PURDUE

Scientific Computing in the
Many-core Era:
Scaling the Memory Wall

Alex Pothen
Purdue University

CSCAPES Institute

Assefaw Gebremedhin, Fredrik Manne, Umit Catlyurek, Erik
Boman, Doruk Bozdag

Woudschoten Conference
Oct. 2010

cScapes
T

PURDUE

Qutline

Renaissance in Computer Architectures
The Many-core and Multi-threaded World

Intel Nehalem

Sun Niagara
Cray XMT

A case study on multithreaded graph coloring
An lterative Coloring Algorithm
A Dataflow algorithm

Distributed Memory Parallel Coloring

Tentative Conclusions

cScapes

PURDUE
Combinatorial Scientific Computing and

Petascale Simulations (CSCAPES) Institute

* One of four DOE Scientific Discovery thru Advanced
Computing (SciDAC) Institutes (2006-2012); only one in
Appl. Math

> Excellence in research, education and training
> Collaborations with science projects in SciDAC

* Focus not on specific application, but on algorithms and
software for combinatorial problems

 Participants from Purdue, Sandia, Argonne, Ohio State,
Colorado State

o CSCAPES workshops with talks, tutorials on software,
discussions on collaborations

cScapes

| PURDUE

/. UNIVERSITY

_______ CSCAPES Institute

‘/x
% j Computational Science Application
9 I L I L 2 r

- Scientific Computing Tool i HPC Task - Combinatorial Problem

cscapes

Alex Pothen Multicore Computing 4

PURDUE

Advertisements!

-Journal of the ACM: New section on Scientific and
High Performance Computing... venue for
publishing work of excellent quality in these areas
that have a Computer Science component

-SIAM Books, SIAM Monographs in Computational
Science and Engineering: Potential book ideas!?
Please contact me!

-SIAM Workshop on Combinatorial Scientific
Computing, CSCI I, May 19-21, Darmstadet,
www.siam.org/meetings/cscl |/

cScapes

PURDUE
Moore’s Law and Performance

10,000,000

1.000,000

100,000

10,000

1,000

100

o
10 /
- -he -e
=] * ‘/
1 __‘/ = Transistors (000)

i ¢ Clock Speed (MHz)
T b 4 Power (W)
@ PerfiClock (ILP)

| | l
0
1970 1975 1980 1885 1990 1995 2000 2005 2010

N\

cScapes

cScapes

PURDUE
A Renaissance in Architectures

Good news
> Moore’s Law marches on

> Real estate on a chip essentially free: Major paradigm
change, and huge opportunity for innovation

Bad news

> Power limits improvement in clock speed

> Memory accesses are the bottleneck for
high-throughput computing

Eventual consequences are unclear

Current response: multi- and many-core
processors

> Computation/Communication ratio will get worse
> Makes life harder for applications

PURDUE

Applications Complexity Increasing

» Leading edge scientific applications increasingly

include:

> Adaptive, unstructured data structures

> Complex, multiphysics simulations

> Multiscale computations in space and time

> Complex synchronizations (e.g., discrete events)
* Significant parallelization challenges on today’s

machines
° Finite degree of coarse-grained parallelism
° Load balancing and memory hierarchy optimization

e Dramatically harder on millions of cores
* Huge need for new algorithmic paradigms

cScapes

PURDUE

Architectural Wish List for
Sparse Matrices/Graphs

* Low latency / high bandwidth

o For small messages!

* Latency tolerance

* Light-weight synchronization mechanisms

* Global address space
> No graph partitioning required
> Avoid memory-consuming profusion of ghost-nodes

> Correctness and performance easier

* One Solution: Multi-threaded computations

cScapes

PURDUE

Multi-threaded Parallelism

cscapes

Throughput Computing [0 Memory Latency

B Compute Time

B v I v ™ v @ M~ Thread

Threads

|
<

|
<

]
<

B
<

Figure from Robert Golla, Sun

*Memory access times determine performance

*By issuing multiple threads, mask memory latency if a ready
thread is available when a functional unit becomes free
*Interleaved vs. Simultaneous multithreading

