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Combinatorial Scientific Computing and

Petascale Simulations (CSCAPES) Institute

* One of four DOE Scientific Discovery thru Advanced
Computing (SciDAC) Institutes (2006-2012); only one in
Appl. Math

> Excellence in research, education and training
> Collaborations with science projects in SciDAC

* Focus not on specific application, but on algorithms and
software for combinatorial problems

 Participants from Purdue, Sandia, Argonne, Ohio State,
Colorado State

o CSCAPES workshops with talks, tutorials on software,
discussions on collaborations
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Advertisements!

-Journal of the ACM: New section on Scientific and
High Performance Computing... venue for
publishing work of excellent quality in these areas
that have a Computer Science component

-SIAM Books, SIAM Monographs in Computational
Science and Engineering: Potential book ideas!?
Please contact me!

-SIAM Workshop on Combinatorial Scientific
Computing, CSCI I, May 19-21, Darmstadet,
www.siam.org/meetings/cscl |/
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PURDUE
Moore’s Law and Performance
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PURDUE
A Renaissance in Architectures

Good news
> Moore’s Law marches on

> Real estate on a chip essentially free: Major paradigm
change, and huge opportunity for innovation

Bad news

> Power limits improvement in clock speed

> Memory accesses are the bottleneck for
high-throughput computing

Eventual consequences are unclear

Current response: multi- and many-core
processors

> Computation/Communication ratio will get worse
> Makes life harder for applications
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Applications Complexity Increasing

» Leading edge scientific applications increasingly

include:

> Adaptive, unstructured data structures

> Complex, multiphysics simulations

> Multiscale computations in space and time

> Complex synchronizations (e.g., discrete events)
* Significant parallelization challenges on today’s

machines
° Finite degree of coarse-grained parallelism
° Load balancing and memory hierarchy optimization

e Dramatically harder on millions of cores
* Huge need for new algorithmic paradigms
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Architectural Wish List for
Sparse Matrices/Graphs

* Low latency / high bandwidth

o For small messages!

* Latency tolerance

* Light-weight synchronization mechanisms

* Global address space
> No graph partitioning required
> Avoid memory-consuming profusion of ghost-nodes

> Correctness and performance easier

* One Solution: Multi-threaded computations
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Multi-threaded Parallelism
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Figure from Robert Golla, Sun

*Memory access times determine performance

*By issuing multiple threads, mask memory latency if a ready
thread is available when a functional unit becomes free
*Interleaved vs. Simultaneous multithreading
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- Two 8-core sockets,
*8 hw threads per core

*|.2 GHz processors linked by
8 x 9 crossbar to L2 cache banks
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Multi-core: Niagara 2
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Shared Global Memory

*Simultaneous multithreading,
*Two threads from a core are
executable in a cycle

Shallow pipeline
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Multicore: Intel Nehalem

HTO | ut1 |[ wro | uT1 |[ Hro | ut1 |[ uro | HT1 HTO | ut1 || wro | ut1 || wro | ut1 || uro | HT1

Core-0 Core-1 Core-2 Core-3 Core-0 Core-1 Core-2 Core-3
L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache L1 Cache
L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache
| | | R |
Shared L3 Cache Shared L3 Cache
\ Comrater || T S J
[ Shared Global Memory J
- Two quad-core chips, 2.5 GHz *Advanced architectural features:
* Two hyperthreads per core Cache coherence protocol to reduce
*Off chip-data latency 106 cycles traffic, loop-stream detection, branch

prediction, out-of-order execution
*Interleaved Multithreading
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Massive Mutithreading: Cray XMT

- 128 processors, 500 MHz

* 128 hw thread streams / proc.
* in each cycle a proc. issues one
ready thread

*Deeply pipelined, M,A, C
functional units
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Shared Global “Virtual” Memory (8 GBytes X N)
With hardware shuffling at 64 Bytes granularity

*Cache-less Globally shared memory
*Efficient hardware synchronziation via
full/empty bits

*Data mapped randomly in 8 Byte
blocks, no locality

*Average Memory latency 600 cycles
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Massive Multithreading: Cray XMT

 Latency tolerance via massive multi-threading
> Context switch between threads in a single clock cycle
> Global address space, hashed to memory banks to reduce hot-spots
> No cache or local memory, average latency 600 cycles

* Memory request doesn’t stall processor
> Other threads work while your request gets fulfilled

* Light-weight, word-level
synchronization

* Notes:

> 500 MHz clock
> 128 Hardware thread streams / proc
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Multithreaded Algorithms for Graph
Coloring

> We developed two kinds of multithreaded
algorithms for graph coloring:

An iterative, coarse-grained method for generic shared-memory
architectures

A dataflow algorithm designed for massively multithreaded

architectures with hardware support for fine-grain synchronization,
such as the Cray XMT

> Benchmarked the algorithms on three systems:
Cray XMT, Sun Niagara 2 and Intel Nehalem

