discrete Hodge?

Galerkin works on all simplicial meshes But non-diagonal \& and v. Diagonal lumping? Yes, for ε (not for v) if acute dihedral angles

FIT/CM make diagonal hodges
but require mutual orthogonality of primal/dual cell pairs.

Definition. Acute n-simplex: Dihedral angles (i.e., angles between hyperplanes subtending ($\mathrm{n}-1$)-faces) all $<90^{\circ}$. Proposition. Faces of an acute n-simplex are acute.

Proof:

Converse not true:

A non-acute tetrahedron

 with acute facets:

Couldn't acute tetrahedra be preferable? A Venn diagram:
cc of facets inside

cc of tetra inside

The A15 acute tifing of space*

To nodes of

 Sommerville mesh, add centers of one S. tetra out of two...
... build Voronoi cells of lattice thus obtained, then take Delaunay tetras of this.

The tools in the box:

Surfaces, curves, etc.

Cell chains

 Fields $\mathrm{b}, \mathrm{h}, \ldots \rightarrow$ Cell cochains (DoF arrays) $\mathbf{b}, \mathbf{h}, \ldots$ Constitutive laws \rightarrow "Discrete hodges", $\varepsilon, \boldsymbol{v}, \boldsymbol{\sigma} \ldots$ grad, rot, div$$
\begin{gathered}
\mathrm{G}, \mathrm{R}, \mathrm{D} \text { (primal side), } \\
-\mathrm{D}^{\mathrm{t}}, \mathrm{R}^{\mathrm{t}},-\mathrm{G}^{\mathrm{t}} \text { (dual side) }
\end{gathered}
$$ products, $\mathrm{E} \times \mathrm{H}, \mathrm{J} \cdot \mathrm{E} \longrightarrow$ "wedge" product, $\mathrm{e} \wedge \mathrm{h}, \mathrm{j} \wedge \mathrm{e}$ $-\partial_{\mathrm{t}} \mathrm{D}+\operatorname{rot} \mathrm{H}=\mathrm{J}, \mathrm{D}=\varepsilon \mathrm{E}$

$\partial_{\mathrm{t}} \mathrm{B}+\operatorname{rot} \mathrm{E}=0, \mathrm{H}=v \mathrm{~B}$
$\operatorname{div} \mathrm{D}=\mathrm{Q}, \operatorname{div} \mathrm{B}=0$
$\mathrm{E}=-\operatorname{grad} \varphi-\partial_{\mathrm{t}} \mathrm{A}$
etc.

$$
\begin{gathered}
-\partial_{t} \mathbf{d}+R^{t} \mathbf{h}=\mathbf{j}, \mathbf{d}=\varepsilon \mathbf{e} \\
\partial_{\mathrm{t}} \mathbf{b}+\mathrm{R} \mathbf{e}=0, \mathbf{h}=\mathbf{v} \mathbf{b} \\
-\mathrm{G}^{\mathrm{t}} \mathbf{d}=\mathbf{q}, \mathrm{D} \mathbf{b}=0 \\
\mathbf{e}=-\mathrm{G} \varphi-\partial_{\mathrm{t}} \mathbf{a}
\end{gathered}
$$

Good, but not enough:

What about "force related" entities, like
$\mathrm{O} \quad \mathrm{E} \times \mathrm{H}$ (Poynting)?
○ $\quad \mathrm{Q}(\mathrm{E}+\mathrm{v} \times \mathrm{B})$ (Lorentz) ?
○ $\mathrm{J} \times \mathrm{B}$ (Laplace) ?
○ $\quad \mathrm{B} \otimes \mathrm{H}$ (Maxwell) ?
Heuristic hint: force is a covector, cf. $\mathrm{v} \rightarrow\langle\mathrm{v} ; \mathrm{f}\rangle$

Flux of Poynting "vector"

