
Alex Pothen
Purdue University
CSCAPES Institute
www.cs.purdue.edu/homes/apothen/

Assefaw Gebremedhin, Fredrik Manne, Umit Catlyurek, Erik
Boman, Doruk Bozdag

Woudschoten Conference
Oct. 2010

  Renaissance in Computer Architectures
  The Many-core and Multi-threaded World
◦  Intel Nehalem
◦  Sun Niagara
◦  Cray XMT

  A case study on multithreaded graph coloring
◦  An Iterative Coloring Algorithm
◦  A Dataflow algorithm

  Distributed Memory Parallel Coloring

 Tentative Conclusions

Alex Pothen Multicore Computing 2

  One of four DOE Scientific Discovery thru Advanced
Computing (SciDAC) Institutes (2006-2012); only one in
Appl. Math
◦  Excellence in research, education and training
◦  Collaborations with science projects in SciDAC

  Focus not on specific application, but on algorithms and
software for combinatorial problems

  Participants from Purdue, Sandia, Argonne, Ohio State,
Colorado State

  CSCAPES workshops with talks, tutorials on software,
discussions on collaborations

  www.cscapes.org

3

Alex Pothen Multicore Computing 4

• Journal of the ACM: New section on Scientific and
High Performance Computing… venue for
publishing work of excellent quality in these areas
that have a Computer Science component
• SIAM Books, SIAM Monographs in Computational
Science and Engineering: Potential book ideas?
Please contact me!
• SIAM Workshop on Combinatorial Scientific
Computing, CSC11, May 19-21, Darmstadt,
www.siam.org/meetings/csc11/

Alex Pothen Multicore Computing 6

  Good news
◦  Moore’s Law marches on
◦  Real estate on a chip essentially free: Major paradigm

change, and huge opportunity for innovation
  Bad news
◦  Power limits improvement in clock speed
◦  Memory accesses are the bottleneck for

high-throughput computing

  Eventual consequences are unclear
  Current response: multi- and many-core

processors
◦  Computation/Communication ratio will get worse
◦  Makes life harder for applications

  Leading edge scientific applications increasingly
include:
◦  Adaptive, unstructured data structures
◦  Complex, multiphysics simulations
◦  Multiscale computations in space and time
◦  Complex synchronizations (e.g., discrete events)

  Significant parallelization challenges on today’s
machines
◦  Finite degree of coarse-grained parallelism
◦  Load balancing and memory hierarchy optimization

  Dramatically harder on millions of cores
  Huge need for new algorithmic paradigms

 Low latency / high bandwidth
◦  For small messages!

 Latency tolerance
 Light-weight synchronization mechanisms
 Global address space
◦  No graph partitioning required
◦  Avoid memory-consuming profusion of ghost-nodes
◦  Correctness and performance easier

 One Solution: Multi-threaded computations

• Memory access +mes determine performance  
• By issuing mul+ple threads, mask memory latency if a ready 
thread is available when a func+onal unit  becomes free 
• Interleaved vs. Simultaneous mul+threading  

Figure from Robert Golla, Sun  
Time 

•  Two 8-core sockets,
• 8 hw threads per core
• 1.2 GHz processors linked by
8 x 9 crossbar to L2 cache banks

!"#$%&'()*+#)',%-*$.

!"#$%&'/0'1#2"%'34'5#6789

!"#$%&'

($)*%$++"%

4:;'1#2"%'1$*88+#$

< = 0 > ? @ A B

($%",-

./'(012"

< = 0 > ? @ A B

($%",/

./'(012"

< = 0 > ? @ A B

($%",3

./'(012"

!"#$%&'

($)*%$++"%

!"#$%&'

($)*%$++"%

!"#$%&'

($)*%$++"%

!"#$%&'/0'1#2"%'34'5#6789

!"#$%&'

($)*%$++"%

4:;'1#2"%'1$*88+#$

< = 0 > ? @ A B

($%",-

./'(012"

< = 0 > ? @ A B

($%",/

./'(012"

< = 0 > ? @ A B

($%",3

./'(012"

!"#$%&'

($)*%$++"%

!"#$%&'

($)*%$++"%

!"#$%&'

($)*%$++"%

• Simultaneous multithreading,
• Two threads from a core are
executable in a cycle
• Shallow pipeline

•  Two quad-core chips, 2.5 GHz
•  Two hyperthreads per core
• Off chip-data latency 106 cycles

!"#$%&'()*+#)',%-*$.

