
Alex Pothen
Purdue University
CSCAPES Institute
www.cs.purdue.edu/homes/apothen/

Assefaw Gebremedhin, Fredrik Manne, Umit Catlyurek, Erik
Boman, Doruk Bozdag

Woudschoten Conference
Oct. 2010

  Renaissance in Computer Architectures
  The Many-core and Multi-threaded World
◦  Intel Nehalem
◦  Sun Niagara
◦  Cray XMT

  A case study on multithreaded graph coloring
◦  An Iterative Coloring Algorithm
◦  A Dataflow algorithm

  Distributed Memory Parallel Coloring

 Tentative Conclusions

Alex Pothen Multicore Computing 2

  One of four DOE Scientific Discovery thru Advanced
Computing (SciDAC) Institutes (2006-2012); only one in
Appl. Math
◦  Excellence in research, education and training
◦  Collaborations with science projects in SciDAC

  Focus not on specific application, but on algorithms and
software for combinatorial problems

  Participants from Purdue, Sandia, Argonne, Ohio State,
Colorado State

  CSCAPES workshops with talks, tutorials on software,
discussions on collaborations

  www.cscapes.org

3

Alex Pothen Multicore Computing 4

• Journal of the ACM: New section on Scientific and
High Performance Computing… venue for
publishing work of excellent quality in these areas
that have a Computer Science component
• SIAM Books, SIAM Monographs in Computational
Science and Engineering: Potential book ideas?
Please contact me!
• SIAM Workshop on Combinatorial Scientific
Computing, CSC11, May 19-21, Darmstadt,
www.siam.org/meetings/csc11/

Alex Pothen Multicore Computing 6

  Good news
◦  Moore’s Law marches on
◦  Real estate on a chip essentially free: Major paradigm

change, and huge opportunity for innovation
  Bad news
◦  Power limits improvement in clock speed
◦  Memory accesses are the bottleneck for

high-throughput computing

  Eventual consequences are unclear
  Current response: multi- and many-core

processors
◦  Computation/Communication ratio will get worse
◦  Makes life harder for applications

  Leading edge scientific applications increasingly
include:
◦  Adaptive, unstructured data structures
◦  Complex, multiphysics simulations
◦  Multiscale computations in space and time
◦  Complex synchronizations (e.g., discrete events)

  Significant parallelization challenges on today’s
machines
◦  Finite degree of coarse-grained parallelism
◦  Load balancing and memory hierarchy optimization

  Dramatically harder on millions of cores
  Huge need for new algorithmic paradigms

 Low latency / high bandwidth
◦  For small messages!

 Latency tolerance
 Light-weight synchronization mechanisms
 Global address space
◦  No graph partitioning required
◦  Avoid memory-consuming profusion of ghost-nodes
◦  Correctness and performance easier

 One Solution: Multi-threaded computations

• Memory access +mes determine performance  
• By issuing mul+ple threads, mask memory latency if a ready 
thread is available when a func+onal unit  becomes free 
• Interleaved vs. Simultaneous mul+threading  

Figure from Robert Golla, Sun  
Time 

•  Two 8-core sockets,
• 8 hw threads per core
• 1.2 GHz processors linked by
8 x 9 crossbar to L2 cache banks

!"#$%&'()*+#)',%-*$.

!"#$%&'/0'1#2"%'34'5#6789

!"#$%&'

($)*%$++"%

4:;'1#2"%'1$*88+#$

< = 0 > ? @ A B

($%",-

./'(012"

< = 0 > ? @ A B

($%",/

./'(012"

< = 0 > ? @ A B

($%",3

./'(012"

!"#$%&'

($)*%$++"%

!"#$%&'

($)*%$++"%

!"#$%&'

($)*%$++"%

!"#$%&'/0'1#2"%'34'5#6789

!"#$%&'

($)*%$++"%

4:;'1#2"%'1$*88+#$

< = 0 > ? @ A B

($%",-

./'(012"

< = 0 > ? @ A B

($%",/

./'(012"

< = 0 > ? @ A B

($%",3

./'(012"

!"#$%&'

($)*%$++"%

!"#$%&'

($)*%$++"%

!"#$%&'

($)*%$++"%

• Simultaneous multithreading,
• Two threads from a core are
executable in a cycle
• Shallow pipeline

•  Two quad-core chips, 2.5 GHz
•  Two hyperthreads per core
• Off chip-data latency 106 cycles

!"#$%&'()*+#)',%-*$.

