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   Context: Constrained Nonlinear Optimization 
  Sparse derivative computation 
◦  Modeling Framework: Structural Orthogonality 
◦  Distance-2 coloring for Jacobians 
◦  Star and Acyclic coloring for Hessians 
◦  New Algorithms and Results (Acyclic coloring)  
◦  Orderings and Optimality  

  ColPack Software 
  A case study on sparse Jacobian computation 
◦  Simulated Moving Bed chromatography 

  CSCAPES Institute   
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**http://www.organo.co.jp *http://www.pharmaceutical-technology.com 

•  Petrochemicals (Xylene isomers) 
•  Sugars (Fructose/glucose separation)  High fructose corn syrup 
•  Pharmaceuticals (Enantiomeric separation) 

 Separate ‘good’ from ‘bad’ compounds based on chirality 
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Optimization Problem

• Task: minx f(x) s.t. c(x) = 0.

• Consider Lagrangian L(x, λ) = f(x) + λT c(x)

Solve

[g(x, λ), c(x)] ≡
[
∇f(x) + λT ∇c(x), c(x)

]
= 0.

1
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Optimization Problem

• Solve

[g(x, λ), c(x)] ≡
[
∇f(x) + λT ∇c(x), c(x)

]
= 0.

• Apply SQP method, i.e., apply iteration

∇2
x,λL(xk, λk) pN

k

=




B(xk, λk) A(xk)

T

A(xk) 0



 pN
k

= −∇x,λL(xk, λk).
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  Fundamental numerical methods require derivatives: 
◦  Nonlinear optimization  

  Unconstrained optimization  
(require gradients and Hessians) 

  Constrained optimization  
(require Jacobians, Hessians, or Hessian-vector products) 

◦  Parameter estimation 
◦  Solution of discritized nonlinear PDEs  

(require Jacobians or Jacobian-vector products) 

  Simulations in science, engineering, and economics 
present additional needs for derivative evaluation: 
◦  Uncertainty quantification 
◦  Sensitivity analysis 
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  Hand coding 
◦  Tedious and error-prone 
◦  Coding time grows with program size and complexity 
◦  No natural way to compute derivative matrix-vector products 

  Divided (Finite) Differencing 
◦  Incurs truncation errors (is only an approximation) 
◦  Cost grows with number of independents 
◦  No natural way to compute transposed-Jacobian-vec products 

  Symbolic Differentiation 
◦  Takes up lots of memory since it relies on first generating 

symbolic expressions explicitly 
◦  Does not exploit common sub-expressions directly 

Automatic Differentiation overcomes all of these drawbacks.   
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 A technique for computing analytic 
derivatives of a function specified as a 
computer program 

 Key ingredients: analytic differentiation of 
elementary functions plus propagation by 
the chain rule of calculus 
◦  A programming language provides a set of 

elementary  mathematical functions 
◦  A function computed by a program is a 

composition of these intrinsic  functions 
◦  Derivatives of intrinsic functions are obtained by 

table-lookup, and combined using the chain rule 
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n:  independents   m: dependents  p:  intermediates  



 Has two main modes (due to associativity 
of chain rule): 
◦  Forward (Tangent) Mode 
◦ Reverse (Adjoint) Mode 

 Can be implemented in one of two ways: 
◦ Operator overloading 
◦  Source transformation 

 Modern resurgence in AD spurred by 
Speelpenning’s  thesis (1980, Illinois) 
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Coloring:  An abstraction for grouping a set of related objects into a 
few ``independent’’ sets 
Applications in parallel computing,  Automatic Differentiation, 
preconditioning,  etc.  
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Three orthogonal axes, each with two possibilities: 
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Type of  
Derivative Matrix 

Recovery 
Method 

Dimension of 
Partitioning* 

•  Jacobian (nonsymmetric) •  Direct •  Unidirectional 

•  Hessian (symmetric) •  Substitution •  Bidirectional 

* for the Jacobian case only 
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unsymmetric 
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structurally orthogonal 
partition 

distance-2 coloring distance-1 coloring 
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symmetric 
case 

nonsymmetric 
case 

structurally orthogonal 
partition 

distance-2 coloring distance-1 coloring 

Curtis, Powell and Reid, 74 

McCormick, 83 

Coleman and More, 83 
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symmetrically orthogonal 
partition 

star coloring:  
•  distance-1 coloring + 
•  every path on 4 vertices 
uses at least 3 colors   