!"#$%&'/0'1#2"%

!"# !"$

%&'()#

*$+%,-.(

*/+%,-.(

!"# !"$

%&'()$

*$+%,-.(

*/+%,-.(

!"# !"$

%&'()/

*$+%,-.(

*/+%,-.(

!"# !"$

%&'()0

*$+%,-.(

*/+%,-.(

,%-*$.'

1*34$*))%$
567

!"#$%&'/0'1#2"%

!"# !"$

%&'()#

*$+%,-.(

*/+%,-.(

!"# !"$

%&'()$

*$+%,-.(

*/+%,-.(

!"# !"$

%&'()/

*$+%,-.(

*/+%,-.(

!"# !"$

%&'()0

*$+%,-.(

*/+%,-.(

567
,%-*$.'

1*34$*))%$

• Advanced architectural features:
Cache coherence protocol to reduce
traffic, loop-stream detection, branch
prediction, out-of-order execution
• Interleaved Multithreading

•  128 processors, 500 MHz
•  128 hw thread streams / proc.
•  in each cycle a proc. issues one
ready thread
• Deeply pipelined, M, A, C
functional units

!"#$%&

'%()*#+%'

,$-+%".

/()0.123/4

5 6 ! 678

9%+:$**+%&5

,$-+%".

/()0.123/4

,$-+%".

/()0.123/4

!"#$%&'()*+#)',-.$/0#)1'2%3*$4'56'!"#$%& '(!)

*+$,(,-./0-.%(&,1223+45(-$(67("#$%&(5.-413-.+$#

;<=':> /?@@$%

,$-+%".A+)'%+BB$%

89(:;.1&(<%$0;.=

!"#$%&

'%()*#+%'

5 6 ! 678

9%+:$**+%&6

;<=':> /?@@$%

,$-+%".A+)'%+BB$%

!"#$%&

'%()*#+%'

5 6 ! 678

9%+:$**+%&!

;<=':> /?@@$%

,$-+%".A+)'%+BB$%

• Cache-less Globally shared memory
• Efficient hardware synchronziation via
full/empty bits
• Data mapped randomly in 8 Byte
blocks, no locality
• Average Memory latency 600 cycles

  Latency tolerance via massive multi-threading
◦  Context switch between threads in a single clock cycle
◦  Global address space, hashed to memory banks to reduce hot-spots
◦  No cache or local memory, average latency 600 cycles

  Memory request doesn’t stall processor
◦  Other threads work while your request gets fulfilled

  Light-weight, word-level
 synchronization
  Notes:
◦  500 MHz clock
◦  128 Hardware thread streams / proc.

◦ We developed two kinds of multithreaded
algorithms for graph coloring:
  An iterative, coarse-grained method for generic shared-memory

architectures
  A dataflow algorithm designed for massively multithreaded

architectures with hardware support for fine-grain synchronization,
such as the Cray XMT

◦  Benchmarked the algorithms on three systems:
  Cray XMT, Sun Niagara 2 and Intel Nehalem

◦  Excellent speedup observed on all three platforms

Alex Pothen Coloring and AD 18

  Distance-k, star, and acyclic coloring are NP-hard

  Approximating coloring to within O(n1-e) is NP-hard too

GREEDY(G=(V,E))
Order the vertices in V
for i = 1 to |V| do

Determine colors forbidden to vi

Assign vi the smallest permissible color

end-for

  A greedy heuristic usually gives a good, often optimal, solution

  The key is to find good orderings for coloring, and many have
been developed

Ref: Gebremedhin, Tarafdar, Manne, Pothen, SIAM J. Sci. Compt. 29:1042--1072, 2007.

a

v

a

v

  Given a graph, parallelize greedy coloring on many-core machines
such that Speedup is attained, and Number of colors is roughly same as in serial

  Difficult task since greedy is inherently sequential, computation small
relative to communication, and data accesses are irregular