L2 Data ¥ 1k

Bank 0 : int
L2BO

L2 Data

Bank1

=

- O | TAGO TAG1 AG

1o

TAG7 TAGS6

- Two 8-core sockets,
*8 hw threads per core

*|.2 GHz processors linked by
8 x 9 crossbar to L2 cache banks

cScapes
ochal s

PURDUE

UNIVERSITY

Multi-core: Niagara 2

6|7](0]1]2|3|4|5|6|7 0|1]2|3|4(5|6|7 0|1(2|3(4|5(6|7||0|1|2(3|4|5|6|7 0[1(2|3(4|5/6|7|
Core-1 eee Core-7 Core-0 Core-1 eee Core-7
L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache

il il i i il

8x9 Cache Crossbar 8x9 Cache Crossbar
3 3 k3 7 3 3 3
Shared L2 Cache (8 Banks) Shared L2 Cache (8 Banks)
3 3 a5 &z k3 k3 k3
Memory Memory Memory Memory Memory Memory Memory
Controller Controller Controller Controller Controller Controller Controller
A y y
A 4 v A 4 A 4 A 4 A 4 A 4

Shared Global Memory

*Simultaneous multithreading,
*Two threads from a core are
executable in a cycle

Shallow pipeline

PURDUE
Multicore: Intel Nehalem

HTO | ut1 |[wro | uT1 |[Hro | ut1 |[uro | HT1 HTO | ut1 || wro | ut1 || wro | ut1 || uro | HT1

Core-0 Core-1 Core-2 Core-3 Core-0 Core-1 Core-2 Core-3
L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache
L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache
| | | R |
Shared L3 Cache Shared L3 Cache
\ Comrater || T S J
[Shared Global Memory J
- Two quad-core chips, 2.5 GHz *Advanced architectural features:
* Two hyperthreads per core Cache coherence protocol to reduce
*Off chip-data latency 106 cycles traffic, loop-stream detection, branch

prediction, out-of-order execution
*Interleaved Multithreading

cScapes
===

cScapes
T

PURDUE

Massive Mutithreading: Cray XMT

- 128 processors, 500 MHz

* 128 hw thread streams / proc.
* in each cycle a proc. issues one
ready thread

*Deeply pipelined, M,A, C
functional units

(T N (T 7 (N

[1 127 [1 127 0 1 127

Processor-0 Processor-1

""""""" 1 Fui It |
: I Memory Controller : I Memory Controller eee

1 1 1 1
1 1
:l Switch |1—P| Buffer || :l Switch |1—i| Buffer ||
' 1
| A 1 q A 1

A 4

—_————. Y e

Shared Global “Virtual” Memory (8 GBytes X N)
With hardware shuffling at 64 Bytes granularity

*Cache-less Globally shared memory
*Efficient hardware synchronziation via
full/empty bits

*Data mapped randomly in 8 Byte
blocks, no locality

*Average Memory latency 600 cycles

PURDUE

Massive Multithreading: Cray XMT

 Latency tolerance via massive multi-threading
> Context switch between threads in a single clock cycle
> Global address space, hashed to memory banks to reduce hot-spots
> No cache or local memory, average latency 600 cycles

* Memory request doesn’t stall processor
> Other threads work while your request gets fulfilled

* Light-weight, word-level
synchronization

* Notes:

> 500 MHz clock
> 128 Hardware thread streams / proc

cScapes
T

PURDUE

Multithreaded Algorithms for Graph
Coloring

> We developed two kinds of multithreaded
algorithms for graph coloring:

An iterative, coarse-grained method for generic shared-memory
architectures

A dataflow algorithm designed for massively multithreaded

architectures with hardware support for fine-grain synchronization,
such as the Cray XMT

> Benchmarked the algorithms on three systems:
Cray XMT, Sun Niagara 2 and Intel Nehalem

> Excellent speedup observed on all three platforms

cScapes

PURDUE

Coloring Algorithms

cscapes

PURDUE

A Greedy coloring algorithm

e Distance-k, star, and acyclic coloring are NP-hard
e Approximating coloring to within O(n'-¢) is NP-hard too
GREEDY(G=(VE))

Order the vertices in V
fori=1to|V|do

Determine colors forbidden to v,

Assign v, the smallest permissible color

end-for

A greedy heuristic usually gives a good, often optimal, solution

* The key is to find good orderings for coloring, and many have
been developed

Ref: Gebremedhin, Tarafdar, Manne, Pothen, SIAM |. Sci. Compt. 29:1042--1072, 2007.

