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   Renaissance in Computer Architectures 
  The Many-core and Multi-threaded World  
◦  Intel Nehalem 
◦  Sun Niagara 
◦  Cray XMT  

  A case study on multithreaded graph coloring 
◦  An Iterative Coloring Algorithm 
◦  A Dataflow algorithm  

  Distributed Memory Parallel Coloring 

 Tentative Conclusions 
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  One of four  DOE Scientific Discovery thru Advanced 
Computing (SciDAC) Institutes (2006-2012); only one in 
Appl. Math 
◦  Excellence in research, education and training  
◦  Collaborations with science projects in SciDAC 

   Focus not on specific application,  but on algorithms and 
software for combinatorial problems 

  Participants from  Purdue, Sandia,  Argonne, Ohio State, 
Colorado State  

   CSCAPES workshops with talks, tutorials on software, 
discussions on collaborations  

  www.cscapes.org 
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• Journal of the ACM: New section on Scientific and 
High Performance Computing… venue for 
publishing  work of excellent quality in these areas 
that have a Computer Science component 
• SIAM Books, SIAM Monographs in Computational 
Science and Engineering:  Potential book ideas? 
Please contact me!  
• SIAM Workshop on Combinatorial Scientific 
Computing, CSC11, May 19-21, Darmstadt, 
www.siam.org/meetings/csc11/ 
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  Good news 
◦  Moore’s Law marches on 
◦  Real estate on a chip essentially free: Major paradigm 

change, and huge opportunity for innovation 
  Bad news 
◦  Power limits improvement in clock speed 
◦  Memory accesses are the bottleneck for                     

high-throughput computing 

  Eventual consequences are unclear 
  Current response:  multi- and many-core 

processors 
◦  Computation/Communication ratio will get worse 
◦  Makes life harder for applications 



  Leading edge scientific applications increasingly 
include: 
◦  Adaptive, unstructured data structures 
◦  Complex, multiphysics simulations 
◦  Multiscale computations in space and time 
◦  Complex synchronizations (e.g., discrete events) 

  Significant parallelization challenges on today’s 
machines 
◦  Finite degree of coarse-grained parallelism 
◦  Load balancing and memory hierarchy optimization 

  Dramatically harder on millions of cores 
  Huge need for new algorithmic paradigms 



 Low latency / high bandwidth 
◦  For small messages! 

 Latency tolerance 
 Light-weight synchronization mechanisms 
 Global address space 
◦  No graph partitioning required 
◦  Avoid memory-consuming profusion of ghost-nodes 
◦  Correctness and performance easier 

 One Solution: Multi-threaded computations 





• Memory access +mes determine performance  
• By issuing mul+ple threads, mask memory latency if a ready 
thread is available when a func+onal unit  becomes free 
• Interleaved vs. Simultaneous mul+threading  

Figure from Robert Golla, Sun  
Time 



•  Two 8-core sockets,  
• 8 hw threads per core 
• 1.2 GHz processors linked by       
8 x 9 crossbar to L2 cache banks 
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• Simultaneous multithreading,  
• Two  threads from a core are 
executable in a cycle 
• Shallow pipeline 



•  Two quad-core chips, 2.5 GHz 
•  Two hyperthreads per core 
• Off chip-data latency 106 cycles 
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• Advanced architectural features: 
Cache coherence protocol to reduce 
traffic, loop-stream detection, branch 
prediction, out-of-order execution  
• Interleaved Multithreading 



•  128 processors, 500 MHz 
•  128 hw thread streams / proc. 
•  in each cycle a proc. issues one 
ready thread 
• Deeply pipelined, M, A, C 
functional units 
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• Cache-less Globally shared memory 
• Efficient hardware synchronziation via 
full/empty bits 
• Data mapped randomly in 8 Byte 
blocks, no locality 
• Average Memory latency 600 cycles 



  Latency tolerance via massive multi-threading 
◦  Context switch between threads in a single clock cycle 
◦  Global address space,  hashed to memory banks to reduce hot-spots 
◦  No cache or local memory, average latency 600 cycles 

  Memory request doesn’t stall processor 
◦  Other threads work while your request gets fulfilled 

  Light-weight, word-level  
   synchronization 
  Notes: 
◦  500 MHz clock 
◦  128 Hardware thread streams / proc. 