compressed Hessian 
B = HS 





h11 h12 h17 0 0
h21 + h23 + h25 h22 0 0 0

h33 h32 h34 h36 0
h43 h4,10 h44 0 0
h55 h52 0 h56 h58

h63 + h65 + h69 0 0 h66 0
h71 0 h77 0 h78

h85 + h89 0 0 0 h88

h99 h9,10 0 h96 h98

h10,9 h10,10 h10,4 0 0




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



h11 h12 + h17 0
h21 + h23 + h25 h22 0

h33 h32 + h34 h36

h43 + h4,10 h44 0
h55 h52 h56 + h58

h63 + h65 h69 h66

h71 h77 h78

h85 h87 + h89 h88

h9,10 h99 h96 + h98

h10,10 h10,4 + h10,9 0





substitutable 
partition 

acyclic coloring:  
•  distance-1 coloring + 
•  every cycle uses at least  
3 colors   

compressed Hessian 
B = HS 



X X
X

XX
X

X
X

X

X

X

XX

1
2
3
4
5

1 2 3 4 5

r1
r2
r3
r4
r5

a1
a2
a3
a4
a5

Alex Pothen Coloring and AD 20 

  Direct method:  
  star bicoloring (shown in the picture) 
(Coleman & Verma’98 and Hossain & Steihaug’98) 

  Substitution method:  
  acyclic bicoloring (Coleman & Verma’98)  



Unidirectional partition Bidirectional partition 

Jacobian distance-2 coloring  star bicoloring Direct 

Hessian star coloring 

restricted star coloring 
NA Direct 

Jacobian NA acyclic bicoloring Substitution 

Hessian acyclic coloring 

triangular coloring 
NA Substitution 
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Jacobian:   bipartite graph 
Hessian:    adjacency graph 

Further reading:  Gebremedhin, Manne and Pothen, SIAM Review 47(4):629—705, 2005. 



Complexity of coloring 
New Algorithms 
Results 
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  Minimizing colors for Distance-k, star, and acyclic coloring are 
NP-hard 

  Approximating coloring to within O(n1-e) is NP-hard too  

GREEDY(G=(V,E)) 
Order the vertices in V 
for i = 1 to |V| do    

Determine forbidden colors to vi 

Assign vi the smallest permissible color 

end-for 

  A greedy heuristic usually gives a good, often optimal,  solution 

  The key is to find good orderings for coloring, and many have 
been developed 

Ref:  Gebremedhin, Tarafdar, Manne, Pothen, SIAM J. Sci. Compt. 29:1042--1072, 2007. 



  For Jacobians,  partial distance-2 colorings of bipartite graphs 
with GREEDY can be computed with orders of magnitude less 
storage and time than distance-1 colorings of the square of the 
graph, as had been done in earlier work 

  For distance-k coloring, GREEDY can be implemented to run in 
O(|V|dk) time, where dk is average degree-k 

  We have developed O(|V|d2)-time heuristic algorithms for star and 
acyclic coloring 

Key idea: exploit structure of two-colored induced subgraphs 
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Algorithm (Input: G=(V,E)): 

for each v in V 
1.  Choose color for v: 

•  Forbid colors used by neighbors N(v) of v 
•  Forbid colors leading to two-colored paths on 4 vertices: 

•  For every pair of same-colored vertices w and x in 
N(v), forbid colors used by N(w) and N(x) 

•  For every non-single-edge star S incident on v, forbid 
color of hub of S 

2.  Update collection of two-colored stars 

Time: O(|V|d2)  Space: O(|E|) 
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Algorithm (Input: G=(V,E)): 

for each v in V 
1.  Choose color for v 

•  Forbid colors used by neighbors of v 
•  Forbid colors leading to two-colored cycles 

•  For every tree T incident on v, if v adjacent to at least 
two same-color vertices, forbid the other color in T 

2.  Update collection of two-colored trees (merge if necessary) 

Time: O(|V|d2α)  Space: O(|E|) 
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29 test graphs, 
aggregate data 

Further reading: 
Gebremedhin, Tarafdar, Manne and Pothen,  
New Acyclic and Star Coloring Algorithms  
with Applications to Computing Hessians.  
SIAM J. Sci. Comput. 29:1042--1072, 2007. 
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Scientific Computing  
1 -23 Million edges Molecular Dynamics  

0.4 – 6.5  Million edges 
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Small World I random graphs 
2 - 11 Million edges Small World II random graphs 

2 - 11 Million edges 
Higher degrees, dense subgraphs 



Ordering Description Remark 

Largest First vi has largest degree  
in sequence vi , vi+1 , …, vn 

sorted in non-increasing order 
of degrees in input graph G 

Incidence Degree vi has largest back degree 
in sequence vi , vi+1 , …, vn 

Smallest Last vi has smallest back degree 
in sequence v1, v2 , …, vi 

•  minimizes B over all orderings 
•  BSL + 1 = col(G) 

