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   Renaissance in Computer Architectures 
  The Many-core and Multi-threaded World  
◦  Intel Nehalem 
◦  Sun Niagara 
◦  Cray XMT  

  A case study on multithreaded graph coloring 
◦  An Iterative Coloring Algorithm 
◦  A Dataflow algorithm  

  Distributed Memory Parallel Coloring 

 Tentative Conclusions 
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  One of four  DOE Scientific Discovery thru Advanced 
Computing (SciDAC) Institutes (2006-2012); only one in 
Appl. Math 
◦  Excellence in research, education and training  
◦  Collaborations with science projects in SciDAC 

   Focus not on specific application,  but on algorithms and 
software for combinatorial problems 

  Participants from  Purdue, Sandia,  Argonne, Ohio State, 
Colorado State  

   CSCAPES workshops with talks, tutorials on software, 
discussions on collaborations  

  www.cscapes.org 
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• Journal of the ACM: New section on Scientific and 
High Performance Computing… venue for 
publishing  work of excellent quality in these areas 
that have a Computer Science component 
• SIAM Books, SIAM Monographs in Computational 
Science and Engineering:  Potential book ideas? 
Please contact me!  
• SIAM Workshop on Combinatorial Scientific 
Computing, CSC11, May 19-21, Darmstadt, 
www.siam.org/meetings/csc11/ 
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  Good news 
◦  Moore’s Law marches on 
◦  Real estate on a chip essentially free: Major paradigm 

change, and huge opportunity for innovation 
  Bad news 
◦  Power limits improvement in clock speed 
◦  Memory accesses are the bottleneck for                     

high-throughput computing 

  Eventual consequences are unclear 
  Current response:  multi- and many-core 

processors 
◦  Computation/Communication ratio will get worse 
◦  Makes life harder for applications 



  Leading edge scientific applications increasingly 
include: 
◦  Adaptive, unstructured data structures 
◦  Complex, multiphysics simulations 
◦  Multiscale computations in space and time 
◦  Complex synchronizations (e.g., discrete events) 

  Significant parallelization challenges on today’s 
machines 
◦  Finite degree of coarse-grained parallelism 
◦  Load balancing and memory hierarchy optimization 

  Dramatically harder on millions of cores 
  Huge need for new algorithmic paradigms 



 Low latency / high bandwidth 
◦  For small messages! 

 Latency tolerance 
 Light-weight synchronization mechanisms 
 Global address space 
◦  No graph partitioning required 
◦  Avoid memory-consuming profusion of ghost-nodes 
◦  Correctness and performance easier 

 One Solution: Multi-threaded computations 





• Memory access +mes determine performance  
• By issuing mul+ple threads, mask memory latency if a ready 
thread is available when a func+onal unit  becomes free 
• Interleaved vs. Simultaneous mul+threading  

Figure from Robert Golla, Sun  
Time 



•  Two 8-core sockets,  
• 8 hw threads per core 
• 1.2 GHz processors linked by       
8 x 9 crossbar to L2 cache banks 
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• Simultaneous multithreading,  
• Two  threads from a core are 
executable in a cycle 
• Shallow pipeline 



•  Two quad-core chips, 2.5 GHz 
•  Two hyperthreads per core 
• Off chip-data latency 106 cycles 
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• Advanced architectural features: 
Cache coherence protocol to reduce 
traffic, loop-stream detection, branch 
prediction, out-of-order execution  
• Interleaved Multithreading 



•  128 processors, 500 MHz 
•  128 hw thread streams / proc. 
•  in each cycle a proc. issues one 
ready thread 
• Deeply pipelined, M, A, C 
functional units 

!"#$%&

'%()*#+%'

,$-+%".

/()0.123/4

5 6 ! 678

9%+:$**+%&5

,$-+%".

/()0.123/4

,$-+%".

/()0.123/4

!"#$%&'()*+#)',-.$/0#)1'2%3*$4'56'!"#$%& '(!)

*+$,(,-./0-.%(&,1223+45(-$(67("#$%&(5.-413-.+$#

;<=':> /?@@$%

,$-+%".A+)'%+BB$%

89(:;.1&(<%$0;.=

!"#$%&

'%()*#+%'

5 6 ! 678

9%+:$**+%&6

;<=':> /?@@$%

,$-+%".A+)'%+BB$%

!"#$%&

'%()*#+%'

5 6 ! 678

9%+:$**+%&!