> Excellent speedup observed on all three platforms
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Coloring Algorithms
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A Greedy coloring algorithm

e Distance-k, star, and acyclic coloring are NP-hard
e Approximating coloring to within O(n'-¢) is NP-hard too
GREEDY(G=(VE))

Order the vertices in V
fori=1to|V|do

Determine colors forbidden to v,

Assign v, the smallest permissible color

end-for

A greedy heuristic usually gives a good, often optimal, solution

* The key is to find good orderings for coloring, and many have
been developed

Ref: Gebremedhin, Tarafdar, Manne, Pothen, SIAM |. Sci. Compt. 29:1042--1072, 2007.
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Greedy Coloring Algorithm
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Many-core greedy coloring

* Given a graph, parallelize greedy coloring on many-core machines
such that Speedup is attained, and Number of colors is roughly same as in serial

 Difficult task since greedy is inherently sequential, computation small
relative to communication, and data accesses are irregular

DI coloringg Approaches based on Luby’s parallel algorithm for maximal
independent set had limited success

» Gebremedhin and Manne (2000) developed a parallel greedy coloring
algorithm on shared memory machines

> Uses speculative coloring to enhance concurrency, randomized
partitioning to reduce conflicts, and serial conflict resolution

> Number of conflicts bounded, so this approach yields an effective
algorithm

> Extended to distance-2 coloring by G, M and P (2002)

* We adapt this approach to implement the greedy algorithm for many-
core computing
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Parallel Coloring
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Parallel Coloring: Speculation
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Iterative Greedy Coloring:
Parallel Algorithm

Proc IterativeGreedy (G = (V, FE))
U is set of vertices to be colored, and R to be recolored
while U is not empty
1. Speculatively color vertices
for v € U in parallel
for each neighbor w of v
Mark color[w] as forbidden to v
Assign smallest available value to color[v]
2. Detect conflicts and create recoloring list
for v € U in parallel
for each neighbor w of v
if color[w] = color[v]
add higher-numbered vertex to R
U=R
end proc



Multithreaded: Data Flow



Multi-threaded: Data Flow

proc RecursiveDataflow (G = (V, FE))
Set color[v] to zero, and bit to empty
for v € V in parallel
Set state[v] using int_fetch_add[state[v], 1]
iIf state[v] is 0 then PROCESS(v)
First thread to process v
end proc



Multi-threaded: Data Flow

proc RecursiveDataflow (G = (V, E))

for v € V in parallel
Set state[v] using int_fetch_add[state[v], 1]
iIf state[v] is 0 then PROCESS(v)

end proc

proc PROCESS(v)

for each neighbor w with w < v
Check state[w] using int_fetch_add[state[w],1]
if state[w] is zero then PROCESS(w)

end if

readff color[w]

Mark color[w] as forbidden to v
Assign v the smallest available color
writeef color[v]
end procC
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Experimental results
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Experimental results
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Experimental results
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Distributed-Memory Parallel
Machines
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Parallelizing greedy coloring

Goal: Given a distributed graph, parallelize greedy coloring such that
o Speedup is attained
> Number of colors used is roughly same as in serial

 Difficult task since greedy is inherently sequential, computation small
relative to communication, and data accesses are irregular

e DI coloring: approaches based on Luby’s parallel algorithm for
maximal independent set had very limited success

* D2 coloring: no practical parallel algorithms existed

* We developed a framework for effective parallelization of greedy
coloring on distributed memory architectures

» Using the framework, we designed various specialized parallel
algorithms for DI and D2 coloring

> First MPl implementations to yield speedup

cScapes



cScapes
===
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Framework: Distributed-memory parallel
Greedy Coloring

Exploit features of initial data
distribution

> Distinguish between interior and
boundary vertices

s (6
‘1 (8

Proceed in rounds, each having
two phases:

> Tentative coloring

G (6\ Superstep |

o Conflict detection

Coloring phase organized in Round I <
supersteps

>
G (8\ Superstep 2

> A processor communicates only >
after coloring a subset of its ,
assigned vertices >_ I Dectect conflicts
=» infrequent, coarse-grain Superstep |

communication \) P P
) ) ) Round 2 <
Randomization used in >
resolving conflicts __ I I Detect conflicts
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Specializations of the framework

* First Fit
* Staggered First Fit

* Interior before boundary
* Interior after boundary
* Interior interleaved with boundary

* Various degree-based techniques

* Synchronous
* Asynchronous

e Customized
* Broadcast-based
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Implementation and experimentation

* Using the framework (JPDC, 2008)

> Designed specialized parallel algorithms for distance-1 coloring

> Experimentally studied how to tune “parameters” according to
size, density, and distribution of input graph
number of processors

computational platform

* Extending the framework

> Designed parallel algorithms for D2 and restricted star coloring
(to support Hessian computation)

> Designed parallel algorithms for D2 coloring of bipartite graphs
(to support Jacobian computation)

New Challenge: efficient mechanism for information exchange between
processors hosting D2 neighboring vertices needs to be devised

o Software
> MPI implementations of DI and D2 coloring made available in Zoltan
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D l-coloring, IBM Blue Gene/P
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Our contributions: Parallel Coloring

e Global address-space machines

° Parallel algorithms for distance-| and distance-2 coloring on
graphs for Jacobian and Hessian computations

