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Context: Constrained Nonlinear Optimization

Sparse derivative computation
Modeling Framework: Structural Orthogonality
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Star and Acyclic coloring for Hessians
New Algorithms and Results (Acyclic coloring)
Orderings and Optimality

ColPack Software

A case study on sparse Jacobian computation

Simulated Moving Bed chromatography
CSCAPES Institute
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Industrial Simulated Moving Bed Chromatography

v /

* Petrochemicals (Xylene isomers)
* Sugars (Fructose/glucose separation) =» High fructose corn syrup

* Pharmaceuticals (Enantiomeric separation)

Separate ‘good’ from ‘bad’ compounds based on chirality

CS Ca p e S *http://www.pharmaceutical-technology.com “Fhttp://www.organo.co.jp



PURDUE
Optimization Problem

e Task: miny f(x) s.t. e(z) = 0.
e Consider Lagrangian £(z, \) = f(z) + M ¢(2)

Solve

cScapes



Optimization Problem PURDUE

e Solve

[9(2, ), c(@)] = [V£ () + AT Ve(a), e(@)] = 0.

e Apply SQP method, i.e., apply iteration

VZAL(zk, M) PR

B(zp, M) A(zp)!
14($k) O

— Ve L(zp, Ag).

N
Pk
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PURDUE

Why compute derivatives!?

e Fundamental numerical methods require derivatives:

> Nonlinear optimization

Unconstrained optimization
(require gradients and Hessians)

Constrained optimization
(require Jacobians, Hessians, or Hessian-vector products)

o> Parameter estimation

> Solution of discritized nonlinear PDEs
(require Jacobians or Jacobian-vector products)

 Simulations in science, engineering, and economics
present additional needs for derivative evaluation:

> Uncertainty quantification
° Sensitivity analysis

cScapes
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How could derivatives be computed!?

* Hand coding

> Tedious and error-prone

> Coding time grows with program size and complexity

> No natural way to compute derivative matrix-vector products
» Divided (Finite) Differencing

° Incurs truncation errors (is only an approximation)

> Cost grows with number of independents

> No natural way to compute transposed-Jacobian-vec products
* Symbolic Differentiation

> Takes up lots of memory since it relies on first generating
symbolic expressions explicitly

> Does not exploit common sub-expressions directly
Automatic Differentiation overcomes all of these drawbacks.

cScapes
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What is Automatic Differentiation?

* A technique for computing analytic
derivatives of a function specified as a
computer program

° : analytic differentiation of
elementary functions plus propagation by
the chain rule of calculus

> A programming language provides a set of
elementary mathematical functions

> A function computed by a program is a
composition of these intrinsic functions

o Derivatives of intrinsic functions are obtained by
table-lookup, and combined using the chain rule

cScapes



PURDUE
AD: Decomposition of function

evaluation and its graph representation

Code list
vj = ¢ (Vi)i<;

forj=1,...,n+p+m.

Local partial derivatives

__ O¢j
cj’i - Bvi

forj=1,...,n+p+mand i < j.

v3=v1*v2
vb=v3*sin(v3) ... vd=sin(v3); vb=v3*v4

v6=cos (v5)

v7=exp(v5)

n: independents m:dependents p: intermediates

cScapes
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More on AD

* Has two main modes (due to associativity
of chain rule):

> Forward (Tangent) Mode
> Reverse (Adjoint) Mode

» Can be implemented in one of two ways:
> Operator overloading

o Source transformation

* Modern resurgence in AD spurred by

Speelpenning’s thesis (1980, lllinois)
cscapes



PURDUE

Sparse derivative computation

Coloring: An abstraction for grouping a set of related objects into a
few ‘independent” sets

Applications in parallel computing, Automatic Differentiation,
preconditioning, etc.

cScapes
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Derivative Computation
via Compression
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Sources of model variation in derivative

computation via compression

Three orthogonal axes, each with two possibilities:

Type of

Derivative Matrix

Recovery
Method

Dimension of
Partitioning™

* Jacobian (nonsymmetric)

* Direct

e Unidirectional

* Hessian (symmetric)

* Substitution

* Bidirectional

* for the Jacobian case only

cScapes
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Distance-2 coloring:
~a Model for Structural Orthogonality

| structurally orthogonal
4 partition

distance-2 coloring  distance-| coloring

En aj, 0 0 ap

unsymmetric | %1 2 0 00
a1 0 0 aj O
case

Alex Pothen Coloring and AD 14
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Distance-2 coloring:
~a Model for Structural Orthogonality