◦ We developed two kinds of multithreaded 
algorithms for graph coloring:   
  An iterative, coarse-grained method  for generic shared-memory 

architectures    
  A dataflow algorithm designed for massively multithreaded 

architectures with hardware support for fine-grain synchronization, 
such as the Cray XMT   

◦  Benchmarked the algorithms on three systems: 
  Cray XMT, Sun Niagara 2 and Intel Nehalem  

◦  Excellent speedup observed on all three platforms 
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  Distance-k, star, and acyclic coloring are NP-hard 

  Approximating coloring to within O(n1-e) is NP-hard too  

GREEDY(G=(V,E)) 
Order the vertices in V 
for i = 1 to |V| do    

Determine colors  forbidden  to vi 

Assign vi the smallest permissible color 

end-for 

  A greedy heuristic usually gives a good, often optimal,  solution 

  The key is to find good orderings for coloring, and many have 
been developed 

Ref:  Gebremedhin, Tarafdar, Manne, Pothen, SIAM J. Sci. Compt. 29:1042--1072, 2007. 
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  Given a  graph, parallelize greedy coloring on many-core machines 
such that Speedup is attained, and  Number of colors is roughly same as in serial 

  Difficult task since greedy is inherently sequential, computation small 
relative to communication, and data accesses are irregular 

  D1 coloring:  Approaches based on Luby’s parallel algorithm for maximal 
independent set had  limited success 

  Gebremedhin and Manne (2000) developed a parallel greedy coloring 
algorithm  on shared memory machines  

◦  Uses speculative coloring to enhance concurrency, randomized 
partitioning to reduce conflicts, and serial conflict resolution 

◦   Number of conflicts  bounded, so this approach yields an effective 
algorithm 

◦  Extended to distance-2 coloring by G, M and P (2002) 

  We adapt this approach to implement the greedy algorithm for many-
core computing  
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Proc IterativeGreedy (G = (V, E))
U is set of vertices to be colored, and R to be recolored
while U is not empty

1. Speculatively color vertices
for v ∈ U in parallel

for each neighbor w of v

Mark color[w] as forbidden to v

Assign smallest available value to color[v]
2. Detect conflicts and create recoloring list
for v ∈ U in parallel

for each neighbor w of v

if color[w] = color[v]
add higher-numbered vertex to R

U = R

end proc

1

Iterative Greedy Coloring: 
Parallel Algorithm 



Multithreaded: Data Flow



Multi-threaded: Data Flow

proc RecursiveDataflow (G = (V, E))
Set color[v] to zero, and bit to empty
for v ∈ V in parallel

Set state[v] using int fetch add[state[v], 1]
if state[v] is 0 then PROCESS(v)

First thread to process v

end proc

1



Multi-threaded: Data Flow
proc RecursiveDataflow (G = (V, E))
Set color[v] to zero, and bit to empty
for v ∈ V in parallel

Set state[v] using int fetch add[state[v], 1]
if state[v] is 0 then PROCESS(v)

First thread to process v

end proc

1

proc PROCESS(v)
for each neighbor w with w < v

Check state[w] using int fetch add[state[w],1]
if state[w] is zero then PROCESS(w)

First thread to process w

end if

readff color[w]
Mark color[w] as forbidden to v

Assign v the smallest available color
writeef color[v]
end proc

1



RMAT Graphs 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Iterative Dataflow 

Cray XMT: RMAT-G with 224, …, 227 vertices and 134M, …, 1B edges 
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Perf.  With doubling threads on a core = Doubling cores!  
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All Platforms 





  Goal: Given a distributed graph, parallelize greedy coloring such that 
◦  Speedup is attained 
◦  Number of colors used is roughly same as in serial 

  Difficult task since greedy is inherently sequential, computation small 
relative to communication, and data accesses are irregular 

  D1 coloring: approaches based on Luby’s parallel algorithm for 
maximal independent set had very limited success 

  D2 coloring: no practical parallel algorithms existed  

  We developed a framework for effective parallelization of greedy 
coloring on distributed memory architectures 

  Using the framework, we designed various specialized parallel 
algorithms for D1 and D2 coloring  
◦  First MPI implementations to yield speedup  



  Exploit features of initial data 
distribution 
◦  Distinguish between interior and 

boundary vertices 

  Proceed in rounds, each having 
two phases: 
◦  Tentative coloring 
◦  Conflict detection 

  Coloring phase organized in 
supersteps 
◦  A processor communicates only 

after coloring a subset of its 
assigned vertices 
 infrequent, coarse-grain 

communication 

  Randomization used in 
resolving conflicts 
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Superstep 1 

