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Motivation from beam dynamics

Vlasov-Poisson formulation for particle evolution
In physical devices like accelerators 109 . . . 1014 (or more) charged
particles are accelerated in electric fields.
Instead of computing with individual particles one considers a particle
density f (x, v, t) in phase space (position-velocity (x, v) space).
The Vlasov equation describes the evolving particle density

df
dt

= ∂tf + v · ∇xf +
q

m0
(E + v× B) · ∇vf = 0,

where E and B are electric and magnetic fields, respectively.
The charged particles are ‘pushed’ by Newton’s law

dx(t)
dt

= v,
dv(t)

dt
=

q
m0

(E + v× B) .

Peter Arbenz A fast parallel Poisson solver on irregular domains Woudschouten 2010 4 / 38



Motivation from beam dynamics (cont.)

Vlasov-Poisson formulation for particle evolution (cont.)
The determination of E and B is done in the co-moving Lorentz frame
where B̂≈0 and

Ê = −∇φ̂,

where the electrostatic potential φ̂ is the solution of the Poisson
problem

−∆φ̂(x) =
ρ̂(x)

ε0
, (1)

equipped with appropriate boundary conditions.
The charge densities ρ is proportional to the particle density.
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Motivation from beam dynamics (cont.)

Particle-in-cell (PIC) method in N-body Simulations
Interpolate individual particle charges to a rectangular
grid
Discretize the Poisson equation by finite differences
on the rectangular grid
This leads to a system of linear equations

Ax = b. (2)

b denotes the interpolated charge densities at the
mesh points.
Solve the Poisson equation on the mesh in a Lorentz
frame
O(n log n) operations needed provided that the
domain is rectangular (FFT based solvers).
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Real beam-pipes are not rectangular

Boundary value problem

∇2φ = − ρ
ε0

in Ω ⊂ R3,

φ = 0 on Γ1

∂φ

∂~n
+

1
d
φ = 0 on Γ2

Ω ⊂ R3: simply connected
computational domain
ε0: the dielectric constant
Γ = Γ1 ∪ Γ2: boundary of Ω

d: distance of bunch
centroid to the boundary

x3 = z

x1

x2

Γ2

Γ1

Γ2

Γ1 is the surface of an
1 Elliptical-shaped

beam-pipe
2 Arbitrary beam-pipe

element
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Finite-difference discretization

1 Second order finite difference scheme: standard 7-point stencil on 3D
Cartesian grid.

2 Boundary requires special treatment.

x′ x x′′x∗

1 Constant extrapolation: u(x′) = u(x∗) and x∗ ∈ Γ1

2 Linear extrapolation: u(x′) is obtained by linear interpolation of u(x) and u(x∗)
System matrix A is symmetric positive definite.

3 Quadratic extrapolation (Shortley-Weller approximation): u(x′) is obtained by
quadratic interpolation of u(x), u(x′′), and u(x∗)
→ non-symmetric stencil
System matrix A is positive definite but not symmetric. (A is still an M-matrix)
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Goal

Divise an efficient iterative solver for the Poisson equation on
irregular domains

Solve anisotropic electrostatic Poisson equation with an iterative solver
Easy to specify boundary surface
Irregular domain imbedded in a rectangular grid.
“Exact” (Dirichlet) boundary conditions
Achieving good parallel efficiency
Reuse information available from previous time steps
Ref: Adelmann/Arbenz/Ineichen, J. Comp. Phys., 229, 4554–4566
(2010).
Similar to McCorquodale/Colella/Grote/Vay, J. Comp. Phys., 201, 34–60,
2004
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Solver

Large sparse linear system

Ax = b

with A (non-)symmetric
positive definite.
Conjugate gradient algorithm
is iterative solver method of
choice (?)
Preconditioned by smoothed
aggregation-based algebraic
multigrid

x3 = z

x1

x2

Γ2

Γ1

Γ2
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Implementation

For preconditioner setup and iterative solver we used TRILINOS (see
http://trilinos.sandia.gov)