—— structurally orthogonal
| partition

_ [a, 0 0 0 ag] o c &y ¢
symmetric 0 ay ay; 0 0

case 0 as) a3 asy ass
O O 343 a44 345 05 C3 CS C3

distance-2 coloring  distance-| coloring

as; 0 asy agy ass

A

Alex Pothen Coloring and AD I5

cScapes



PURDUE

Distance-2 coloring;
a Model for Structural Orthogonality

structurally orthogonal

o distance-1| coloring
partition

distance-2 coloring

symmetric
case

unsymmetric
case

cScapes
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Ell
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a3y
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ayy dy3
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0 as3
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ay, 0
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a3q
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Distance-2 coloring;
a Model for Structural Orthogonality

structurally orthogonal
partition

[a, 0 0 0 ag] | ¢ ¢ ¢
symmetric 0 ay ay; 0 0
case 0 a3, a33 a3y ass
0 0 ayy ay, ays 4 ¢ 3 €3

J

distance-2 coloring  distance-| coloring

as; 0 asy agy ass
L . c C
McCormick, 83 d 4

4 G, G,

E11 aj, 0 0 ap

nonsymmetric | %1 %2 Y 0 0
a3; 0 0 agy O
case

0 0 ay3 ay a45J

Curtis, Powell and Reid, 74 G, gbz[V ]
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Model for Hessian computation

via a direct method: Star Coloring

12345678910

symmetrically orthogonal
partition

star coloring:

* distance-| coloring +

* every path on 4 vertices
uses at least 3 colors

1213143 512

hy hg hj hy
O;,—® - O,
1 4
h @—On
\3 5 1 P 2
O O O O
hy hg hg hyj

hir hio

hoi + hoz + hos  hoo
hsz  hsa

haz ha o

hss  hsa

hgs + hgs + heo 0
hgs + hgg 0

hag g 10

h1o9 hio,10

PURDUE

hiz7 0 0
0O 0 0
hgs hsg 0
hy 0 0
0 hse hsg
0 hes 0
heor 0 hrg
0 0 hsg
0 hos hog
hia 0 0

compressed Hessian

B =HS
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Model for Hessian computation
via substitution: Acyclic coloring

12345678910

. X hir hig+ hiy 0
subs.tl.tutable hot By + o o 0
partition - hsz  hga+ hay s

§ i X haz 4 ha 10 oo 0
X|x hiss hsa hse + hss
. X § § he3 + hes heg hee
X X hn hr7 hzs
1212132321 hgs  hgr + hgg hags
hg 10 hgg hgs + hog
hy ho hg hy hio,10 hio4 + hiog 0
@ —OC-—0—0
. . Y 9 O .
acyclic coloring: 1 1 2 compressed Hessian
* distance-1| coloring + 1 3 B =HS
* every cycle uses at least h5‘_0h6
3 colors
2 3 2 1

hy hg hg hyg

cScapes
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PURDUE

Bidirectional Jacobian computation

Qu i W N+

1 2 3 4 5

¢ Direct method:

= star bicoloring (shown in the picture)
(Coleman & Verma’98 and Hossain & Steihaug’98)

# Substitution method:
= acyclic bicoloring (Coleman & Verma’98)
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Overview of coloring models in derivative computation

Unidirectional partition | Bidirectional partition

Jacobian distance-2 coloring star bicoloring Direct

star coloring NA
restricted star coloring

Jacobian NA acyclic bicoloring Substitution

acyclic coloring NA Substitution
triangular coloring

Jacobian: bipartite graph
Hessian: adjacency graph

Further reading: Gebremedhin, Manne and Pothen, SIAM Review 47(4):629—705, 2005.

cScapes
s

Alex Pothen Coloring and AD

N



PURDUE

Coloring Algorithms

Complexity of coloring
New Algorithms

Results

cScapes
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PURDUE
Complexity and algorithms

» Minimizing colors for Distance-k, star, and acyclic coloring are
NP-hard

e Approximating coloring to within O(n'-¢) is NP-hard too
GREEDY(G=(VE))

Order the vertices in V
fori=1to|V|do

Determine forbidden colors to v;