Computing $\int_{t} e \wedge h$, for primal triangle t, knowing DoF-arrays \mathbf{e}, \mathbf{h}, would be simple:

$$
\int_{\mathrm{t}} \mathrm{e} \wedge \mathrm{~h}=\frac{1}{6}\left[\mathbf{e}_{\mathrm{a}} \mathbf{h}_{\mathrm{b}}+\mathbf{e}_{\mathrm{b}} \mathbf{h}_{\mathrm{c}}+\mathbf{e}_{\mathrm{c}} \mathbf{h}_{\mathrm{a}}-\mathbf{h}_{\mathrm{a}} \mathbf{e}_{\mathrm{b}}-\mathbf{h}_{\mathrm{b}} \mathbf{e}_{\mathrm{c}}-\mathbf{h}_{\mathrm{c}} \mathbf{e}_{\mathrm{a}}\right]
$$

(get e and h from \mathbf{e} and h using 2D Whitney 1-forms and develop)

Flux of Poynting "vector"

\ldots we want $\int_{\Sigma} \mathrm{e} \wedge \mathrm{h}$ with Σ a dual 2-chain, i.e., a sum of integrals
like $\int \mathrm{e} \wedge \mathrm{h}$ here:
 and needededge values of h not available. Reconstruct them from $\mathbf{h}_{1}, \mathbf{h}_{2}$ shown here, thanks to the fact that $h=v b$ $=v$ da (only way to obtain h) is uniform in the tetrahedron

Flux of Poynting "vector"

Final recipe for $\int \mathrm{e} \wedge \mathrm{h}$:

$$
\int_{\mathrm{t}} \mathrm{e} \wedge \mathrm{~h}=\frac{1}{6}\left[\mathrm{e}_{\mathrm{a}} \mathbf{h}_{\mathrm{b}}+\mathbf{e}_{\mathrm{b}} \mathbf{h}_{\mathrm{c}}+\mathbf{e}_{\mathrm{c}} \mathbf{h}_{\mathrm{a}}\right.
$$

$$
\left.\cdots-\mathbf{h}_{\mathrm{a}} \mathbf{e}_{\mathrm{b}}-\mathbf{h}_{\mathrm{b}} \mathbf{e}_{\mathrm{c}}-\mathbf{h}_{\mathrm{c}} \mathbf{e}_{\mathrm{a}}\right]
$$

with these values and orientations:

$\frac{\mathbf{h}_{1}+3 \mathbf{h}_{2}}{2}$

Get $\mathbf{h}_{1}, \mathbf{h}_{2}$ from

$$
h=v_{T} \mathbf{b}
$$

Flux of Poynting "vector"

Final recipe for $\int \mathrm{e} \wedge \mathrm{h}$:

$$
\int_{t} \mathrm{e} \wedge \mathrm{~h}=\frac{1}{6}\left[\mathbf{e}_{\mathrm{a}} \mathbf{h}_{\mathrm{b}}+\mathbf{e}_{\mathrm{b}} \mathbf{h}_{\mathrm{c}}+\mathbf{e}_{\mathrm{c}} \mathbf{h}_{\mathrm{a}}\right.
$$

with these values and orientations:
$\frac{\mathbf{h}_{1}+3 \mathbf{h}_{2}}{2}$

$$
\frac{\mathbf{e}_{1}+\mathbf{e}_{3}}{6}<\frac{\mathbf{e}_{1}+\mathbf{e}_{4}+2 \mathbf{e}_{5}}{12}
$$

Get $\mathbf{h}_{1}, \mathbf{h}_{2}$ from

$$
\mathbf{h}=v_{\mathrm{T}} \mathbf{b}
$$

h_{1}

The Lorentz force

Force $\quad \mathrm{F}=\mathrm{E}+\mathrm{v} \times \mathrm{B} \quad$ on unit charge

