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Sparse direct linear solvers (II) - advanced features

Woudschoten conference 2010

3/ 42



Outline

Introduction-Context

4/ 42



Context

Solving sparse linear systems

Ax = b

⇒ Direct methods : A = LU

Typical matrix (BRGM)

I 3.7× 106 variables

I 156× 106 non zeros in A

I 4.5× 109 non zeros in LU

I 26.5× 1012 �ops

I Focus recent work (> 2006) within MUMPS project by
Emanuel Agullo, Patrick Amestoy, Alfredo Buttari, Abdou
Guermouche, Jean-Yves L'Excellent, François-Henry Rouet,
Mila Slavova, Bora Uçar and Clément Weisbecker.

I Memory issues

I Performance of the solution phase (Ly = b and Ux = y)
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What is MUMPS (MUltifrontal Massively Parallel
Solver) ?

http://graal.ens-lyon.fr/MUMPS and http://mumps.enseeiht.fr

Initially funded by LTR (Long Term Research) European project

PARASOL (1996-1999)
Platform for research and collaboration with industries
Competitive software package used worldwide

I Co-developed by Lyon-Toulouse-Bordeaux
I Latest release : MUMPS 4.9.2, Nov. 2009, ≈ 250 000 lines of

C and Fortran code
I 1000+ downloads per year from our website, half from

industries : Boeing, EADS, EDF, Petroleum industries,
Samtech, etc.

I Integrated within commercial and academic packages (Samcef
from Samtech, FEMTown from Free Field Technologies,
Code_Aster or Telemac from EDF, IPOPT, Petsc, Trilinos,
. . . ).
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Download Requests from the MUMPS website



User's distribution map

1000+ download requests per year
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Out-of-core to extend memory

Physical constraint

 Memory required

   Core memory

Memory crash

Software challenge

I Implementation of an
out-of-core execution
scheme within MUMPS
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Out-of-core to extend memory

Out-of-core

 Memory required

   Core memory Disks

Use of disks

Software challenge

I Implementation of an
out-of-core execution
scheme within MUMPS

I Compatibility with : numerical pivoting (partial pivoting, 2x2),
distributed memory environment

I logical unit of transfer to disk independent of both
computational unit (frontal matrices) and independent of low
level caches used to perform e�ective I/O.
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OOC factorization and solution
Work performed in the context of the PhD thesis of E. Agullo,

ENS-Lyon (2006-2008) and M. Slavova CERFACS-Toulouse

(2006-2009)

I Models and algorithms to reduce I/O tra�c, in case the active
storage goes to disk

I Out-of-core storage of factors :

→ write factors to disk as soon as they are computed

Asynchronous approach

I Factors copied to a user bu�er
(panel-oriented approach)

I Dedicated I/O thread writes bu�ers to
disk

I Low-level I/O can avoid system bu�ering

thread

I/O thread

I/O Request

I/O

Compute
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Out-of-core factorization : performance

Factorization time (seconds) on AMD Opteron cluster :

Direct I/O Pagecache In-core
Matrix Synch. Asynch. Synch. Asynch

SHIP003 43.6 36.4 37.7 35.0 33.2
XENON2 45.4 33.8 42.1 33.0 31.9

CONESHL2 158.7 123.7 144.1 125.1 Out-of-mem
QIMONDA07 ∗ 159.2 98.6 190.1 171.1 Out-of-mem

∗ Special matrix with huge factors and few computations.
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Out-of-core and parallelism : critical issues

Epicure matrix (EDF, N = 853632)

I 1 proc :

I Total memory (InCore) = 20.8 GBytes
I Active memory (OOC) = 3.7 GBytes

I 16 procs :

I Total memory (InCore) = 2.4 GBytes
I Active memory (OOC) = 1.4 GBytes

I 24 procs :

I Total memory (InCore) = 1.5 GBytes
I Active memory (OOC) = 1.0 GBytes

Active memory per processor thus need be controlled

Tree traversals and memory-aware mapping algorithms need be
designed.



Memory related issues
Out-of-core to �extend� memory
Memory scalability to equilibrate active memory
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Memory scalability of a multifrontal solver

Problem
I Memory consumption is often a bottleneck for direct solvers.

I We want to redesign the mapping, that is the choice of a set
of processors for each node of the tree. It should be able to
handle di�erent contexts (in-core, out-of-core. . . ) and
objectives (factorization, solve phase. . . ).
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Memory e�ciency

De�nition : Memory E�ciency on p processors

e(p) =
Mseq

p×Mmax(p) , Mseq : serial storage, Mmax : parallel storage

Results : Memory E�ciency (with factors on disk)

Number p of processors 16 32 64 128

AUDI_KW_1 0.16 0.12 0.13 0.10
CONESHL_MOD 0.28 0.28 0.22 0.19

CONV3D64 0.42 0.40 0.41 0.37
QIMONDA07 0.30 0.18 0.11 -

ULTRASOUND80 0.32 0.31 0.30 0.26
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Mapping techniques

Processor-to-node mapping :
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Mapping techniques

Processor-to-node mapping : all-to-one mapping (postorder traversal)

1024

102410241024

1024
1024 1024 1024

1024 1024 1024 1024

10241024

I Optimal memory scalability : Mmax = Mseq/p.