  D1 coloring: Approaches based on Luby’s parallel algorithm for maximal
independent set had limited success

  Gebremedhin and Manne (2000) developed a parallel greedy coloring
algorithm on shared memory machines

◦  Uses speculative coloring to enhance concurrency, randomized
partitioning to reduce conflicts, and serial conflict resolution

◦  Number of conflicts bounded, so this approach yields an effective
algorithm

◦  Extended to distance-2 coloring by G, M and P (2002)

  We adapt this approach to implement the greedy algorithm for many-
core computing

a

v

w

a

v

w

Proc IterativeGreedy (G = (V, E))
U is set of vertices to be colored, and R to be recolored
while U is not empty

1. Speculatively color vertices
for v ∈ U in parallel

for each neighbor w of v

Mark color[w] as forbidden to v

Assign smallest available value to color[v]
2. Detect conflicts and create recoloring list
for v ∈ U in parallel

for each neighbor w of v

if color[w] = color[v]
add higher-numbered vertex to R

U = R

end proc

1

Iterative Greedy Coloring:
Parallel Algorithm

Multithreaded: Data Flow

Multi-threaded: Data Flow

proc RecursiveDataflow (G = (V, E))
Set color[v] to zero, and bit to empty
for v ∈ V in parallel

Set state[v] using int fetch add[state[v], 1]
if state[v] is 0 then PROCESS(v)

First thread to process v

end proc

1

Multi-threaded: Data Flow

proc RecursiveDataflow (G = (V, E))
Set color[v] to zero, and bit to empty
for v ∈ V in parallel

Set state[v] using int fetch add[state[v], 1]
if state[v] is 0 then PROCESS(v)

First thread to process v

end proc

1

proc PROCESS(v)
for each neighbor w with w < v

Check state[w] using int fetch add[state[w],1]
if state[w] is zero then PROCESS(w)

First thread to process w

end if

readff color[w]
Mark color[w] as forbidden to v

Assign v the smallest available color
writeef color[v]
end proc

1

RMAT Graphs  

!

"

!#

#"

$%#

!&'$"

"&'(#

!#&)*"

#%&%)#

$#$&!""

!&'"*&%+#

"&!("&)'"

! " !# #" $%# !&'$" "&'(# !#&)*"

!
"#
$
%
#
&
'
(

)#*"##

,-./01,

,-./02

,-./03

!

"

!#

#"

$%#

!&'$"

"&'(#

!#&)*"

#%&%)#

$#$&!""

!&'"*&%+#

"&!("&)'"

!#&+++&$!#

,-./ 0'12/1'3$%4 0'3$%12/1'3%'4 0'3%'12/1'3+%4 0'3+%12/1!3''4

!
"#
$
%
#
&
'(

)*'+,-',%./#"0&1-'*#220'0#&/

56789:5

56789;

56789<

a  b 

c  d 

!"#$

!"$

%

#

&

'

%(

)#

(&

%#'

#$(

% # & ' %()# (& %#'

!
"#

$
%&
"'
%(
$
)*
'
+
(,

-.#/$0%*1%20*)$((*0(

*+,-.#&

*+,-.#$

*+,-.#(

*+,-.#/

!"#$%

!"$%

!"%

#

$

&

'

#(

)$

(&

#$'

$%(

$ & ' #()$ (& #$'

!
"#

$
%&
"'
%(
$
)*
'
+
(,

-.#/$0%*1%20*)$((*0(

*+,-.$&

*+,-.$%

*+,-.$(

*+,-.$/

Iterative Dataflow

Cray XMT: RMAT-G with 224, …, 227 vertices and 134M, …, 1B edges

!

"

#

$

!%

&"

%#

!"$

"'%

! " # $!%

!
"#

$
%&
"'
%(
$
)*
'
+
(,

-.#/$0%*1%)*0$(

!()*+,-./01+,

"()*+,-.2/01+,

#()*+,-.2/01+,

$()*+,-.2/01+,

Niagara 2 Iterative

Perf. With doubling threads on a core = Doubling cores!

!"