cScapes
T

PURDUE

UNIVERSITY

Greedy Coloring Algorithm

R
R

cScapes

PURDUE

Many-core greedy coloring

* Given a graph, parallelize greedy coloring on many-core machines
such that Speedup is attained, and Number of colors is roughly same as in serial

 Difficult task since greedy is inherently sequential, computation small
relative to communication, and data accesses are irregular

DI coloringg Approaches based on Luby’s parallel algorithm for maximal
independent set had limited success

» Gebremedhin and Manne (2000) developed a parallel greedy coloring
algorithm on shared memory machines

> Uses speculative coloring to enhance concurrency, randomized
partitioning to reduce conflicts, and serial conflict resolution

> Number of conflicts bounded, so this approach yields an effective
algorithm

> Extended to distance-2 coloring by G, M and P (2002)

* We adapt this approach to implement the greedy algorithm for many-
core computing

cScapes

PURDUE

Parallel Coloring

cScapes

PURDUE

UNIVERSITY

Parallel Coloring: Speculation

7
/>

|

cScapes

Iterative Greedy Coloring:
Parallel Algorithm

Proc IterativeGreedy (G = (V, FE))
U is set of vertices to be colored, and R to be recolored
while U is not empty
1. Speculatively color vertices
for v € U in parallel
for each neighbor w of v
Mark color[w] as forbidden to v
Assign smallest available value to color[v]
2. Detect conflicts and create recoloring list
for v € U in parallel
for each neighbor w of v
if color[w] = color[v]
add higher-numbered vertex to R
U=R
end proc

Multithreaded: Data Flow

Multi-threaded: Data Flow

proc RecursiveDataflow (G = (V, FE))
Set color[v] to zero, and bit to empty
for v € V in parallel
Set state[v] using int_fetch_add[state[v], 1]
iIf state[v] is 0 then PROCESS(v)
First thread to process v
end proc

Multi-threaded: Data Flow

proc RecursiveDataflow (G = (V, E))

for v € V in parallel
Set state[v] using int_fetch_add[state[v], 1]
iIf state[v] is 0 then PROCESS(v)

end proc

proc PROCESS(v)

for each neighbor w with w < v
Check state[w] using int_fetch_add[state[w],1]
if state[w] is zero then PROCESS(w)

end if

readff color[w]

Mark color[w] as forbidden to v
Assign v the smallest available color
writeef color[v]
end procC

RMAT Graphs

Frequency

C d
4,194,304
A
1,048,576 — w mEmy N + RMAT-ER
" A
262,144 . = RMAT-G 16,777,216
B RMAT-ER
4,194,304
65,536 + RMAT-B
1,048,576 = RMAT-G
16,384
262,144 AT
4,096 65,536
16,384
1,024 >
g 4,096
2 4 1,024
s
64 256
1 64
16
16
4 . l
1 1
1 4 16 64 256 1024 409 16 3¢ zero (0t00.25) (0.25 t0 0.50) (0.50 to 0.75) (0.75 to 1.00)

Degree Local clustering coefficient

Experimental results

256
-0-Scale24 256
128 128
-@-Scale25
6 64
\ Scale26 32
32 -
16
\ =¢Scale27 =
m 16 k-]
< 5 8
c o
5] \ \ b
o 8 3 4
N =3
£ 4 o 2
— N E
[} N =
5 2 \ <\ . .
£ .-
0.5
1
\\\. 0.25
05 T~ 0.125
0.25
1 2 4 8 16 32 64 128
Number of processors
Iterative

Cray XMT: RMAT-G with 224, ..., 2?7 vertices and

cScapes

PURDUE

UNIVERSITY

--Scale24

\ -@-Scale25

. \ Scale26

\ <Scale27

1 2 4 8 16 32 64 128

Number of processors

Dataflow

134M, ..., I B edges

PURDUE
Experimental results

Iterative Ni agara pl

256

128 \ <8-2 threads/core
64 '\\‘\ 4 threads/core
\-\\ =¢8 threads/core
\\\\‘
8 *\\ \\\\‘\\\\\\'
4 ‘\\\x&\\\
2 \\‘

1 2 4 8 16

-0-1 thread/core

w
N

[y
[e)]

Time (in seconds)

Number of cores

Perf. With doubling threads on a core = Doubling cores!