!"#$%&'/0'1#2"%

!"# !"$

%&'()#

*$+%,-.(

*/+%,-.(

!"# !"$

%&'()$

*$+%,-.(

*/+%,-.(

!"# !"$

%&'()/

*$+%,-.(

*/+%,-.(

!"# !"$

%&'()0

*$+%,-.(

*/+%,-.(

,%-*$.'

1*34$*))%$
567

!"#$%&'/0'1#2"%

!"# !"$

%&'()#

*$+%,-.(

*/+%,-.(

!"# !"$

%&'()$

*$+%,-.(

*/+%,-.(

!"# !"$

%&'()/

*$+%,-.(

*/+%,-.(

!"# !"$

%&'()0

*$+%,-.(

*/+%,-.(

567
,%-*$.'

1*34$*))%$

• Advanced architectural features:
Cache coherence protocol to reduce
traffic, loop-stream detection, branch
prediction, out-of-order execution
• Interleaved Multithreading

•  128 processors, 500 MHz
•  128 hw thread streams / proc.
•  in each cycle a proc. issues one
ready thread
• Deeply pipelined, M, A, C
functional units

!"#$%&

'%()*#+%'

,$-+%".

/()0.123/4

5 6 ! 678

9%+:$**+%&5

,$-+%".

/()0.123/4

,$-+%".

/()0.123/4

!"#$%&'()*+#)',-.$/0#)1'2%3*$4'56'!"#$%& '(!)

*+$,(,-./0-.%(&,1223+45(-$(67("#$%&(5.-413-.+$#

;<=':> /?@@$%

,$-+%".A+)'%+BB$%

89(:;.1&(<%$0;.=

!"#$%&

'%()*#+%'

5 6 ! 678

9%+:$**+%&6

;<=':> /?@@$%

,$-+%".A+)'%+BB$%

!"#$%&

'%()*#+%'

5 6 ! 678

9%+:$**+%&!

;<=':> /?@@$%

,$-+%".A+)'%+BB$%

• Cache-less Globally shared memory
• Efficient hardware synchronziation via
full/empty bits
• Data mapped randomly in 8 Byte
blocks, no locality
• Average Memory latency 600 cycles

  Latency tolerance via massive multi-threading
◦  Context switch between threads in a single clock cycle
◦  Global address space, hashed to memory banks to reduce hot-spots
◦  No cache or local memory, average latency 600 cycles

  Memory request doesn’t stall processor
◦  Other threads work while your request gets fulfilled

  Light-weight, word-level
 synchronization
  Notes:
◦  500 MHz clock
◦  128 Hardware thread streams / proc.

◦ We developed two kinds of multithreaded
algorithms for graph coloring:
  An iterative, coarse-grained method for generic shared-memory

architectures
  A dataflow algorithm designed for massively multithreaded

architectures with hardware support for fine-grain synchronization,
such as the Cray XMT

◦  Benchmarked the algorithms on three systems:
  Cray XMT, Sun Niagara 2 and Intel Nehalem

◦  Excellent speedup observed on all three platforms

Alex Pothen Coloring and AD 18

  Distance-k, star, and acyclic coloring are NP-hard

  Approximating coloring to within O(n1-e) is NP-hard too

GREEDY(G=(V,E))
Order the vertices in V
for i = 1 to |V| do

Determine colors forbidden to vi

Assign vi the smallest permissible color

end-for

  A greedy heuristic usually gives a good, often optimal, solution

  The key is to find good orderings for coloring, and many have
been developed

Ref: Gebremedhin, Tarafdar, Manne, Pothen, SIAM J. Sci. Compt. 29:1042--1072, 2007.

a

v

a

v

  Given a graph, parallelize greedy coloring on many-core machines
such that Speedup is attained, and Number of colors is roughly same as in serial

  Difficult task since greedy is inherently sequential, computation small
relative to communication, and data accesses are irregular