#"

$"

%"

!&"

'#"

!" #" $" %" !&"

!
"#

$
%&
"'
%(
$
)*
'
+
(,
%

-.#/$0%*1%20*)$((*0(%

()*+,-.*/0*1,2*3"

()*+,-.*/04,5,+,/%6789+*"

()*+,-.*/:;6"

<,),=9>/:;6"

RMAT-G with 224 = 16M vertices and 134M edges

All Platforms

  Goal: Given a distributed graph, parallelize greedy coloring such that
◦  Speedup is attained
◦  Number of colors used is roughly same as in serial

  Difficult task since greedy is inherently sequential, computation small
relative to communication, and data accesses are irregular

  D1 coloring: approaches based on Luby’s parallel algorithm for
maximal independent set had very limited success

  D2 coloring: no practical parallel algorithms existed

  We developed a framework for effective parallelization of greedy
coloring on distributed memory architectures

  Using the framework, we designed various specialized parallel
algorithms for D1 and D2 coloring
◦  First MPI implementations to yield speedup

  Exploit features of initial data
distribution
◦  Distinguish between interior and

boundary vertices

  Proceed in rounds, each having
two phases:
◦  Tentative coloring
◦  Conflict detection

  Coloring phase organized in
supersteps
◦  A processor communicates only

after coloring a subset of its
assigned vertices
 infrequent, coarse-grain

communication

  Randomization used in
resolving conflicts

2

3 4

5

7

6

8

1 2

3 4

1

5 6

7 8

Superstep 1

Superstep 2

Communicate

Communicate

Superstep 1

Communicate

Detect conflicts

Round 1

Round 2

Detect conflicts

•  First Fit
•  Staggered First Fit

Color selection
strategies

•  Interior before boundary
•  Interior after boundary
•  Interior interleaved with boundary

Coloring order

•  Various degree-based techniques
Local vertex

ordering

•  Synchronous
•  Asynchronous Supersteps

•  Customized
•  Broadcast-based

Inter-processor
communication

  Using the framework (JPDC, 2008)

◦  Designed specialized parallel algorithms for distance-1 coloring

◦  Experimentally studied how to tune “parameters” according to
  size, density, and distribution of input graph

  number of processors

  computational platform

  Extending the framework (SISC, under review)
◦  Designed parallel algorithms for D2 and restricted star coloring

 (to support Hessian computation)
◦  Designed parallel algorithms for D2 coloring of bipartite graphs

 (to support Jacobian computation)

New Challenge: efficient mechanism for information exchange between
processors hosting D2 neighboring vertices needs to be devised

  Software
◦  MPI implementations of D1 and D2 coloring made available in Zoltan

!"#$%&'(

$")*%&'+

("$(%&'+

*"+)%&'+

$"+)%&'$

+")'%&'$

)"''%&'$

)$+ $,'+- +,'-# -,'.* #,$.+ $*,(#-

!
"
#
$
%
&'
(&
)#

'
()
*
(+
'
,"
*
-
+(
./
"
0
(+
,1
/'
2

3("4($5",'++"5+

/01234

56734

Alex Pothen Multicore Computing 36

  Global address-space machines
◦  Parallel algorithms for distance-1 and distance-2 coloring on

graphs for Jacobian and Hessian computations
◦  Employs randomized graph partitioning, speculative coloring to

improve scalability

  Distributed memory machines
◦  Developed a parallelization framework for greedy coloring

◦  Employs graph partitioning, speculative coloring, optimized
communication granularity to achieve scalability on 16,000
processors IBM Blue Gene and Cray XT-5

◦  Designed specialized parallel algorithms for D1 and D2 coloring

◦  Deployed implementations via the Zoltan toolkit

  Massive multithreading
◦  Can tolerate memory latency for graphs/sparse matrices
◦  Dataflow algorithms easier to implement than distributed memory

versions
◦  Thread concurrency ameliorates lack of caches, and lower clock speeds

◦  Thread parallelism can be exploited at fine grain if supported by
lightweight synchronization

◦  Graph structure critically influences performance

  Many-core machines
◦  Early days yet. Developed an iterative algorithm for greedy coloring that

ports to many different machines.