Assign v, the smallest permissible color

end-for

A greedy heuristic usually gives a good, often optimal, solution

* The key is to find good orderings for coloring, and many have
been developed

Ref: Gebremedhin, Tarafdar, Manne, Pothen, SIAM |. Sci. Compt. 29:1042--1072, 2007.

cScapes
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New Algorithms

* For Jacobians, partial distance-2 colorings of bipartite graphs
with GREEDY can be computed with orders of magnitude less

storage and time than distance-| colorings of the square of the
graph, as had been done in earlier work

s For distance-k coloring, GREEDY can be implemented to run in
O(|V|d,) time, where d, is average degree-k

* We have developed O(|V|d,)-time heuristic algorithms for star and
acyclic coloring

Key idea: exploit structure of two-colored induced subgraphs

cScapes
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A star coloring algorithm

BRI

(@) (b) () (d) (e) (f)
Algorithm (Input: G=(V,E)):
for each vin V
|. Choose color for v:
* Forbid colors used by neighbors N(v) of v
* Forbid colors leading to two-colored paths on 4 vertices:
* For every pair of same-colored vertices w and x in
N(v), forbid colors used by N(w) and N(x)
* For every non-single-edge star S incident on v, forbid

color of hub of S
2. Update collection of two-colored stars

Time: O(|V|d,) Space: O(|E|)



PURDUE
An acyclic coloring algorithm

e—eo Q v O
vO  vO-- P U
oo

Algorithm (Input: G=(V,E)):
for each vin V
|. Choose color for v
* Forbid colors used by neighbors of v
* Forbid colors leading to two-colored cycles
* For every tree T incident on v, if v adjacent to at least

two same-color vertices, forbid the other colorin T
2. Update collection of two-colored trees (merge if necessary)

Time:O(|V|d, &)  Space: O(|E|)
cScapes
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Performance

Number of colors Runtime (min)

10000 9240 oo 180 162
9000 - o 160 -
8000 - i 140 -
Zggg : 5065 120 7
5000 - 4110 . 1007 o
4000 - colors 80 time (min)
3000 - 60 - 395
2000 - 40 -
1000 - 20 I I 004

0 T T T T T T 0 |

D2 RS S

29 test graphs, A4 Max
aggregate data Degree Degree Degree

88M 64K 4.2K

Further reading:

Gebremedhin, Tarafdar, Manne and Pothen,
New Acyclic and Star Coloring Algorithms
with Applications to Computing Hessians.
SIAM J. Sci. Comput. 29:1042-1072, 2007.

Alex Pothen Coloring and AD 27
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Number of Colors: Star, Acyclic

350

-B-D2 S -@-A ¢-D1
300+

2501

n

o

o
T

Number of colors
g

1001

./‘\./‘_'—‘/‘\‘\'/‘
T

Scientific Computing
| -23 Million edges

cScapes
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Number of colors

700

(9]

o

o
T

a

o

o
T

N

o

o
T

@

o

o
T

n

o

o
T

-

o

(=]
T

-B-D2 %S -@-A 4-D1

o

L L L L L L L L L L
mdi md2 md3 md4 md5 mdé md7 md8 md9 mdi10

Molecular Dynamics
0.4 — 6.5 Million edges
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Number of Colors: Star, Acyclic

15000

50000 -&-D2 S -@-A 4-D1 -&-D2 #+S -@-A 4-D1

4000
o 100001

Number of colors
Number of color

n

o

o

o
T

50001

3000
1000+ / /
.=':—4”/: ok M

swi sw2 sw3 sw4 swb sw6 sw7 sw8 sw9 sw10

Small World | random graphs

2 - || Million edges Small World Il random graphs

2 - | | Million edges
Higher degrees, dense subgraphs

cScapes
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Ordering techniques

Ordering | Description _______|Remark ________

Largest First

Incidence Degree

Smallest Last

Dynamic
Largest First

v, has largest degree

in sequence V., V.., ...,V,

v; has largest back degree

in sequence v, V.. ,...,V,

v, has smallest back degree
in sequence v, v,, ...,V
v, has largest forward degree

in sequence v, V.., ..., V,

PURDUE

UNIVERSITY

sorted in non-increasing order
of degrees in input graph G

* minimizes B over all orderings
* By, + | = col(G)

O(|E|)-time implementations possible for all four

* B = max back degree

over entire seq.

back degree forward degree | to color G.