B proxy for $\mathrm{b}:\langle\mathrm{v} \vee \mathrm{w} ; \mathrm{b}\rangle=\mathrm{B} \cdot(\mathrm{v} \times \mathrm{w}) \equiv-(\mathrm{v} \times \mathrm{B}) \cdot \mathrm{w}$
Define $\mathrm{i}_{\mathrm{v}} \mathrm{b}$ as the covector $\mathrm{w} \rightarrow\langle\mathrm{v} \vee \mathrm{w} ; \mathrm{b}\rangle$ called interior product of b and v

$$
\begin{array}{ccc}
\mathrm{v} \times \mathrm{B} & \text { proxy for } & -\mathrm{i}_{\mathrm{v}} \mathrm{~b} \\
\mathrm{E} & \text { proxy for } & \mathrm{e}
\end{array}
$$

on unit charge passing
Lorentz force $\underset{\substack{\text { through point } x \\ \text { with velocity } v}}{ }$ is the covector $\mathrm{e}-\mathrm{i}_{\mathrm{V}}^{\mathrm{b}} \underset{\text { point } \mathrm{x}}{\text { at }}$

So how to "mimic" the inner product

$$
\mathrm{i}_{\mathrm{v}} \mathrm{~b} ?
$$

Extrusion (by the flow of a vector field v):

- of a point:

$$
\left\lvert\, \begin{aligned}
& \mathrm{d}_{\mathrm{t}} \mathrm{u}_{\mathrm{t}}(\mathrm{x})=\mathrm{v}\left(\mathrm{u}_{\mathrm{t}}(\mathrm{x})\right) \\
& \mathrm{u}_{0}(\mathrm{x})=\mathrm{x}
\end{aligned}\right.
$$

- of a p-manifold:

Inner product:

$$
\int_{c} i_{v} b=\lim _{t \rightarrow 0} \frac{1}{t} \int_{\text {extc }(c, v, t)} b
$$

The Lorentz force

$$
\begin{array}{ll}
\mathrm{v} \times \mathrm{B} \quad \text { proxy for } & -\mathrm{i}_{\mathrm{v}} \mathrm{~b} \\
(\text { vector fields) } & (1-\text { cochain })
\end{array}
$$

$$
\int_{\mathrm{e}} \mathrm{i}_{\mathrm{v}} \mathrm{~b} \sim \int_{\operatorname{ext}(\mathrm{e}, \mathrm{v})} \mathrm{b}
$$

Extrusion of an edge, as a chain of facets?

$$
\mathrm{y}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}}+\mathrm{v}\left(\mathrm{x}_{\mathrm{n}}\right)
$$

n (at point X_{n})
$\operatorname{ext}(\mathrm{e}, \mathrm{v}) \approx \lambda^{\mathrm{k}}\left(\mathrm{y}_{\mathrm{n}}\right) \mathrm{nmk}+\lambda^{1}\left(\mathrm{y}_{\mathrm{n}}\right) \mathrm{nml}$

$I\left(e, e^{\prime}, f\right)=$ weight of facet f in

 extrusion of edge e by the field $\lambda^{\mathrm{n}} \mathrm{e}^{\prime}$
n
$\mathrm{v} \approx \sum_{\mathrm{n}} \lambda^{\mathrm{n}}(\mathrm{x}) \mathbf{v}_{\mathrm{n}}=\sum_{\mathrm{n}, \mathrm{e}^{\prime}} \lambda^{\mathrm{n}}(\mathrm{x}) \mathrm{v}_{\mathrm{n}}^{\mathrm{e}^{\prime}} \mathrm{e}^{\mathrm{t}}$
$b=\sum_{f} \mathbf{b}_{f} w^{f}$

$$
\left(\mathrm{i}_{\mathrm{v}} \mathrm{~b}\right)_{\mathrm{e}}=\sum_{\mathrm{e}^{\prime}, \mathrm{f}} \mathrm{I}\left(\mathrm{e}, \mathrm{e}^{\prime}, \mathrm{f}\right) \mathbf{b}_{\mathrm{f}} \mathrm{v}_{\mathrm{n}}^{\mathrm{e}^{\prime}}
$$

Well and good. But is it true that

$$
\left(i_{-v} \mathbf{b}\right)_{e}=-\left(i_{v} \mathbf{b}\right)_{e} ?
$$

Needed: a discrete notion of "tangent plane at n ", or local affine structure

This structural element must be specified apart (just as discrete Hodge needed to be)

Local affine structure:

Now, one can assign a map from T_{n} to T_{m} to edge e : Parallel transport from n to m, connection, etc.