◦  X threads on one core can perform as well as 1 thread on X cores if
simultaneous multithreading is supported

◦  Decomposition into tasks at a finer grain than distributed-memory
version, and need to relax synchronization to enhance concurrency in
computational schedule

◦  Will form nodes of Peta- and Exa-scale machines, so single node
performance studies are needed

  Serial algorithms and software
◦  Jacobian computation via distance-2 coloring algorithms on bipartite graphs
◦  Developed novel algorithms for acyclic, star, distance-k (k = 1,2) and other coloring

problems; developed associated matrix recovery algorithms

◦  Delivered implementations via the software package ColPack (released Oct. 2008)

◦  Interfaced ColPack with the AD tool ADOL-C

  Application Highlights
◦  Enabled Jacobian computation in Simulated Moving Beds

◦  Enabled Hessian computation in optimizing electric power flow

  Parallel algorithms and software
◦  Developed a parallelization framework for greedy coloring

◦  Designed specialized parallel algorithms for D1 and D2 coloring

◦  Deployed implementations via the Zoltan toolkit

  Rob Bisseling, Erik Boman, Ümit Çatalürek,
Karen Devine, Florin Dobrian, Assefaw
Gebremedhin, Mahantesh Halappanavar, Paul
Hovland, Gary Kumfert, Fredrik Manne, Ali
Pınar, Sivan Toledo, Jean Utke

  Gebremedhin and Manne, Scalable parallel graph
coloring algorithms, Concurrency: Practice and
Experience, 12: 1131-1146, 2000.

  Gebremedhin, Manne and Pothen, Parallel distance-k
coloring algorithms for numerical optimization,
Lecture Notes in Computer Science, 2400: 912-921,
2002.

  Bozdag, Gebremedhin, Manne, Boman and Catalyurek.
A framework for scalable greedy coloring on
distributed-memory parallel computers. J. Parallel
Distrib. Comput. 68(4):515-535, 2008.

  Catalyurek, Feo, Gebremedhin, Halappanavar and
Pothen, Multi-threaded algorithms for graph coloring,
Submitted, Aug. 2010.

Alex Pothen Coloring and AD 41

  Gebremedhin, Manne and Pothen. What color is your Jacobian? Graph
coloring for computing derivatives. SIAM Review 47(4):627—705, 2005.

  Gebremedhin, Tarafdar, Manne and Pothen. New acyclic and star coloring
algorithms with applications to computing Hessians.
SIAM J. Sci. Comput. 29:1042—1072, 2007.

  Gebremedhin, Pothen and Walther. Exploiting sparsity in Jacobian
computation via coloring and automatic differentiation: a case study in a
Simulated Moving Bed process. AD2008, LNCSE 64:339---349, 2008.

  Gebremedhin, Pothen, Tarafdar and Walther. Efficient computation of sparse
Hessians using coloring and Automatic Differentiation.
INFORMS Journal on Computing, 21:209---223, 2009.

  Bozdag, Gebremedhin, Manne, Boman and Catalyurek. A framework for
scalable greedy coloring on distributed-memory parallel computers.
J. Parallel Distrib. Comput. 68(4):515—535, 2008.

  Gebremedhin, Nguyen, Patwary and Pothen. ColPack: Graph Coloring
Software for Derivative Computation and Beyond, Submitted, Oct. 2010.

Alex Pothen Coloring and AD 42

  Leading edge scientific applications increasingly include:
◦  Adaptive, unstructured data structures
◦  Complex, multiphysics simulations
◦  Multiscale computations in space and time
◦  Complex synchronizations (e.g. discrete events)

  Significant parallelization challenges on today’s machines
◦  Finite degree of coarse-grained parallelism
◦  Load balancing and memory hierarchy optimization

  Dramatically harder on millions of cores

  Huge need for new algorithmic ideas – CSC will be critical

  Runtime is dominated by latency
◦  Particularly true for data-centric applications
◦  Random accesses to global address space
◦  Perhaps many at once – fine-grained parallelism

  Essentially no computation to hide access time

 Access pattern is data dependent
◦  Prefetching unlikely to help
◦  Usually only want small part of cache line

  Potentially abysmal locality at all levels of memory
hierarchy

a

v

a

v

w