  D1 coloring: Approaches based on Luby’s parallel algorithm for maximal
independent set had limited success

  Gebremedhin and Manne (2000) developed a parallel greedy coloring
algorithm on shared memory machines

◦  Uses speculative coloring to enhance concurrency, randomized
partitioning to reduce conflicts, and serial conflict resolution

◦  Number of conflicts bounded, so this approach yields an effective
algorithm

◦  Extended to distance-2 coloring by G, M and P (2002)

  We adapt this approach to implement the greedy algorithm for many-
core computing

a

v

w

a

v

w

Proc IterativeGreedy (G = (V, E))
U is set of vertices to be colored, and R to be recolored
while U is not empty

1. Speculatively color vertices
for v ∈ U in parallel

for each neighbor w of v

Mark color[w] as forbidden to v

Assign smallest available value to color[v]
2. Detect conflicts and create recoloring list
for v ∈ U in parallel

for each neighbor w of v

if color[w] = color[v]
add higher-numbered vertex to R

U = R

end proc

1

Iterative Greedy Coloring:
Parallel Algorithm

Multithreaded: Data Flow

Multi-threaded: Data Flow

proc RecursiveDataflow (G = (V, E))
Set color[v] to zero, and bit to empty
for v ∈ V in parallel

Set state[v] using int fetch add[state[v], 1]
if state[v] is 0 then PROCESS(v)

First thread to process v

end proc

1

Multi-threaded: Data Flow
proc RecursiveDataflow (G = (V, E))
Set color[v] to zero, and bit to empty
for v ∈ V in parallel

Set state[v] using int fetch add[state[v], 1]
if state[v] is 0 then PROCESS(v)

First thread to process v

end proc

1

proc PROCESS(v)
for each neighbor w with w < v

Check state[w] using int fetch add[state[w],1]
if state[w] is zero then PROCESS(w)

First thread to process w

end if

readff color[w]
Mark color[w] as forbidden to v

Assign v the smallest available color
writeef color[v]
end proc

1

RMAT Graphs  

!

"

!#

#"

$%#

!&'$"

"&'(#

!#&)*"

#%&%)#

$#$&!""

!&'"*&%+#

"&!("&)'"

! " !# #" $%# !&'$" "&'(# !#&)*"

!
"#
$
%
#
&
'
(

)#*"##

,-./01,

,-./02

,-./03

!

"

!#

#"

$%#

!&'$"

"&'(#

!#&)*"

#%&%)#

$#$&!""

!&'"*&%+#

"&!("&)'"

!#&+++&$!#

,-./ 0'12/1'3$%4 0'3$%12/1'3%'4 0'3%'12/1'3+%4 0'3+%12/1!3''4

!
"#
$
%
#
&
'(

)*'+,-',%./#"0&1-'*#220'0#&/

56789:5

56789;

56789<

a  b 

c  d 

!"#$

!"$

%

#

&

'

%(

)#

(&

%#'

#$(

% # & ' %()# (& %#'

!
"#

$
%&
"'
%(
$
)*
'
+
(,

-.#/$0%*1%20*)$((*0(

*+,-.#&

*+,-.#$

*+,-.#(

*+,-.#/

!"#$%

!"$%

!"%

#

$

&

'

#(

)$

(&

#$'

$%(

$ & ' #()$ (& #$'

!
"#

$
%&
"'
%(
$
)*
'
+
(,

-.#/$0%*1%20*)$((*0(

*+,-.$&

*+,-.$%

*+,-.$(

*+,-.$/

Iterative Dataflow

Cray XMT: RMAT-G with 224, …, 227 vertices and 134M, …, 1B edges

!

"

#

$

!%

&"

%#

!"$

"'%

! " # $!%

!
"#

$
%&
"'
%(
$
)*
'
+
(,

-.#/$0%*1%)*0$(

!()*+,-./01+,

"()*+,-.2/01+,

#()*+,-.2/01+,

$()*+,-.2/01+,

Niagara 2 Iterative

Perf. With doubling threads on a core = Doubling cores!

!"