EPETRA: distributed matrices and vectors
AMESOS: direct coarse level solver
AZTECOO: iterative solver
ML: smoothed aggregation based AMG preconditioner
ISORROPIA: partitioning and load balancing

The Object Oriented Parallel Accelerator Library Framework (OPAL) provides
a partitioning of the data based on the underlying rectangular grid.
(See http://amas.web.psi.ch/docs/opal)
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AMG parameters

“Decoupled” aggregation scheme:
aggregates of size 3× 3× 3

Each processor aggregates its portion of
the grid
Many aggregates near inter-processor
boundaries with non-optimal size
Number of vertices is substantially
reduced in every coarsening step

clustering contiguous vertices
into aggregates

Chebyshev polynomial pre- and postsmoothers perform well for parallel
solvers (Adams/Brezina/Hu/Tuminaro, J. Comp. Phys., 2003)

Estimates for the spectrum of the matrices Ak are needed.

LU based direct coarse level solver or a few steps of Gauss-Seidel
iteration

Matrices Ak tend to get dense with increasing level.

V-cycle.
Starting vector.

AMG performance critically depends on choice of parameters!
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Integration of the solver in OPAL

MGPoissonSolver

redistribute solu-
tion of last time-step method entry point

build stencil and RHS

build hierarchy

build multilevel preconditioner

solve the system us-
ing LHS as initial guess

write solution to IPPL grid store LHS

reuse preconditioner

reuse hierarchy

OPAL

OPAL
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FFT-based Fast Poisson solvers

Ω ⊂ R3∂Ω : φ = 0 Ω ⊂ R3∂Ω : φ = 0

Sketch of the test cases with equal number of mesh points (left), and equal
mesh resolution (right), respectively. Displayed are the shared (square), FFT
only (triangle), and AMG only (filled circle) mesh points on a cross section of
the grid plane. Illustrative particles (gray) inside the FFT domain denote the
charge density.
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The Poisson equation
−∆φ = ρ

discretized on a rectangular m-by-n grid can be written in block-tridiagonal
form

Ax = (Tm ⊕ In + Im ⊕ Tn)x = b (∗)

provided that the boundary conditions along an edge (face in 3D) are
constant. Here, with homogeneous Dirichlet boundary conditions,

Tk :=


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1
−1 2

 ∈ Rk×k,

Equation (∗) can be written in the form

TmX + XTn = Y, X,Y ∈ Rm×n. (∗∗)

where X = [x1, . . . , xn] and Y = [y1, . . . , yn].
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Let
Tn = CnΛnCT

n , Λ = diag(λ
(n)
1 , . . . , λ(n)

n )

be the spectral decomposition of Tn. Cn is orthogonal, C−1
n = CT

n , and, most
importantly, operating with C or CT can be implemented by means of the fast
Fourier transform (FFT), i.e. in O(n log n) floating point operations provided
that n is a power of two.
Eq. (∗∗) can be rewritten as

Λm(CT
mXCn) + (CT

mXCn)Λn = (CT
mYCn). (∗ ∗ ∗)

Notice that this is a diagonal system!

The procedure to solve (∗∗) is now as follows
1 Compute CT

mYCn: apply (inverse) FFT’s from left and right
2 Solve (Λm ⊕ In + Im ⊕ Λn)Z(:) = (CT

mYCn)(:).
3 Compute X = CmZCT

n : apply (inverse) FFT’s from left and right.
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3-dimensional FFT

Let X be a 3-dimensional n× n× n array.

We want to apply n2 FFTs of
length n in each direction.
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Let us assume that we have a
√

p×√p processor grid.

Step 1. n/p 2D FFTs in slices.

Step 2. “all-to-all personalized”
communication with blocks of

size
(

n
√

p

)2

× n.

Step 3. n2/p 1D FFTs in last
direction.
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Performance and scalability of parallel algorithms

Speedup: gain in time that is obtained by parallel execution of a program.