Dynamic  
Largest First 

vi has largest forward degree 
in sequence vi , vi+1 , …, vn 
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back degree forward degree 

vi 

degree 

vn v1 

O(|E|)-time implementations possible for all four •  B = max back degree 
        over entire seq. 
•  B+1 colors suffice 
to color G. 
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Scientific Computing  
1 -23 Million edges 

Molecular Dynamics  
0.4 – 6.5 Million edges 







h11 h12 + h17 0
h21 + h23 + h25 h22 0

h33 h32 + h34 h36

h43 + h4,10 h44 0
h55 h52 h56 + h58

h63 + h65 h69 h66

h71 h77 h78

h85 h87 + h89 h88

h9,10 h99 h96 + h98

h10,10 h10,4 + h10,9 0









h11 h12 h17 0 0
h21 + h23 + h25 h22 0 0 0

h33 h32 h34 h36 0
h43 h4,10 h44 0 0
h55 h52 0 h56 h58

h63 + h65 + h69 0 0 h66 0
h71 0 h77 0 h78

h85 + h89 0 0 0 h88

h99 h9,10 0 h96 h98

h10,9 h10,10 h10,4 0 0





Direct (star coloring) Substitution (acyclic coloring) 
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H[i, i]  B[i, color[hi]] 
for each two-colored star 
   for each spoke-hub pair (hs, hu) 
      H[s, u] B[s, color[hu]] 

H[i, i]  B[i, color[hi]] 
for each two-colored tree T 
   while T is non-empty 
      evaluate and delete “leaf” edges 

B B 

Ref: Gebremedhin, Pothen, Tarafdar and Walther, INFORMS JOC,  2009. 



Software – ColPack 
Coloring,  Ordering, Functionalities for Derivatives 



General graph 
G = (V, E)   

Bipartite graph, 
One sided coloring 
Gb = (V1, V2, E) 

Bipartite graph, 
Bicoloring 
Gb = (V1, V2, E) 

•  Distance-1 coloring 
O(|V|d1) = O(|E|) 

•  Distance-2 coloring on V2 
O(|E|Δ(V1))   

•  Star bicoloring* 

O((|V1|+|V2|)d2) 

•  Distance-2 coloring 
O(|V|d2) 

•  Distance-2 coloring on V1  
O(|E|Δ(V2)) 

•  Star coloring* 

O(|V|d2) 

•  Acyclic coloring 
O(|V|d2α) 

•  Restricted star coloring 
O(|V|d2) 

•  Triangular coloring* 

O(|V|d2) 
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* more than one algorithm available; complexity of fastest algorithm shown 



General graph Bipartite graph, 
One sided coloring 

Bipartite graph, 
Bicoloring 

•  Natural •  Column Natural •  Natural 

•  Random •  Column Random •  Random 

•  Largest First •  Column LF •  LF 

•  Smallest Last •  Column SL •  SL 

•  Incidence Degree •  Column ID •  ID 

•  Dynamic LF •  Row Natural •  Dynamic LF 

•  Distance-2 LF                                                                •  Row Random •  Selective LF 

•  Distance-2 SL •  Row LF •  Selective SL 

•  Distance-2 ID •  Row SL •  Selective ID 

•  Row ID 
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 Recovery routines  
◦  Jacobians 
  Unidirectional, Direct (via distance-2 coloring) 

  columnwise and rowwise 

  Bidirectional, Direct (via star bicoloring) 

◦ Hessians 
  Direct (via star coloring) 
  Substitution (via acyclic coloring) 

 Graph construction routines 
◦ Various file formats supported 
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Further information &  
software download: 
www.cscapes.org/coloringpage 



Simulated Moving Bed chromatography 



39 

Principle of Chromatography 
Desorbent 

(Water, organic 
solvent, etc) 

Feed  

(Mixture of red and blue 
components) 

Pump 

h@p://www.cwg.hu/english/r‐wtcomp.html


Packing medium  

(adsorbent parGcles) 

Chromatographic column 

Red component sGcks more strongly 
to adsorbent parGcles 

Blue 
component 

Red 
component 

Figure courtesy of 
Yoshiaki Kawajiri, GT 
Alex Pothen  Coloring and AD 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•  A psuedo counter-current process 
that mimics operation of Moving Beds 
•  Reaches only Cyclic Steady State 
•   Various objectives to be maximized:  