;<=':> /?@@$%

,$-+%".A+)'%+BB$%

• Cache-less Globally shared memory 
• Efficient hardware synchronziation via 
full/empty bits 
• Data mapped randomly in 8 Byte 
blocks, no locality 
• Average Memory latency 600 cycles 



  Latency tolerance via massive multi-threading 
◦  Context switch between threads in a single clock cycle 
◦  Global address space,  hashed to memory banks to reduce hot-spots 
◦  No cache or local memory, average latency 600 cycles 

  Memory request doesn’t stall processor 
◦  Other threads work while your request gets fulfilled 

  Light-weight, word-level  
   synchronization 
  Notes: 
◦  500 MHz clock 
◦  128 Hardware thread streams / proc. 



◦ We developed two kinds of multithreaded 
algorithms for graph coloring:   
  An iterative, coarse-grained method  for generic shared-memory 

architectures    
  A dataflow algorithm designed for massively multithreaded 

architectures with hardware support for fine-grain synchronization, 
such as the Cray XMT   

◦  Benchmarked the algorithms on three systems: 
  Cray XMT, Sun Niagara 2 and Intel Nehalem  

◦  Excellent speedup observed on all three platforms 
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  Distance-k, star, and acyclic coloring are NP-hard 

  Approximating coloring to within O(n1-e) is NP-hard too  

GREEDY(G=(V,E)) 
Order the vertices in V 
for i = 1 to |V| do    

Determine colors  forbidden  to vi 

Assign vi the smallest permissible color 

end-for 

  A greedy heuristic usually gives a good, often optimal,  solution 

  The key is to find good orderings for coloring, and many have 
been developed 

Ref:  Gebremedhin, Tarafdar, Manne, Pothen, SIAM J. Sci. Compt. 29:1042--1072, 2007. 
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  Given a  graph, parallelize greedy coloring on many-core machines 
such that Speedup is attained, and  Number of colors is roughly same as in serial 

  Difficult task since greedy is inherently sequential, computation small 
relative to communication, and data accesses are irregular 

  D1 coloring:  Approaches based on Luby’s parallel algorithm for maximal 
independent set had  limited success 

  Gebremedhin and Manne (2000) developed a parallel greedy coloring 
algorithm  on shared memory machines  

◦  Uses speculative coloring to enhance concurrency, randomized 
partitioning to reduce conflicts, and serial conflict resolution 

◦   Number of conflicts  bounded, so this approach yields an effective 
algorithm 

◦  Extended to distance-2 coloring by G, M and P (2002) 

  We adapt this approach to implement the greedy algorithm for many-
core computing  
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Proc IterativeGreedy (G = (V, E))
U is set of vertices to be colored, and R to be recolored
while U is not empty

1. Speculatively color vertices
for v ∈ U in parallel

for each neighbor w of v

Mark color[w] as forbidden to v

Assign smallest available value to color[v]
2. Detect conflicts and create recoloring list
for v ∈ U in parallel

for each neighbor w of v

if color[w] = color[v]
add higher-numbered vertex to R

U = R

end proc

1

Iterative Greedy Coloring: 
Parallel Algorithm 




Multithreaded: Data Flow




Multi-threaded: Data Flow


proc RecursiveDataflow (G = (V, E))
Set color[v] to zero, and bit to empty
for v ∈ V in parallel

Set state[v] using int fetch add[state[v], 1]
if state[v] is 0 then PROCESS(v)

First thread to process v

end proc

1



Multi-threaded: Data Flow

proc RecursiveDataflow (G = (V, E))
Set color[v] to zero, and bit to empty
for v ∈ V in parallel

Set state[v] using int fetch add[state[v], 1]
if state[v] is 0 then PROCESS(v)

First thread to process v

end proc

1

proc PROCESS(v)
for each neighbor w with w < v

Check state[w] using int fetch add[state[w],1]
if state[w] is zero then PROCESS(w)

First thread to process w

end if

readff color[w]
Mark color[w] as forbidden to v

Assign v the smallest available color
writeef color[v]
end proc

1



RMAT Graphs 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Iterative Dataflow 

Cray XMT: RMAT-G with 224, …, 227 vertices and 134M, …, 1B edges 
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Perf.  With doubling threads on a core = Doubling cores!  
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  Goal: Given a distributed graph, parallelize greedy coloring such that 
◦  Speedup is attained 
◦  Number of colors used is roughly same as in serial 

  Difficult task since greedy is inherently sequential, computation small 
relative to communication, and data accesses are irregular 

  D1 coloring: approaches based on Luby’s parallel algorithm for 
maximal independent set had very limited success 

  D2 coloring: no practical parallel algorithms existed  

  We developed a framework for effective parallelization of greedy 
coloring on distributed memory architectures 

  Using the framework, we designed various specialized parallel 
algorithms for D1 and D2 coloring  
◦  First MPI implementations to yield speedup  