cScapes
===

PURDUE

UNIVERSITY

Experimental results

RMAT-G with 224 = |6M vertices and |134M edges

32
=®-lterative-Nehalem

< |terative-Niagara-8T/core

\ Iterative-XMT
16 AN

=¥¢Dataflow-XMT

Time (in seconds)

2 N

1 2 4 8 16

Number of processors

cscapes All Platforms

PURDUE

Distributed-Memory Parallel
Machines

cScapes
=

PURDUE

Parallelizing greedy coloring

Goal: Given a distributed graph, parallelize greedy coloring such that
o Speedup is attained
> Number of colors used is roughly same as in serial

 Difficult task since greedy is inherently sequential, computation small
relative to communication, and data accesses are irregular

e DI coloring: approaches based on Luby’s parallel algorithm for
maximal independent set had very limited success

* D2 coloring: no practical parallel algorithms existed

* We developed a framework for effective parallelization of greedy
coloring on distributed memory architectures

» Using the framework, we designed various specialized parallel
algorithms for DI and D2 coloring

> First MPl implementations to yield speedup

cScapes

cScapes
===

PURDUE
Framework: Distributed-memory parallel
Greedy Coloring

Exploit features of initial data
distribution

> Distinguish between interior and
boundary vertices

s (6
‘1 (8

Proceed in rounds, each having
two phases:

> Tentative coloring

G (6\ Superstep |

o Conflict detection

Coloring phase organized in Round I <
supersteps

>
G (8\ Superstep 2

> A processor communicates only >
after coloring a subset of its ,
assigned vertices >_ I Dectect conflicts
=» infrequent, coarse-grain Superstep |

communication \) P P
))) Round 2 <
Randomization used in >
resolving conflicts __ I I Detect conflicts

PURDUE

UNIVERSITY

Specializations of the framework

* First Fit
* Staggered First Fit

* Interior before boundary
* Interior after boundary
* Interior interleaved with boundary

* Various degree-based techniques

* Synchronous
* Asynchronous

e Customized
* Broadcast-based

cScapes
ochal s

PURDUE

Implementation and experimentation

* Using the framework (JPDC, 2008)

> Designed specialized parallel algorithms for distance-1 coloring

> Experimentally studied how to tune “parameters” according to
size, density, and distribution of input graph
number of processors

computational platform

* Extending the framework

> Designed parallel algorithms for D2 and restricted star coloring
(to support Hessian computation)

> Designed parallel algorithms for D2 coloring of bipartite graphs
(to support Jacobian computation)

New Challenge: efficient mechanism for information exchange between
processors hosting D2 neighboring vertices needs to be devised

o Software
> MPI implementations of DI and D2 coloring made available in Zoltan

cScapes

PURDUE

D l-coloring, IBM Blue Gene/P

5.00E-01

——Actual

-=-|deal
2.50E-01 .\

3.13E-02

1.56E-02 \\\

512 1,024 2,048 4,096 8,192 16,384

Compute time in seconds (log scale)

7.81E-03

of processors

cScapes

PURDUE

Our contributions: Parallel Coloring

e Global address-space machines

° Parallel algorithms for distance-| and distance-2 coloring on
graphs for Jacobian and Hessian computations

> Employs randomized graph partitioning, speculative coloring to
improve scalability

e Distributed memory machines

> Developed a parallelization framework for greedy coloring

> Employs graph partitioning, speculative coloring, optimized
communication granularity to achieve scalability on 16,000
processors IBM Blue Gene and Cray XT-5

> Designed specialized parallel algorithms for DI and D2 coloring

> Deployed implementations via the Zoltan toolkit

cScapes

PURDUE

Our contributions: Multithreaded Coloring

e Massive multithreading

(¢]

(@)

(¢]

Can tolerate memory latency for graphs/sparse matrices

Dataflow algorithms easier to implement than distributed memory
versions

Thread concurrency ameliorates lack of caches, and lower clock speeds

Thread parallelism can be exploited at fine grain if supported by
lightweight synchronization

Graph structure critically influences performance

e Many-core machines

(¢]

cScapes

Early days yet. Developed an iterative algorithm for greedy coloring that
ports to many different machines.