* B+ colors suffice
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Nearly Optimal Distance-/coloring

3
2.4r
-4-BsL -@-N m-SL -0 -4-Bs. N =-SL 0
2.2 2.5
3
S 2 )
>
2 ks
B &
N 1.8 = 2r
E :
5 16 2
" 3
n
>
S 1.4 < 1.5F
©
XS >
1.2r
1 1
08" o1 sc2 3 sod  so5 56 sc7  scB  sc9  scl0 mdl md2 md3 md4 md5 mdé md7 md8 md9 mdi0
Scientific Computing Molecular Dynamics

| -23 Million edges 0.4 — 6.5 Million edges
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Hessian recovery algorithms

Direct (star coloring) Substitution (acyclic coloring)
hii hiz hiz 0 0 X hii hio + hir 0 g i XX
hot +has+has  hes 0 0 O i ho1 + hog + hos haa 0 a1 PER |
h33 th h54 h36 0 h33 h32 + h34 h36 X%ﬁz
haz haio haa 0 0 has + ha 1o haa 0 |
B hss  hsa 0 hsg hss B hss hsa hse + hss o
hes + hes + heo 0 0 hgg O hes + hes heo hes
h,71 0 h?? 0 h78 h h h
R [ S
hoo horo 0 hos hos hg.10 hog hos + hog
fuog Proo Poa 00 hio10 hio4 + hi09 0
HJi, i] < BJi, color[h]] H[i, i] < BJi, color[h]]
for each two-colored star for each two-colored tree T
for each spoke-hub pair (h, h)) while T is non-empty
H[s, u] €B[s, color[h,]] evaluate and delete “leaf” edges

Ref: Gebremedhin, Pothen, Tarafdar and Walther, INFORMS JOC, 2009.

cScapes
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Sparse derivative computation

Software — ColPack
Coloring, Ordering, Functionalities for Derivatives

cScapes
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ColPack: coloring capabilities

General graph Bipartite graph, Bipartite graph,
One sided coloring Bicoloring
* Distance-| coloring * Distance-2 coloring onV, ¢ Star bicoloring”
O(|Vld,) = O(|E]) O(IE| A (V) O((IV/1*+[V2))dy)
* Distance-2 coloring * Distance-2 coloring onV,
O(|Vldy) O(IEJ A (V)

» Star coloring”
O(|Vldy)

* Acyclic coloring
O(|Vid; @)

* Restricted star coloring
O(|Vldy)

* Triangular coloring”
O(|Vldy)

* more than one algorithm available; complexity of fastest algorithm shown
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ColPack: ordering capabilities

General graph

e Natural
e Random

* Largest First
* Smallest Last
* Incidence Degree

* Dynamic LF

Bipartite graph,

Bipartite graph,

One sided coloring Bicoloring

* Column Natural

e Column Random

e Column LF
e Column SL
e Column ID

* Distance-2 LF
* Distance-2 SL
* Distance-2 ID

* Row Natural
* Row Random
* Row LF
* Row SL
* Row ID

* Natural

* Random

* LF
e SL
*ID
* Dynamic LF

 Selective LF
* Selective SL

e Selective ID

PURDUE
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ColPack: other functionalities

* Recovery routines

> Jacobians

Unidirectional, Direct (via distance-2 coloring)

* columnwise and rowwise

Bidirectional, Direct (via star bicoloring)

o Hessians

Direct (via star coloring)

Substitution (via acyclic coloring)

* Graph construction routines

° Various file formats supported
cscapes
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ColPack: organization

Graph
InputOutput

Graph
Ordering

Graph
Coloring

Graph
ColoringInterface

HessianRecovery

Col

_—

= i

ack

BipartiteGraph
PartialOrdering

BipartiteGraph
PartialColoring

BipartiteGraph

PartialColoringInterface

JacobianRecovery

1D

BipartiteGraph
Core

BipartiteGraph
InputOutput

PURDUE

UNIVERSITY

Further information &
software download:
www.cscapes.org/coloringpage

BipartiteGraph
VertexCover

BipartiteGraph
Ordering

BipartiteGraph

Bicoloring

BipartiteGraph
BicoloringInterface

JacobianRecovery
2D



PURDUE

A case study on sparse Jacobian

computation
Simulated Moving Bed chromatography

cScapes



Principle of Chromatography

Desorbent Feed

(Water, organic  (Mixture of red and blue

solvent, etc)

components

Red component sticks more strongly
to adsorbent particles

/

Pump Chromatographic column

Packing medium
(adsorbent partlcles)