The Laplace force

$$
\begin{aligned}
& \mathrm{J} \times \mathrm{B} \quad \text { proxy for } \quad \mathrm{v} \rightarrow \mathrm{i}_{\mathrm{v}} \mathrm{~b} \wedge \mathrm{j} \\
& (\text { vector field) } \quad \text { (covector-valued twisted 3-form) }
\end{aligned}
$$

To be integrated over dual 3-cell $\tilde{\mathrm{n}}$:
Similar to $\int \mathrm{e} \wedge \mathrm{h}$, but now
$1 \wedge \tilde{2}$ instead of $1 \wedge \tilde{1}$

Then, covector $v \rightarrow \int_{\widetilde{n}} i_{v} b \wedge j$ is force exerted on \tilde{n} Electric energy, $\int_{\widetilde{n}} \mathrm{e} \wedge \mathrm{d}$, treated like $\int_{\widetilde{\mathrm{n}}} \mathrm{i}_{\mathrm{V}} \mathrm{b} \wedge \mathrm{j}$

Energy

$\Sigma_{e \in \mathcal{E}} \mathrm{e}_{\mathrm{e}} \mathrm{d}_{\mathrm{e}}$
(electric)

$\sum_{f \in \mathcal{F}} h_{f} b_{f}$
(magnetic)

The Maxwell "tensor"

Start from wedge multiply by

$$
\begin{aligned}
-\partial_{\mathrm{t}} \mathrm{~d}+\mathrm{dh}=\mathrm{j} & \wedge \mathrm{i}_{\mathrm{V}} \mathrm{~b} \\
\partial_{\mathrm{t}} \mathrm{~b}+\mathrm{de}=0 & \wedge \mathrm{i}_{\mathrm{v}} \mathrm{~d}
\end{aligned}
$$

D
add, integrate over D, use $q=d d$, set
$f=v \rightarrow\left({\underset{v}{r}}^{q} \wedge e+i_{v} b \wedge j\right) \quad$ (force density, covectorvalued twisted 3-form)
find eventually that $\int_{D} f$ is equal to
$\partial_{t}\left[\int_{D} i_{v} d \wedge b\right]+\int_{S}\left[i_{v} h \wedge b+i_{v} e \wedge d-\frac{1}{2} i_{v}(h \wedge b+e \wedge d)\right]$
momentum Maxwell (covector-valued, twisted) 2-form

The Maxwell "tensor"

$$
\int_{\mathrm{D}} \mathrm{f}=
$$

D

$$
\begin{gathered}
\int_{S}\left[i_{v} \mathrm{~h} \wedge \mathrm{~b}-\frac{1}{2} \mathrm{i}_{\mathrm{v}}(\mathrm{~h} \wedge \mathrm{~b})\right]=\int_{\mathrm{S}}\left[\mathrm{i}_{\mathrm{v}} \mathrm{~b} \wedge \mathrm{~h}+\frac{1}{2} \mathrm{i}_{\mathrm{v}}(\mathrm{~h} \wedge \mathrm{~b})\right] \\
\text { treat like } \mathrm{e} \wedge \mathrm{~h}
\end{gathered}
$$

extrude dual faces by v, use result about $\mathrm{h} \wedge \mathrm{b}$

$$
\begin{aligned}
& \partial_{t}\left[\int_{D} i_{v} d \wedge b\right]+\int_{S}\left[i_{v} h \wedge b+i_{v} e \wedge d-\frac{1}{2} i_{v}(h \wedge b+e \wedge d)\right] \\
& \text { momentum Maxwell (covector-valued, twisted) 2-form }
\end{aligned}
$$

Conclusion

O Object-oriented programming agenda
O Specific difficulty: infinite dimensional entities (fields) vs finite data structures

O Candidates to "object" status (mesh-related things) have been identified,
O and procedures that apply to them, described
O Discrete avatars of geometrical objects, for which traditional vector fields are only proxies

Thanks