E.g: product purity, product recovery,  
desorbent consumption, throughput 

•   We considered throughput 
maximization 
•  Objective modeled as an optimization 
problem with PDAEs as constraints 
•  Full discretization was used to solve 
the PDAEs  sparse Jacobians   



Procedure SPARSECOMPUTE                          ,   or  

1.  Determine the sparsity structure of                                                                                                 
derivative                   

2.  Obtain a seed matrix                   with the smallest q 
3.  Compute elements of compressed matrix 

4.  Recover the numerical values of the entries of A from B 

Seed matrix S partitions columns of A: 

S computed by coloring a  graph of A; B computed using AD 
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•  Tested efficacy of the 4-step procedure:   

•  Used ADOL-C for steps S1and S3, and 
ColPack for steps S2 and S4 

•  Observed results for each step matched 
analytical results 

•  Techniques enabled huge savings in runtime 

   Time(Jacobian eval) ≈ 100×Time(function eval) 

•  Dense computation (without exploiting 
sparsity) was infeasible  

sparsity 
detection (S1) 

seed 
generation 

(S2) 
matrix-vector 
product (S3) recovery (S4)   
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  Goal: Given a distributed graph, parallelize greedy coloring such that 
◦  Speedup is attained 
◦  Number of colors used is roughly same as in serial 

  Difficult task since greedy is inherently sequential, computation small 
relative to communication, and data accesses are irregular 

  D1 coloring: approaches based on Luby’s parallel algorithm for 
maximal independent set had very limited success 

  D2 coloring: no practical parallel algorithms existed  

  We developed a framework for effective parallelization of greedy 
coloring on distributed memory architectures 

  Using the framework, we designed various specialized parallel 
algorithms for D1 and D2 coloring  
◦  First MPI implementations to yield speedup  



  Exploit features of initial data 
distribution 
◦  Distinguish between interior and 

boundary vertices 

  Proceed in rounds, each having 
two phases: 
◦  Tentative coloring 
◦  Conflict detection 

  Coloring phase organized in 
supersteps 
◦  A processor communicates only 

after coloring a subset of its 
assigned vertices 
 infrequent, coarse-grain 

communication 

  Randomization used in 
resolving conflicts 
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3 4 
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7 8 

Superstep 1 

Superstep 2 

Communicate 

Communicate 

Superstep 1 

Communicate 

Detect conflicts 

Round 1 

Round 2 

Detect conflicts 



•  First Fit 
•  Staggered First Fit 

Color selection 
strategies 

•  Interior before boundary  
•  Interior after boundary  
•  Interior interleaved with boundary  

Coloring order 

•  Various degree-based techniques 
Local vertex 

ordering 

•  Synchronous 
•  Asynchronous Supersteps 

•  Customized 
•  Broadcast-based 

Inter-processor 
communication 



  Using the framework (JPDC, 2008) 

◦  Designed specialized parallel algorithms for distance-1 coloring 

◦  Experimentally studied how to tune “parameters” according to  
  size, density, and distribution of input graph  

  number of processors  

  computational platform 

  Extending the framework (SISC, under review) 
◦  Designed parallel algorithms for D2 and restricted star coloring  

 (to support Hessian computation)                 
◦  Designed parallel algorithms for D2 coloring of bipartite graphs  

 (to support Jacobian computation)  

New Challenge: efficient mechanism for information exchange between 
processors hosting D2 neighboring vertices needs to be devised 

  Software 
◦  MPI implementations of D1 and D2 coloring made available in Zoltan 
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  Serial algorithms and software 
◦  Jacobian computation via distance-2 coloring algorithms on bipartite graphs 
◦  Hessians: Developed novel algorithms for acyclic, star, distance-k (k = 1,2) and other coloring 

problems; developed associated matrix recovery algorithms 

◦  Several ordering algorithms for reducing the number of colors 

◦  Delivered implementations via the software package ColPack (released Oct. 2008; Oct 2010) 

◦  Interfaced ColPack with the AD tool ADOL-C 

  Application Highlights 
◦  Enabled Jacobian computation in Simulated Moving Beds 

◦  Enabled Hessian computation in optimizing electric power flow  

  Parallel algorithms and software 
◦  Developed a parallelization framework for distributed-memory greedy coloring 

◦  Deployed implementations via the Zoltan toolkit 

◦  Designed massively multi-threaded and multi-core  parallel algorithms for D1 and D2 coloring  



  For large, sparse derivative matrices, 
computation via compression (coloring) 
renders big savings in runtime and 
memory usage 

 A unifying framework is structural 
orthogonality and relaxations, which leads 
to efficient algorithms for coloring.  