S(p) =
T(1)

T(p)
, S(p) ≤ p.

Efficiency: obtained speedup relative to ideal speedup.

E(p) =
S(p)

p
, E(p) ≤ 1.
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Amdahl’s law

Algorithm consists of two portions
sequential (fraction α)
ideally parallelizable (fraction 1− α)

Then,

T(p) =

(
α+

1− α
p

)
T(1),

By consequence,

S(p) =
1

α+ 1−α
p

<
1
α
, E(p) =

1
pα+ 1− α

,
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Gustafson’s law

Increase the problem size proportional to the processor number.

T(1) = α+ (1− α)p, T(p) = α+
(1− α)p

p
= 1,

Then,

S(p) = α+ (1− α)p −→ (1− α)p, E(p) = 1− α+
α

p
−→ 1− α,

Strong scalability: Algorithm (code) speeds up (almost) linearly in Amdahl’s
sense

Weak scalability: Algorithm (code) speeds up (almost) linearly in Gustafson’s
sense
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Environment

Buin: Cray XT4 cluster at the CSCS in Manno (Switzerland)
468 AMD dual core Opteron at 2.6 GHz
936 GB DDR RAM
30 TB Disk
7.6 GB/s interconnect bandwith

computeSelfField
(301.21s)

ML 26.2%

Create stencil 7.8%

Create map 2.8%

CG 62.1%
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Validation of the Solver

For validation purposes we investigated an axi-symmetric problem with known
analytical solution.

h ||eh||2 r ||eh||∞ r

1/64 2.162 · 10−3 — 7.647 · 10−3 —
1/128 1.240 · 10−3 0.80 4.153 · 10−3 0.88
1/64 2.460 · 10−5 — 6.020 · 10−5 —
1/128 6.226 · 10−6 1.98 1.437 · 10−5 2.07
1/64 5.581 · 10−6 — 1.689 · 10−5 —
1/128 1.384 · 10−7 2.01 4.550 · 10−6 1.89

Solution error for constant (top), linear (middle), quadratic (bottom) extrapolation.

The convergence rate r is defined by

r = log2

(
||e2h||
||eh||

)
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Comparison with FFT-based Poisson solver

Simulation timings of one solve in the first and second time step, respectively.

solver reusing mesh size mesh points first [s] second [s]
FFT — 128×128×256 4,194,304 12.3 —
AMG — 128×128×256 3,236,864 49.9 42.2
AMG hierarchy 128×128×256 3,236,864 — 35.5
AMG preconditioner 128×128×256 3,236,864 — 28.2
AMG — 166×166×256 5,462,016 81.8 71.2
AMG hierarchy 166×166×256 5,462,016 — 60.4
AMG preconditioner 166×166×256 5,462,016 — 43.8

Equal number of mesh points (above) and equal mesh spacings (below) for FFT and
AMG.
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Parallel efficiency

number of cores

ef
fi

ci
en

cy
  [

%
] 

0

20

40

60

80

100

256 512 1024 2048

solution time
construction time
application time
total ML time

Obtained for a tube
embedded in a
512× 512× 512 grid
ML construction phase
is performing poorly
Influence of problem
size on the low
performance of the
aggregation in ML.
Problem is too small
for the number of
processors used.

Peter Arbenz A fast parallel Poisson solver on irregular domains Woudschouten 2010 30 / 38



Parallel efficiency (cont.)

number of cores

ef
fi

ci
en
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  [

%
] 
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solution time
construction time
application time
total ML time

Obtained for a tube
embedded in a
1024× 1024× 1024
grid
Construction phase is
performing the worst
with an efficiency of
73%
Problem size is
appropriate for the
number of processors.
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Impact on Physics of OPAL Simulations

         z [m] 
1.36 1.38 1.4 1.42 1.44

R
M

SX
 (x

1)
  [

m
] 

0.08

0.1

0.12

0.14

0.16

-310

PCG−MG linear
PCG−MG quadratic
FFT

Statistics of the distance
of the particles to the
z-axis.
Shift of the beam size
minimum (beam waist)
towards larger z values
A smaller minimum→
self forces are larger
when considering the
beam pipe
Beam pipe radius is an
important optimization
quantity
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Load balance issues

Cross section of data distribution on 512
cores on a 8×8×8 processor grid (colors
indicate data owned by a processor).