I Poor parallelism : only intra-node parallelism is exploited.

19/ 42



Mapping techniques

Processor-to-node mapping : all-to-one mapping (postorder traversal)

1024

102410241024

1024
1024 1024 1024

1024 1024 1024 1024

10241024

I Optimal memory scalability : Mmax = Mseq/p.

I Poor parallelism : only intra-node parallelism is exploited.

19/ 42



Mapping techniques

Processor-to-node mapping : proportional mapping

I Good properties for parallelism :
Flops aware, inter-node and intra-node parallelism,
communication locality.
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Mapping techniques

Processor-to-node mapping : �memory-aware� mapping

1024

512102410
40% 10% 50%

1. Try to apply proportional mapping.

2. Check constraint for each subtree : is there enough memory ?
If not, node factorizations are serialized.
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Mapping techniques

Processor-to-node mapping : a �ner �memory-aware� mapping ?

1024

1024205819
1024

1. Try to �nd groups of subtrees on which proportional mapping
works.

2. Serialize these groups.
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Preliminary work : scheduling in�uences memory

I Modify tree mapping to reduce the memory requirement
during parallel executions

I Estimated core memory (MB) - AUDIKW_1, 16 procs :
Current Memory-oriented

Factors (MUMPS 4.9.2) mapping

In-Core
Max 4038 2587
Avg 3345 2446

Out-Of-Core
Max 3028 968
Avg 2251 827

I under development (PhD thesis of Rouet, in continuation of
preliminary work by Agullo et al.)

I Another critical issue to address is the reliability of the
memory estimates in a dynamic scheduling context.
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Exploit sparsity of the right-hand-side/solution

Applications

I Highly reducible matrices and/or sparse right-hand-sides
(linear programming, seismic processing)

I Null-space basis computation

I Partial computation of A−1

I Computing variances of the unknowns of a data �tting
problem = computing the diagonal of a so-called
variance-covariance matrix.

I Computing short-circuit currents = computing blocks of a
so-called impedance matrix.

I Approximation of the condition number of a SPD matrix.

Core idea

An e�cient algorithm has to take advantage of the sparsity of A
and of both the right-hand sides and the solution.
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Exploit sparsity in RHS : an quick insight of main
properties

solve y ← L \ b

L yb\
1

5

2

3

4

L yb\

1
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3

4

I In all application cases,
only part of factors needs to be
loaded

I Objectives with sparse RHS
I E�cient use of the RHS sparsity
I Characterize LU factors to be

loaded from disk
I E�ciently load only needed factors

from disk

(1) Predicting structure of the solution vector,

Gilbert-Liu, '93
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Application : elements in A−1

AA−1 = I , speci�c entry : a−1ij = (A−1ej)i ,

A−1ej � column j of A−1

Theorem : structure of x (based on Gilbert and Liu '93)

For any matrix A such that A = LU, the structure of the solution (x) is given by the
set of nodes reachable from nodes associated with right-hand side entries by paths in
the e-tree.

compute some elements in
A−1

2 4 5 8 11

1263

7 13

14

1

9

10

2

7

14

b xy

Which factors needed to compute a−1
82

?
a
−1
82

= (U−1(L−1e2))8

We have to load :
L factors associated with nodes 2, 3, 7, 14
and U factors associated with nodes 14, 13, 9, 8

Note :
A part of the tree is concerned
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Entries of the inverse : a single one

Notation for later use

P(i) : denotes the nodes in the
unique path from the node i to
the root node r (including i

and r).

P(S) : denotes
⋃

s∈S P(s) for a set
of nodes S .

Use the elimination tree

For each requested
(diagonal) entry a−1ii ,

(1) visit the nodes of the
elimination tree from
the node i to the
root : at each node
access necessary
parts of L,

(2) visit the nodes from
the root to the node
i again ; this time
access necessary
parts of U.
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Experiments : interest of exploiting sparsity

Implementation

These ideas have been implemented in MUMPS during Tz. Slavova's
PhD.

Experiments : computation of the diagonal of the inverse of
matrices from data �tting in Astrophysics (CESR, Toulouse)

Matrix Time (s)
size No ES ES
46,799 6,944 472
72,358 27,728 408
148,286 >24h 1,391

Interest

Exploiting sparsity of the right-hand sides reduces the number of
accesses to the factors (in-core : number of �ops, out-of-core :
accesses to hard disks).

27/ 42



E�ciency of the solution phase
Sparsity in the right hand side and/or solution
Multiple entries of A−1
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Entries of the inverse : multiple entries

Same as before...

For each requested (diagonal)
entry a−1ii ,

(1) visit the nodes in the path
from node i to the root
(access to parts of L,

(2) visit the same nodes
again (in reverse order) ;
this time access necessary
parts of U.