#"

$"

%"

!&"

'#"

!" #" $" %" !&"

!
"#

$
%&
"'
%(
$
)*
'
+
(,
%

-.#/$0%*1%20*)$((*0(%

()*+,-.*/0*1,2*3"

()*+,-.*/04,5,+,/%6789+*"

()*+,-.*/:;6"

<,),=9>/:;6"

RMAT-G with 224 = 16M vertices and 134M edges

All Platforms

  Goal: Given a distributed graph, parallelize greedy coloring such that
◦  Speedup is attained
◦  Number of colors used is roughly same as in serial

  Difficult task since greedy is inherently sequential, computation small
relative to communication, and data accesses are irregular

  D1 coloring: approaches based on Luby’s parallel algorithm for
maximal independent set had very limited success

  D2 coloring: no practical parallel algorithms existed

  We developed a framework for effective parallelization of greedy
coloring on distributed memory architectures

  Using the framework, we designed various specialized parallel
algorithms for D1 and D2 coloring
◦  First MPI implementations to yield speedup

  Exploit features of initial data
distribution
◦  Distinguish between interior and

boundary vertices

  Proceed in rounds, each having
two phases:
◦  Tentative coloring
◦  Conflict detection

  Coloring phase organized in
supersteps
◦  A processor communicates only

after coloring a subset of its
assigned vertices
 infrequent, coarse-grain

communication

  Randomization used in
resolving conflicts

2

3 4

5

7

6

8

1 2

3 4

1

5 6

7 8

Superstep 1

Superstep 2

Communicate

Communicate

Superstep 1

Communicate

Detect conflicts

Round 1

Round 2

Detect conflicts

•  First Fit
•  Staggered First Fit

Color selection
strategies

•  Interior before boundary
•  Interior after boundary
•  Interior interleaved with boundary

Coloring order

•  Various degree-based techniques
Local vertex

ordering

•  Synchronous
•  Asynchronous Supersteps

•  Customized
•  Broadcast-based

Inter-processor
communication

  Using the framework (JPDC, 2008)

◦  Designed specialized parallel algorithms for distance-1 coloring

◦  Experimentally studied how to tune “parameters” according to
  size, density, and distribution of input graph

  number of processors

  computational platform

  Extending the framework (SISC, under review)
◦  Designed parallel algorithms for D2 and restricted star coloring

 (to support Hessian computation)
◦  Designed parallel algorithms for D2 coloring of bipartite graphs

 (to support Jacobian computation)

New Challenge: efficient mechanism for information exchange between
processors hosting D2 neighboring vertices needs to be devised

  Software
◦  MPI implementations of D1 and D2 coloring made available in Zoltan

!"#$%&'(

$")*%&'+

("$(%&'+

*"+)%&'+

$"+)%&'$

+")'%&'$

)"''%&'$

)$+ $,'+- +,'-# -,'.* #,$.+ $*,(#-

!
"
#
$
%
&'
(&
)#

'
()
*
(+
'
,"
*
-
+(
./
"
0
(+
,1
/'
2

3("4($5",'++"5+

/01234

56734

Alex Pothen Multicore Computing 36

  Global address-space machines
◦  Parallel algorithms for distance-1 and distance-2 coloring on

graphs for Jacobian and Hessian computations
◦  Employs randomized graph partitioning, speculative coloring to

improve scalability

  Distributed memory machines
◦  Developed a parallelization framework for greedy coloring

◦  Employs graph partitioning, speculative coloring, optimized
communication granularity to achieve scalability on 16,000
processors IBM Blue Gene and Cray XT-5

◦  Designed specialized parallel algorithms for D1 and D2 coloring

◦  Deployed implementations via the Zoltan toolkit

  Massive multithreading
◦  Can tolerate memory latency for graphs/sparse matrices
◦  Dataflow algorithms easier to implement than distributed memory

versions
◦  Thread concurrency ameliorates lack of caches, and lower clock speeds

◦  Thread parallelism can be exploited at fine grain if supported by
lightweight synchronization

◦  Graph structure critically influences performance

  Many-core machines
◦  Early days yet. Developed an iterative algorithm for greedy coloring that

ports to many different machines.