  Exploit features of initial data 
distribution 
◦  Distinguish between interior and 

boundary vertices 

  Proceed in rounds, each having 
two phases: 
◦  Tentative coloring 
◦  Conflict detection 

  Coloring phase organized in 
supersteps 
◦  A processor communicates only 

after coloring a subset of its 
assigned vertices 
 infrequent, coarse-grain 

communication 

  Randomization used in 
resolving conflicts 
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•  First Fit 
•  Staggered First Fit 

Color selection 
strategies 

•  Interior before boundary  
•  Interior after boundary  
•  Interior interleaved with boundary  

Coloring order 

•  Various degree-based techniques 
Local vertex 

ordering 

•  Synchronous 
•  Asynchronous Supersteps 

•  Customized 
•  Broadcast-based 

Inter-processor 
communication 



  Using the framework (JPDC, 2008) 

◦  Designed specialized parallel algorithms for distance-1 coloring 

◦  Experimentally studied how to tune “parameters” according to  
  size, density, and distribution of input graph  

  number of processors  

  computational platform 

  Extending the framework (SISC, under review) 
◦  Designed parallel algorithms for D2 and restricted star coloring  

 (to support Hessian computation)                 
◦  Designed parallel algorithms for D2 coloring of bipartite graphs  

 (to support Jacobian computation)  

New Challenge: efficient mechanism for information exchange between 
processors hosting D2 neighboring vertices needs to be devised 

  Software 
◦  MPI implementations of D1 and D2 coloring made available in Zoltan 
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  Global address-space machines 
◦  Parallel algorithms for  distance-1 and distance-2 coloring  on  

graphs for Jacobian and Hessian computations 
◦  Employs randomized graph partitioning, speculative coloring to 

improve scalability 

  Distributed memory machines 
◦  Developed a parallelization framework for greedy coloring 

◦  Employs graph partitioning, speculative coloring, optimized 
communication granularity to achieve scalability on 16,000 
processors IBM Blue Gene and Cray XT-5  

◦  Designed specialized parallel algorithms for D1 and D2 coloring  

◦  Deployed implementations via the Zoltan toolkit 



  Massive multithreading 
◦  Can  tolerate memory latency for graphs/sparse matrices 
◦  Dataflow algorithms easier to implement  than distributed memory 

versions 
◦  Thread concurrency  ameliorates lack of caches, and lower clock speeds 

◦  Thread parallelism can be exploited at fine grain if supported by 
lightweight synchronization 

◦  Graph structure critically influences performance 

  Many-core machines 
◦  Early days yet. Developed an iterative algorithm for greedy coloring that 

ports to many different machines.  

◦  X threads on one core can  perform as well as 1 thread on X cores if 
simultaneous multithreading is supported  

◦  Decomposition into tasks at a finer grain than distributed-memory 
version, and need to relax synchronization to enhance concurrency in 
computational schedule 

◦  Will form nodes of Peta- and Exa-scale machines, so single node 
performance studies are needed  



  Serial algorithms and software 
◦  Jacobian computation via distance-2 coloring algorithms on bipartite graphs 
◦  Developed novel algorithms for acyclic, star, distance-k (k = 1,2) and other coloring 

problems; developed associated matrix recovery algorithms 

◦  Delivered implementations via the software package ColPack (released Oct. 2008) 

◦  Interfaced ColPack with the AD tool ADOL-C 

  Application Highlights 
◦  Enabled Jacobian computation in Simulated Moving Beds 

◦  Enabled Hessian computation in optimizing electric power flow  

  Parallel algorithms and software 
◦  Developed a parallelization framework for greedy coloring 

◦  Designed specialized parallel algorithms for D1 and D2 coloring  

◦  Deployed implementations via the Zoltan toolkit 
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  Leading edge scientific applications increasingly include: 
◦  Adaptive, unstructured data structures 
◦  Complex, multiphysics simulations 
◦  Multiscale computations in space and time 
◦  Complex synchronizations (e.g. discrete events) 

  Significant parallelization challenges on today’s machines 
◦  Finite degree of coarse-grained parallelism 
◦  Load balancing and memory hierarchy optimization 

  Dramatically harder on millions of cores 

  Huge need for new algorithmic ideas – CSC will be critical 



  Runtime is dominated by latency 
◦  Particularly true for data-centric applications 
◦  Random accesses to global address space 
◦  Perhaps many at once – fine-grained parallelism 

  Essentially no computation to hide access time 

 Access pattern is data dependent 
◦  Prefetching unlikely to help 
◦  Usually only want small part of cache line 

  Potentially abysmal locality at all levels of memory 
hierarchy 
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