Figure courtesy of Blue Red

Yoshiaki Kawajiri, GT
E . component component
Alex Pothen COlorln‘&t@.mﬁ@cwg.hu/english/r-wtcomp html P P ggn
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Simulated Moving Bed process

* A psuedo counter-current process
that mimics operation of Moving Beds

* Reaches only Cyclic Steady State

* Various objectives to be maximized:
E.g: product purity, product recovery,
desorbent consumption, throughput

* We considered throughput
maximization

* Objective modeled as an optimization
problem with PDAEs as constraints

e Full discretization was used to solve
the PDAEs = sparse Jacobians

Feed Raffinate

Direction of liquid flow

and valvgswitching

Extract Desorbent
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Framework for sparse derivative computation

Procedure SPARSECOMPUTE ( F: R" — R™or f :R" =R )

I Determine the sparsity structure of
del"ivatlve F'= A& R™" or fHE A R

2. Obtain a seed matrix S € {0,1}"" with the smallest g
3.  Compute elements of compressed matrix B = AS & R™

4. Recover the numerical values of the entries of A from B

Seed matrix S partitions columns of A:

1 1ff column j of A belongs to group k
() otherwise

S computed by coloring a graph of A; B computed using AD

cScapes
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Results on Jacobian computation on SMB problem

* Tested efficacy of the 4-step procedure:

* S1

: seed
sparsity ; matrix-vector -+-82

5 tl
detection (S1) genzasr;)lon product (S3) recovery (S4) . 83
, —--54

* Used ADOL-C for steps Sland S3, and
ColPack for steps S2 and S4

* Observed results for each step matched
analytical results

10 15 20 25 30
nnz/100,000

* Techniques enabled huge savings in runtime o
Time(Jacobian eval) = [00%Time(function eval) A0-015'
* Dense computation (without exploiting %E? 001l
sparsity) was infeasible E '
" 0,005/
Ref: Gebremedhin, Pothen and Walther,

AD2008, LNCSE 64, 339—349, 2008. % 5 10 15 20 25 30
nnz/100,000

cScapes
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Parallel Coloring

cScapes
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Parallelizing greedy coloring

Goal: Given a distributed graph, parallelize greedy coloring such that
o Speedup is attained
> Number of colors used is roughly same as in serial

 Difficult task since greedy is inherently sequential, computation small
relative to communication, and data accesses are irregular

e DI coloring: approaches based on Luby’s parallel algorithm for
maximal independent set had very limited success

* D2 coloring: no practical parallel algorithms existed

* We developed a framework for effective parallelization of greedy
coloring on distributed memory architectures

» Using the framework, we designed various specialized parallel
algorithms for DI and D2 coloring

> First MPl implementations to yield speedup

cScapes
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Framework for parallel g

Exploit features of initial data
distribution

> Distinguish between interior and
boundary vertices

Proceed in rounds, each having
two phases:

> Tentative coloring
o Conflict detection

Coloring phase organized in Round I <
supersteps

> A processor communicates only
after coloring a subset of its
assigned vertices

=» infrequent, coarse-grain
communication
Round 2 =<
Randomization used in

PURDUE

reedy coloring

e
‘s

o

s (e

Superstep |

‘1 (8

Superstep 2

>_ HEE Dctect conflicts

i

Superstep |

resolving conflicts

I B Detect conflicts
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Specializations of the framework

* First Fit
* Staggered First Fit

* Interior before boundary
* Interior after boundary
* Interior interleaved with boundary

* Various degree-based techniques

* Synchronous
* Asynchronous

e Customized
* Broadcast-based

cScapes
ochal s
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Implementation and experimentation

* Using the framework (JPDC, 2008)

> Designed specialized parallel algorithms for distance-1 coloring

> Experimentally studied how to tune “parameters” according to
size, density, and distribution of input graph
number of processors

computational platform

* Extending the framework

> Designed parallel algorithms for D2 and restricted star coloring
(to support Hessian computation)

> Designed parallel algorithms for D2 coloring of bipartite graphs
(to support Jacobian computation)