> Employs randomized graph partitioning, speculative coloring to
improve scalability

e Distributed memory machines

> Developed a parallelization framework for greedy coloring

> Employs graph partitioning, speculative coloring, optimized
communication granularity to achieve scalability on 16,000
processors IBM Blue Gene and Cray XT-5

> Designed specialized parallel algorithms for DI and D2 coloring

> Deployed implementations via the Zoltan toolkit
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Our contributions: Multithreaded Coloring

e Massive multithreading

(¢]

(@)

(¢]

Can tolerate memory latency for graphs/sparse matrices

Dataflow algorithms easier to implement than distributed memory
versions

Thread concurrency ameliorates lack of caches, and lower clock speeds

Thread parallelism can be exploited at fine grain if supported by
lightweight synchronization

Graph structure critically influences performance

e Many-core machines

(¢]

cScapes

Early days yet. Developed an iterative algorithm for greedy coloring that
ports to many different machines.

X threads on one core can perform as well as | thread on X cores if
simultaneous multithreading is supported

Decomposition into tasks at a finer grain than distributed-memory
version, and need to relax synchronization to enhance concurrency in
computational schedule

> Will form nodes of Peta- and Exa-scale machines, so single node

performance studies are needed
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Coloring Algorithms: Our Contributions

e Serial algorithms and software

[e]

Jacobian computation via distance-2 coloring algorithms on bipartite graphs

Developed novel algorithms for acyclic, star, distance-k (k = 1,2) and other coloring
problems; developed associated matrix recovery algorithms

[e]

[e]

Delivered implementations via the software package ColPack (released Oct. 2008)
° Interfaced ColPack with the AD tool ADOL-C
o Application Highlights

> Enabled Jacobian computation in Simulated Moving Beds

[e]

Enabled Hessian computation in optimizing electric power flow

e Parallel algorithms and software

[e]

Developed a parallelization framework for greedy coloring

o

Designed specialized parallel algorithms for DI and D2 coloring

> Deployed implementations via the Zoltan toolkit
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Further reading
WWW.cscapes.org

* Gebremedhin and Manne, Scalable parallel graph

coloring algorithms, Concurrency: Practice and
Experience, 12: 1 131-1146,2000.

Gebremedhin, Manne and Pothen, Parallel distance-k
coloring algorithms for numerical optimization,
Lecture Notes in Computer Science, 2400: 912-921,
2002.

Bozdag, Gebremedhin, Manne, Boman and Catalyurek.
A framework for scalable greedy coloring on
distributed-memory parallel computers. |. Parallel

Distrib. Comput. 68(4):515-535, 2008.

Catalyurek, Feo, Gebremedhin, Halappanavar and

Pothen, Multi-threaded algorithms for graph coloring,
Submitted, Aug.2010.
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Further reading
WWW.cscapes.org

Gebremedhin, Manne and Pothen.What color is your Jacobian? Graph
coloring for computing derivatives. SIAM Review 47(4):627—705, 2005.

Gebremedhin, Tarafdar, Manne and Pothen. New acyclic and star coloring

algorithms with applications to computing Hessians.
SIAM |. Sci. Comput. 29:1042—1072, 2007.

Gebremedhin, Pothen and Walther. Exploiting sparsity in Jacobian

computation via coloring and automatic differentiation: a case study in a
Simulated Moving Bed process. AD2008, LNCSE 64:339-—-349, 2008.

Gebremedhin, Pothen, Tarafdar and Walther. Efficient computation of sparse

Hessians using coloring and Automatic Differentiation.
INFORMS Journal on Computing, 21:209-223, 2009.

Bozdag, Gebremedhin, Manne, Boman and Catalyurek. A framework for
scalable greedy coloring on distributed-memory parallel computers.
J. Parallel Distrib. Comput. 68(4):515—535, 2008.

Gebremedhin, Nguyen, Patwary and Pothen. ColPack: Graph Coloring
Software for Derivative Computation and Beyond, Submitted, Oct. 2010.
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Applications Also Getting More
Complex

» Leading edge scientific applications increasingly include:
> Adaptive, unstructured data structures
> Complex, multiphysics simulations
° Multiscale computations in space and time
> Complex synchronizations (e.g. discrete events)

Significant parallelization challenges on today’s machines
° Finite degree of coarse-grained parallelism
° Load balancing and memory hierarchy optimization

Dramatically harder on millions of cores

Huge need for new algorithmic ideas — CSC will be critical
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Architectural Challenges for Graph
Algorithms

* Runtime is dominated by latency

> Particularly true for data-centric applications
> Random accesses to global address space
> Perhaps many at once — fine-grained parallelism

» Essentially no computation to hide access time

» Access pattern is data dependent

¢ Prefetching unlikely to help
¢ Usually only want small part of cache line

» Potentially abysmal locality at all levels of memory
hierarchy
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