Superstep 2 

Communicate 

Communicate 

Superstep 1 

Communicate 

Detect conflicts 

Round 1 

Round 2 

Detect conflicts 



•  First Fit 
•  Staggered First Fit 

Color selection 
strategies 

•  Interior before boundary  
•  Interior after boundary  
•  Interior interleaved with boundary  

Coloring order 

•  Various degree-based techniques 
Local vertex 

ordering 

•  Synchronous 
•  Asynchronous Supersteps 

•  Customized 
•  Broadcast-based 

Inter-processor 
communication 



  Using the framework (JPDC, 2008) 

◦  Designed specialized parallel algorithms for distance-1 coloring 

◦  Experimentally studied how to tune “parameters” according to  
  size, density, and distribution of input graph  

  number of processors  

  computational platform 

  Extending the framework (SISC, under review) 
◦  Designed parallel algorithms for D2 and restricted star coloring  

 (to support Hessian computation)                 
◦  Designed parallel algorithms for D2 coloring of bipartite graphs  

 (to support Jacobian computation)  

New Challenge: efficient mechanism for information exchange between 
processors hosting D2 neighboring vertices needs to be devised 

  Software 
◦  MPI implementations of D1 and D2 coloring made available in Zoltan 
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  Global address-space machines 
◦  Parallel algorithms for  distance-1 and distance-2 coloring  on  

graphs for Jacobian and Hessian computations 
◦  Employs randomized graph partitioning, speculative coloring to 

improve scalability 

  Distributed memory machines 
◦  Developed a parallelization framework for greedy coloring 

◦  Employs graph partitioning, speculative coloring, optimized 
communication granularity to achieve scalability on 16,000 
processors IBM Blue Gene and Cray XT-5  

◦  Designed specialized parallel algorithms for D1 and D2 coloring  

◦  Deployed implementations via the Zoltan toolkit 



  Massive multithreading 
◦  Can  tolerate memory latency for graphs/sparse matrices 
◦  Dataflow algorithms easier to implement  than distributed memory 

versions 
◦  Thread concurrency  ameliorates lack of caches, and lower clock speeds 

◦  Thread parallelism can be exploited at fine grain if supported by 
lightweight synchronization 

◦  Graph structure critically influences performance 

  Many-core machines 
◦  Early days yet. Developed an iterative algorithm for greedy coloring that 

ports to many different machines.  

◦  X threads on one core can  perform as well as 1 thread on X cores if 
simultaneous multithreading is supported  

◦  Decomposition into tasks at a finer grain than distributed-memory 
version, and need to relax synchronization to enhance concurrency in 
computational schedule 

◦  Will form nodes of Peta- and Exa-scale machines, so single node 
performance studies are needed  



  Serial algorithms and software 
◦  Jacobian computation via distance-2 coloring algorithms on bipartite graphs 
◦  Developed novel algorithms for acyclic, star, distance-k (k = 1,2) and other coloring 

problems; developed associated matrix recovery algorithms 

◦  Delivered implementations via the software package ColPack (released Oct. 2008) 

◦  Interfaced ColPack with the AD tool ADOL-C 

  Application Highlights 
◦  Enabled Jacobian computation in Simulated Moving Beds 

◦  Enabled Hessian computation in optimizing electric power flow  

  Parallel algorithms and software 
◦  Developed a parallelization framework for greedy coloring 

◦  Designed specialized parallel algorithms for D1 and D2 coloring  

◦  Deployed implementations via the Zoltan toolkit 
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  Leading edge scientific applications increasingly include: 
◦  Adaptive, unstructured data structures 
◦  Complex, multiphysics simulations 
◦  Multiscale computations in space and time 
◦  Complex synchronizations (e.g. discrete events) 

  Significant parallelization challenges on today’s machines 
◦  Finite degree of coarse-grained parallelism 
◦  Load balancing and memory hierarchy optimization 

  Dramatically harder on millions of cores 

  Huge need for new algorithmic ideas – CSC will be critical 



  Runtime is dominated by latency 
◦  Particularly true for data-centric applications 
◦  Random accesses to global address space 
◦  Perhaps many at once – fine-grained parallelism 

  Essentially no computation to hide access time 

 Access pattern is data dependent 
◦  Prefetching unlikely to help 
◦  Usually only want small part of cache line 

  Potentially abysmal locality at all levels of memory 
hierarchy 
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