Data is distributed according
to the underlying rectangular
grid (induced by the particle
code OPAL).
Severe load imbalance.
But speedup looks quite good!
How can this be?
Look at the work of the most
heavily loaded processor:
it decreases linearly with the
number of processors!

Peter Arbenz A fast parallel Poisson solver on irregular domains Woudschouten 2010 33 / 38



Load balance issues (cont.)

Cross section of data redistributed by
RCB on 512 cores on a 8×8×8 processor
grid.

Isorropia’s recursive
coordinate bisection (RCB)
algorithm distributes the data
perfectly balanced.
Maximal number of nodes per
processor decreased
=⇒ less work / processor!
Shape of subdomains not
rectangular anymore.
Number of neighbors
increases
=⇒ # of messages increased!
Lower / higher execution
times??
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Load balance issues (cont.)

Results for 1024× 1024× 1024 grid

cores solution construction application total ML iterations
512 63.12 [1.00] 32.09 [1.00] 52.73 [1.00] 84.80 [1.00] 20
1024 33.54 [0.94] 16.31 [0.98] 28.04 [0.94] 44.35 [0.96] 20
2048 18.56 [0.85] 8.10 [0.99] 15.66 [0.84] 23.76 [0.89] 21

Times in seconds and relative parallel efficiencies. The original data distribution is
used, and the coarsest AMG level is solved iteratively.

cores solution construction application total ML iterations
512 51.08 [1.00] 25.65 [1.00] 44.89 [1.00] 70.55 [1.00] 20
1024 27.38 [0.93] 12.96 [0.99] 24.51 [0.92] 37.07 [0.95] 20
2048 14.76 [0.87] 6.69 [0.96] 13.10 [0.86] 19.79 [0.89] 19

Times in seconds and relative parallel efficiencies. Data is distributed by RCB. The
coarsest AMG level is solved iteratively.
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Summary

Conjugate gradient solver for Poisson equation on rectangular grid with
special treatment of irregular boundary.
Elliptic and arbitrary domains based on real geometries.
Smoothed aggregation based algebraic Multigrid preconditioning
Non-symmetric equations resulting from quadratic boundary treatment
converge well with PCG.
Reduced time to solution (20 and 40%) by reusing hierarchy or
preconditioner.
Reduced time to solution (20%) by balancing data among processors.
Good parallel efficiency if data per processors is reasonably large.
Compared to FFT more flexibilities for only a small performance loss.
Considerable impact on physics (in particular, for narrow beam pipes).
Future work:

Introduce adaptive mesh refinement (AMR).
Overcome Trilinos’ global index 32-bit integer size limitation.

Peter Arbenz A fast parallel Poisson solver on irregular domains Woudschouten 2010 37 / 38



References

A. Adelmann, P. Arbenz, Y. Ineichen. A fast parallel Poisson solver on
irregular domains applied to beam dynamics simulations. J. Comp. Phys.,
229, 4554–4566 (2010).

A. Adelmann, P. Arbenz, Y. Ineichen. Improvements of a Fast Parallel
Poisson Solver on Irregular Domains. To (hopefully) appear in the
proceedings of the PARA’10 conference. Reykjavik, Iceland, June 6-9,
2010.

Peter Arbenz A fast parallel Poisson solver on irregular domains Woudschouten 2010 38 / 38


	Motivation and problem statement
	Fast Poisson Solvers
	Preconditioned conjugate algorithm
	FFT-based fast Poisson solvers

	Performance and scalability of parallel algorithms
	Numerical results
	Summary