New Challenge: efficient mechanism for information exchange between
processors hosting D2 neighboring vertices needs to be devised

o Software
> MPI implementations of DI and D2 coloring made available in Zoltan

cScapes
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D l-coloring, IBM Blue Gene/P

5.00E-01

——Actual

-=-|deal
2.50E-01 .\

3.13E-02

1.56E-02 \\\

512 1,024 2,048 4,096 8,192 16,384

Compute time in seconds (log scale)

7.81E-03

# of processors

cScapes
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Overview of our contributions

e Serial algorithms and software
> Jacobian computation via distance-2 coloring algorithms on bipartite graphs

> Hessians: Developed novel algorithms for acyclic, star, distance-k (k = 1,2) and other coloring
problems; developed associated matrix recovery algorithms

> Several ordering algorithms for reducing the number of colors
> Delivered implementations via the software package ColPack (released Oct.2008; Oct 2010)
> Interfaced ColPack with the AD tool ADOL-C
e Application Highlights
> Enabled Jacobian computation in Simulated Moving Beds

> Enabled Hessian computation in optimizing electric power flow

e Parallel algorithms and software

> Developed a parallelization framework for distributed-memory greedy coloring
> Deployed implementations via the Zoltan toolkit

> Designed massively multi-threaded and multi-core parallel algorithms for DI and D2 coloring

cScapes
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Conclusion

For large, sparse derivative matrices,
computation via compression (coloring)

renders big savings in runtime and
memory usage

A unifying framework is structural
orthogonality and relaxations, which leads
to efficient algorithms for coloring.

Integrated ColPack into an AD tool and
interfaced with optimization software.

cScapes
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For more information

* AD algorithms and community
> Griewank and Walther, Evaluating Derivatives, SIAM, 2008

 ADOL-C:

e OpenAD:
o ColPack:

» Contact: apothen@purdue.edu

cScapes
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Further reading
WWW.cscapes.org

Gebremedhin, Manne and Pothen.What color is your Jacobian? Graph
coloring for computing derivatives. SIAM Review 47(4):627—705, 2005.

Gebremedhin, Tarafdar, Manne and Pothen. New acyclic and star coloring

algorithms with applications to computing Hessians.
SIAM |. Sci. Comput. 29:1042—1072, 2007.

Gebremedhin, Pothen and Walther. Exploiting sparsity in Jacobian

computation via coloring and automatic differentiation: a case study in a
Simulated Moving Bed process. AD2008, LNCSE 64:339—-349, 2008.

Gebremedhin, Pothen, Tarafdar and Walther. Efficient computation of sparse

Hessians using coloring and Automatic Differentiation.
INFORMS Journal on Computing, 21:209—223, 2009.

Bozdag, Gebremedhin, Manne, Boman and Catalyurek. A framework for
scalable greedy coloring on distributed-memory parallel computers.
J. Parallel Distrib. Comput. 68(4):515—535, 2008.

Gebremedhin, Nguyen, Patwary and Pothen. COLPACK: Graph Coloring
Software for Derivative Computation and Beyond, Submitted, Oct. 201 0.
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_______ CSCAPES Institute

‘/x
% j Computational Science Application
9 I L I L 2 r

- Scientific Computing Tool i HPC Task - Combinatorial Problem
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Combinatorial Scientific Computing and

Petascale Simulations (CSCAPES) Institute

e One of four DOE Scientific Discovery thru Advanced
Computing (SciDAC) Institutes; only one in Appl. Math

> Excellence in research, education and training
> Collaborations with science projects in SciDAC

* Focus not on specific application, but on algorithms and
software for combinatorial problems

 Participants from Purdue, Sandia, Argonne, Ohio State,
Colorado State

o CSCAPES workshops with talks, tutorials on software,
discussions on collaborations

cScapes



PURDUE

Extra slides
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lllustrating Forward and Reverse

Example: Lighthouse

)

TH

v tan(wt)

B _ yvtan(wt)
 y—tan(wt) B

v —tan(w t)

and Yo

cScapes
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Evaluation Procedure (Lighthouse)