X threads on one core can perform as well as | thread on X cores if
simultaneous multithreading is supported

Decomposition into tasks at a finer grain than distributed-memory
version, and need to relax synchronization to enhance concurrency in
computational schedule

> Will form nodes of Peta- and Exa-scale machines, so single node

performance studies are needed

PURDUE

Coloring Algorithms: Our Contributions

e Serial algorithms and software

[e]

Jacobian computation via distance-2 coloring algorithms on bipartite graphs

Developed novel algorithms for acyclic, star, distance-k (k = 1,2) and other coloring
problems; developed associated matrix recovery algorithms

[e]

[e]

Delivered implementations via the software package ColPack (released Oct. 2008)
° Interfaced ColPack with the AD tool ADOL-C
o Application Highlights

> Enabled Jacobian computation in Simulated Moving Beds

[e]

Enabled Hessian computation in optimizing electric power flow

e Parallel algorithms and software

[e]

Developed a parallelization framework for greedy coloring

o

Designed specialized parallel algorithms for DI and D2 coloring

> Deployed implementations via the Zoltan toolkit

cScapes

PURDUE

Thanks

Rob Bisseling, Erik Boman, Umit Catalurek,
Karen Devine, Florin Dobrian, Assefaw
Gebremedhin, Mahantesh Halappanavar, Paul
Hovland, Gary Kumfert, Fredrik Manne, Al
Pinar, Sivan Toledo, Jean Utke

cScapes

cScapes

PURDUE

Further reading
WWW.cscapes.org

* Gebremedhin and Manne, Scalable parallel graph

coloring algorithms, Concurrency: Practice and
Experience, 12: 1 131-1146,2000.

Gebremedhin, Manne and Pothen, Parallel distance-k
coloring algorithms for numerical optimization,
Lecture Notes in Computer Science, 2400: 912-921,
2002.

Bozdag, Gebremedhin, Manne, Boman and Catalyurek.
A framework for scalable greedy coloring on
distributed-memory parallel computers. |. Parallel

Distrib. Comput. 68(4):515-535, 2008.

Catalyurek, Feo, Gebremedhin, Halappanavar and

Pothen, Multi-threaded algorithms for graph coloring,
Submitted, Aug.2010.

cScapes

PURDUE

Further reading
WWW.cscapes.org

Gebremedhin, Manne and Pothen.What color is your Jacobian? Graph
coloring for computing derivatives. SIAM Review 47(4):627—705, 2005.

Gebremedhin, Tarafdar, Manne and Pothen. New acyclic and star coloring

algorithms with applications to computing Hessians.
SIAM |. Sci. Comput. 29:1042—1072, 2007.

Gebremedhin, Pothen and Walther. Exploiting sparsity in Jacobian

computation via coloring and automatic differentiation: a case study in a
Simulated Moving Bed process. AD2008, LNCSE 64:339-—-349, 2008.

Gebremedhin, Pothen, Tarafdar and Walther. Efficient computation of sparse

Hessians using coloring and Automatic Differentiation.
INFORMS Journal on Computing, 21:209-223, 2009.

Bozdag, Gebremedhin, Manne, Boman and Catalyurek. A framework for
scalable greedy coloring on distributed-memory parallel computers.
J. Parallel Distrib. Comput. 68(4):515—535, 2008.

Gebremedhin, Nguyen, Patwary and Pothen. ColPack: Graph Coloring
Software for Derivative Computation and Beyond, Submitted, Oct. 2010.

PURDUE

Applications Also Getting More
Complex

» Leading edge scientific applications increasingly include:
> Adaptive, unstructured data structures
> Complex, multiphysics simulations
° Multiscale computations in space and time
> Complex synchronizations (e.g. discrete events)

Significant parallelization challenges on today’s machines
° Finite degree of coarse-grained parallelism
° Load balancing and memory hierarchy optimization

Dramatically harder on millions of cores

Huge need for new algorithmic ideas — CSC will be critical

cScapes

PURDUE

Architectural Challenges for Graph
Algorithms

* Runtime is dominated by latency

> Particularly true for data-centric applications
> Random accesses to global address space
> Perhaps many at once — fine-grained parallelism

» Essentially no computation to hide access time

» Access pattern is data dependent

¢ Prefetching unlikely to help
¢ Usually only want small part of cache line

» Potentially abysmal locality at all levels of memory
hierarchy

cScapes

PURDUE

UNIVERSITY

4\ :

cScapes
=l

PURDUE

UNIVERSITY

cScapes
= =