◦  X threads on one core can perform as well as 1 thread on X cores if
simultaneous multithreading is supported

◦  Decomposition into tasks at a finer grain than distributed-memory
version, and need to relax synchronization to enhance concurrency in
computational schedule

◦  Will form nodes of Peta- and Exa-scale machines, so single node
performance studies are needed

  Serial algorithms and software
◦  Jacobian computation via distance-2 coloring algorithms on bipartite graphs
◦  Developed novel algorithms for acyclic, star, distance-k (k = 1,2) and other coloring

problems; developed associated matrix recovery algorithms

◦  Delivered implementations via the software package ColPack (released Oct. 2008)

◦  Interfaced ColPack with the AD tool ADOL-C

  Application Highlights
◦  Enabled Jacobian computation in Simulated Moving Beds

◦  Enabled Hessian computation in optimizing electric power flow

  Parallel algorithms and software
◦  Developed a parallelization framework for greedy coloring

◦  Designed specialized parallel algorithms for D1 and D2 coloring

◦  Deployed implementations via the Zoltan toolkit

  Rob Bisseling, Erik Boman, Ümit Çatalürek,
Karen Devine, Florin Dobrian, Assefaw
Gebremedhin, Mahantesh Halappanavar, Paul
Hovland, Gary Kumfert, Fredrik Manne, Ali
Pınar, Sivan Toledo, Jean Utke

  Gebremedhin and Manne, Scalable parallel graph
coloring algorithms, Concurrency: Practice and
Experience, 12: 1131-1146, 2000.

  Gebremedhin, Manne and Pothen, Parallel distance-k
coloring algorithms for numerical optimization,
Lecture Notes in Computer Science, 2400: 912-921,
2002.

  Bozdag, Gebremedhin, Manne, Boman and Catalyurek.
A framework for scalable greedy coloring on
distributed-memory parallel computers. J. Parallel
Distrib. Comput. 68(4):515-535, 2008.

  Catalyurek, Feo, Gebremedhin, Halappanavar and
Pothen, Multi-threaded algorithms for graph coloring,
Submitted, Aug. 2010.

Alex Pothen Coloring and AD 41

  Gebremedhin, Manne and Pothen. What color is your Jacobian? Graph
coloring for computing derivatives. SIAM Review 47(4):627—705, 2005.

  Gebremedhin, Tarafdar, Manne and Pothen. New acyclic and star coloring
algorithms with applications to computing Hessians.
SIAM J. Sci. Comput. 29:1042—1072, 2007.

  Gebremedhin, Pothen and Walther. Exploiting sparsity in Jacobian
computation via coloring and automatic differentiation: a case study in a
Simulated Moving Bed process. AD2008, LNCSE 64:339---349, 2008.

  Gebremedhin, Pothen, Tarafdar and Walther. Efficient computation of sparse
Hessians using coloring and Automatic Differentiation.
INFORMS Journal on Computing, 21:209---223, 2009.

  Bozdag, Gebremedhin, Manne, Boman and Catalyurek. A framework for
scalable greedy coloring on distributed-memory parallel computers.
J. Parallel Distrib. Comput. 68(4):515—535, 2008.

  Gebremedhin, Nguyen, Patwary and Pothen. ColPack: Graph Coloring
Software for Derivative Computation and Beyond, Submitted, Oct. 2010.

Alex Pothen Coloring and AD 42

  Leading edge scientific applications increasingly include:
◦  Adaptive, unstructured data structures
◦  Complex, multiphysics simulations
◦  Multiscale computations in space and time
◦  Complex synchronizations (e.g. discrete events)

  Significant parallelization challenges on today’s machines
◦  Finite degree of coarse-grained parallelism
◦  Load balancing and memory hierarchy optimization

  Dramatically harder on millions of cores

  Huge need for new algorithmic ideas – CSC will be critical

  Runtime is dominated by latency
◦  Particularly true for data-centric applications
◦  Random accesses to global address space
◦  Perhaps many at once – fine-grained parallelism

  Essentially no computation to hide access time

 Access pattern is data dependent
◦  Prefetching unlikely to help
◦  Usually only want small part of cache line

  Potentially abysmal locality at all levels of memory
hierarchy

a

v

a

v

w