V_3 =X =V
Voo =X2=7
Vo1 = X3 =w
_ vitan(wt) Voo =X3=1
= v —tan(wt) Vi =VoixWo =p1(voq, V)
— | V2 =tan(vi) =ga(v)
V3 =V.p— Vo =p3(voo, Vo)
Yo = v tan(w t) V4 =V 3xVo = g04(V_3, V2)
v —tan(wt) Vs =V4/vs = p5(v4, V3)
Ve =VWsxV_o = wg(Vs,V_2)
Yyi. =V
Yoo =W
Function: y = F(x) Derivatives: F'(x)x, y' F'(x)
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UNIVERSITY

Forward differentiation of
lighthouse example

V3 = T1 =1V v_3 = 1 =0

V_p = ZIp =17y Vo = o=20

V1 = I3 =w v_1 = x3=0

vo = T4=1 v = T4=1

U1 = V-1 %70 ’[)1 : ’[)_1 * V0 + V-1 * ’[)o
() = tan(vl) V2 = ’[)1/ COS(’U1)2

U3 — V2 — V2 ’(')3 — 1}_2 - 1}2

V4 = V_3%* VU2 Vo = V_3%xVUs+ v_3%Us
vs = wvg/v3 vs = (U4 —v3*vs5)*(1/v3)
V6 = Vs *¥xV_2 V6 — ’[)5 *x V_2 -+ vs * V_2
Yy1 = Us Y1 = Us

Y2 = Ve Y2 = V6




PURDUE

General Tangent Procedure

[vi—na’bi—n] - [xz,mz] T = 1)‘ RN

[pi(wi), i(wi)] + = 1,...,1

[vi, V4]

[’vl—ia'bl—z']; t = m-—1,...,0

[ym, ym]

with u; = ('Uj)j<i and

@i(ui, ;) = @;(ui)d
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UNIVERSITY

Adjoint recursion of lighthouse-
example

V-3 = T1, V-2 = T2, V-1 = I3, V0 = T4,
V1 = V_1 ¥ U,
vo = tan(v1);
V3 = V-2 — V2,
V4 = V-3 * V2,
vs = v4/v3;
Ve — Us * V_9,
Y1 = Vs, Y2 = Ve,

Vs = Y1, Vs = Y2,
Vs += Ve*VU_2;, V_2 += Up*vs,
V4 += vUs/vs3; v3 += Us*vs/v3;
V_3 += va*xv7; V2 += V4*xv_3;
V_p += U3, V2 —= 73,

1_)1 += ’(_)2/ COSQ(’Ul);
V_1 += V1%vo; Vo += vV1*v_1;
T4 = V0, r3 = v_1, Tro = V-2, r1 = v-3,
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PURDUE

Incremental adjoint recursion

LY 0 t=1-—mn,...,l |
Vi—n - T 7 =1, s
v; =  ©i(vj)j<i 1=1,...,1
Ym—i = Ul i=m-—1,...,0
V—i =  Ymn—i t=0,....m—1
Uj += @zg%¢KUJ for j < i=1...,1
T; =  Vi—n 1 =n,...,1
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PURDUE

Forward mode of AD

Propagation of directional derivatives

Ui = <G 0 = (F)T - (9i)ix;

For example,

Us = U3-C53+ Usg-Cs4
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Reverse mode of AD

Propagation of adjoints

Uj = D kij<k Uk * Ch,j

forj=n+p+m,..., 1.

For example,

V3 = Us-C53+Vs-Cq3
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PURDUE

Theoretical complexity

forward mode: OPS(F'(x)x) < ¢ OPS(F),cy € [2,5/2]

reverse mode: OPS(y ' F'(x)) < ¢ OPS(F),c € [3,4]
MEM(7 ™ F/(x)) ~ OPS(F)

combination: OPS(y' F"(x)x) < ¢c3OPS(F),c3 € [7,10]

Ref: Griewank and Walther, Evaluating Derivatives, Second Edition, SIAM, 2008
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PURDUE

Practical implications

¢ Jacobians of functions with small number of
independent variables (Forward mode)

* Jacobians of functions with small number of
dependent variables (Reverse mode)

* Jacobian-vector products (Forward mode)
* Transposed-Jacobian-vector products (Reverse mode)

* Hessian-vector product (Forward+Reverse mode)

 Large, sparse Jacobians and Hessians (Forward mode
plus “compression”)
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Implementation

Overloading

PURDUE

Source Transformation

Introduction of active floating point
type (v,v) and overloading of ele-
mental functions v = ¢(u) such that

(v,0) = ¢(u,n).
For example,
v = cos(u)
becomes

(v,0) = (cos(u), —sin(u) - ).