  Integrated ColPack  into an AD tool and 
interfaced with optimization software. 
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  AD algorithms and community 
◦  Griewank and Walther, Evaluating Derivatives, SIAM, 2008 

◦  http://www.autodiff.org 

  ADOL-C: 
http://www.math.tu-dresden.de/~adol-c 

  OpenAD: http://www.mcs.anl.gov/openad/ 
  ColPack: http://www.cscapes.org/coloringpage 

  Contact: apothen@purdue.edu 
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  Coloring 
◦  Assefaw Gebremedhin, Fredrik Manne, Mostofa Patwary, Duc 

Nguyen,   Arijit Tarafdar 
  AD 
◦  Paul Hovland, Uwe Naumann, Andrea Walther 

  SMB  
◦   Larry Biegler (CMU), Yoshiaki Kawajiri (GaTech) 

  CSCAPES 
◦  Erik Boman, Paul Hovland, Umit Catalyurek, Karen 

Devine, Jean Utke, Boyana Norris, Bruce Hendrickson, 
Florin Dobrian, Mahantesh Halappanavar, several 
others 

  Financial support : DOE, NSF 
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  One of four  DOE Scientific Discovery thru Advanced 
Computing (SciDAC) Institutes; only one in Appl. Math 
◦  Excellence in research, education and training  
◦  Collaborations with science projects in SciDAC 

   Focus not on specific application,  but on algorithms and 
software for combinatorial problems 

  Participants from  Purdue, Sandia,  Argonne, Ohio State, 
Colorado State  

   CSCAPES workshops with talks, tutorials on software, 
discussions on collaborations  

  www.cscapes.org 
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Ref:  Griewank and Walther, Evaluating Derivatives, Second Edition, SIAM, 2008                 



  Jacobians of functions with small number of 
independent variables (Forward mode) 

  Jacobians of functions with small number of 
dependent variables (Reverse mode) 

  Jacobian-vector products (Forward mode) 
  Transposed-Jacobian-vector products (Reverse mode) 

  Hessian-vector product (Forward+Reverse mode) 

  Large, sparse Jacobians and Hessians (Forward mode 
plus “compression’’) 
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Operator overloading 

  Relatively easy to 
implement 

  Robustness easy to 
achieve 

  No compiler analysis/ 
optimization 

  Adjoint computation 
requires “tape” 
interpretation 

  Disadvantages fade away 
when computing higher 
derivatives 

Source transformation 

  Relatively hard to 
implement 

  Robustness hard to 
achieve 

  Static analyses and 
compiler optimization  
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Tool Language Type Mode Organization Remark 

TAF Fortran 95 ST F and R FastOpt Commercial tool  

Tapenade Fortran 95 ST F and R INRIA 

OpenAD/F Fortran 95 ST F and R Argonne/UC/Rice Development driven by  
climate model and 
astrophysics code 

ADIFOR Fortran 77 ST F  Rice/Argonne •  Mature tool 
•  Hundreds of users 

ADOL-C C/C++ OL F and R Dresden •  Mature tool 
•  Widely used 
•  Supports higher order 
derivatives 

ADIC C  ST F Argonne/UC •  Shares infrastructure 
with OpenAD/F 
•  RM under devt 

TAC++ C and some 
C++ 

ST F and R FastOpt Commercial tool (under 
development) 

Adimat Matlab ST F  Aachen 

Alex Pothen Coloring and AD 69 

For more info:   http://www.autodiff.org 



Tool Language Type Mode Organization Remark 

TAF Fortran 95 ST F and R FastOpt Commercial tool  

Tapenade Fortran 95 ST F and R INRIA 

OpenAD/F Fortran 95 ST F and R Argonne/UC/Rice Development driven by  
climate model and 
astrophysics code 

ADIFOR Fortran 77 ST F  Rice/Argonne •  Mature tool 
•  Hundreds of users 

ADOL-C C/C++ OL F and R Dresden •  Mature tool 
•  Widely used 
•  Supports higher order 
derivatives 

ADIC C  ST F Argonne/UC •  Shares infrastructure 
with OpenAD/F 
•  RM under devt 

TAC++ C and some 
C++ 

ST F and R FastOpt Commercial tool (under 
development) 

Adimat Matlab ST F  Aachen 

Alex Pothen Coloring and AD 70 

For more info:   http://www.autodiff.org 



Alex Pothen Coloring and AD 71 



Alex Pothen Coloring and AD 72 



Alex Pothen Coloring and AD 73 



Alex Pothen Coloring and AD 74 

For more info:  http://www.math.tu-dresden.de/~adol-c 