F —

1.
2.
3
4.
d
6
7

Lexical analysis

Syntax analysis

. Semantic analysis

Static data flow analyses

. AD
. Code optimization

. Unparsing

— F, 13‘, etc.



PURDUE

Implementation (cont'd)

Operator overloading Source transformation

» Relatively easy to » Relatively hard to
implement implement

* Robustness easy to * Robustness hard to
achieve achieve

* No compiler analysis/  Static analyses and
optimization compiler optimization

* Adjoint computation
requires “tape”
interpretation

» Disadvantages fade away
when computing higher
derivatives
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PURDUE

Select AD tools
I g g g e

Fortran 95 Fand R FastOpt Commercial tool
Tapenade Fortran 95 ST Fand R INRIA
OpenAD/F Fortran 95 ST Fand R Argonne/UC/Rice Development driven by

climate model and
astrophysics code

ADIFOR Fortran 77 ST F Rice/Argonne * Mature tool

* Hundreds of users

ADOL-C C/C++ OL Fand R  Dresden * Mature tool
* Widely used

* Supports higher order
derivatives

ADIC C ST F Argonne/UC * Shares infrastructure
with OpenAD/F

* RM under devt

TAC++ C and some ST Fand R  FastOpt Commercial tool (under
C++ development)

Adimat Matlab ST F Aachen

For more info: http://www.autodiff.org
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PURDUE

UNIVERSITY

Select AD tools
I g g g e

Fortran 95 Fand R FastOpt Commercial tool
Tapenade Fortran 95 ST Fand R INRIA
OpenAD/F  Fortran 95 ST Fand R Argonne/UC/Rice Development driven by

climate model and
astrophysics code

ADIFOR Fortran 77 ST F Rice/Argonne * Mature tool

* Hundreds of users

ADIC C ST F Argonne/UC * Shares infrastructure
with OpenAD/F

* RM under devt

TAC++ Candsome ST Fand R  FastOpt Commercial tool (under
C++ development)

Adimat Matlab ST F Aachen

For more info: http://www.autodiff.org
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PURDUE

ADOVL-C: source code modification

@ Include needed header-files
easiest way: #include “adolc.h”

@ Define region that has to be differentiated:

trace_on(tag,keep); Start of
active section
trace_off(file); and its end

@ Mark independents and dependents in active section:

Xa <<= Xp; mark and initialize independents
calculations
ya >>=yp; mark dependents

@ Declare all active variables of type adouble
@ Calculate derivative objects after trace_off(file)



PURDUE

ADOL-C: easy-to-use routines

int gradient(tag,n,x[n],g[n]): tag = tape number
n = # indeps
x[n] = values of indeps
gln] = VH(x)
int jacobian(tag,m,n,x[n],J[m][n]): tag = tape number
m = # deps
n = # indeps
x[n] = values of indeps

Jim][n] = F'(x)

int hessian(tag,n,x[n],H[n][n]) tag = tape number
n = # indeps
x[n] = values of indeps

H[n][n] = V2f(x)
cscqpes



PURDUE

ADOL-C: additional drivers for
nonlinear optimization

@ vec_jac(tag, m, n, repeat, x[n], u[m], z[n])
Computes z = u’ F’ (x)

@ jac_vec(tag, m, n, x[n], v[n], z[n])
Computes z = F'(x)v

@ hess_vec(tag, n, x[n], v[n], z[n])
Computes z = V2f(x)v

@ lagra_hess _vec(tag, n, m, x[n], v[n], u[m], h[n])
Computes h = u'F” (x)v
Extension to u” F” (x) V available

@ jac_solv(tag, n, x[n], b[n], sparse, mode)
Computes w with F’ (x) w = b and store result in b
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PURDUE

ADOL-C: routines for sparse
derivative computation

Jacobian:
sparse_jac(tag, m, n, repeat, x, &nnz, &row_ind, &col_ind, &values,
options);
jac_pat(tag, m, n, x, JP, options);
generate_seed_jac(m, n, JP, &seed, &p, option);

Hessian:
sparse_hess(tag, n, repeat, x, &nnz, &row_ind, &col_ind, &values,
options);
hess_pat(tag, n, x, HP, options);
generate_seed_hess(n, HP, &seed, &p, option);

For more info: http://www.math.tu-dresden.de/~adol-c