...only this time

I a block-wise solve is
necessary,

I we access parts of L for
all the solves in the
upward traversal of the
tree only once,

I we access parts of U for
all the solves in the
downward traversal of
the tree only once.
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Entries of the inverse : multiple entries

7

14

13

9

11108

126

1 2 54

3

[The requested entries in the diagonal of the inverse are shown in red]

Requested accesses

a−13,3 {3, 7, 14}
a−14,4 {4, 6, 7, 14}

a−113,13 {13, 14}
a−114,14 {14}

If we were to compute all these
four entries, we just need to ac-
cess the data associated with the
nodes in red and blue.
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Entries of the inverse : multiple entries

7

14

13

9

11108

126

1 2 54

3

[The requested entries S in the diagonal of the inverse are in red.]

Requested accesses

a−13,3 {3, 7, 14}
a−14,4 {4, 6, 7, 14}

a−113,13 {13, 14}
a−114,14 {14}

If we compute all at the same
time, we access the data asso-
ciated with nodes in P(S) =
{3, 4, 6, 7, 13, 14} shown in red
and blue.

Cost(S) =
∑

i∈P(S)

w(i) = w(3)+w(4)+w(6)+w(7)+w(13)+w(14)
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Entries of the inverse : multiple entries

In reality (or in a particular setting)...

We are to compute a set R of requested entries. Usually |R| is large.
The memory requirement for the solution vectors is |R| × n, where n is
the number of rows/cols of the matrix.

We can hold at most B many solution vectors, requiring B × n memory.

Tree-Partitioning problem

Given a set R of nodes of a node-weighted tree and a number B
(blocksize), �nd a partition Π(R) = {R1,R2, . . .} such that
∀Rk ∈ Π, |Rk | ≤ B , and has minimum cost

Cost(Π) =
∑
Rk∈Π

Cost(Rk) where Cost(Rk) =
∑

i∈P(Rk)

w(i)
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Entries of the inverse : multiple entries

7

14

13

9

11108

126

1 2 54

3

[R = {3, 4, 13, 14} and B = 3]

Bare minimum cost (mc) :

Cost(R) = w(3)+w(4)+w(6)

+ w(7) + w(13) + w(14)

Partition Accesses Cost(Π)

Π′
R1 = {3, 13, 14} P(R1) = {3, 7, 13, 14}

mc + w(7) + w(14)
R2 = {4} P(R2) = {4, 6, 7, 14}

Π′′
R1 = {3, 4, 14} P(R1) = {3, 4, 6, 7, 14}

mc + w(14)
R2 = {13} P(R2) = {13, 14}
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Permuting multiple entries : performance

With a postorder (Po in the table) ordering of the requested entries
we can obtain good tree locality properties and decrease memory
requirements by a factor of 2 or 3 !

Experiments the set of matrices from Astrophysics :

Matrix Lower Factors loaded [MB]
size bound No ES Nat Po
46,799 11,105 137,407 12,165 11,628
72,358 1,621 433,533 5,800 1,912
148,286 9,227 1,677,479 18,143 9,450
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On-going work and open issues

General case of selected set of entries in A1

For multiple o�-diagonal entries hypergraph modelling and
partitionning can further improve the performance

Parallel processing

I By construction, columns in the same block must be
associated to nodes close to each other in the tree.

I In a distributed memory context, to limit memory
communication volumes, nodes close to each other are often
mapped on a small subset of the set of processors.

I E�cient partitioning for sparsity seems to be bad for
parallelism ?

I On going work Phd of F.H. Rouet (Toulouse) : some promising
algorithms/results.
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Concluding remarks
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Towards a state of the art parallel direct solver (I)

Preprocessing

Fully parallel on distributed matrices/graphs ;
Mixed symbolic and numerical issues ;
Design speci�c algorithms for important classes of problems (for ex.
augmented systems matrices)

Memory use

I Memory aware algorithms ;

I Memory peak (per processor) is di�cult to control in a
dynamic context : e�cient preprocessing critical to have good
memory estimates.

Memory locality

Design algorithms providing good locality of memory accesses :
�Old� algorithms designed for Out-Of-Core or for distributed
memory context might be relevant for multicore.
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Towards a state of the art parallel direct solver (II)

E�cient solution phases (forward and backward)

Take into account sparse multiple right-hand-sides problems ;
Analysis and factorization stategies might be guided by the
performance of the solve (factor size and distribution)

Exploiting large number of cores ?

Can we keep memory demanding strategies such as numerical
pivoting ?
Hybrid approaches (Domain Decomposition, Schur, Block
Cimmino) provide an additional level of parallelism.

More questions than answers and certainly much work in
perspective !
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Appendix
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Unsymmetric test problems

nnz(L|U) Ops
Order nnz ×106 ×109 Origin

conv3d64 836550 12548250 2693.9 23880 CEA/CESTA
�dapm11 22294 623554 11.3 4.2 Matrix market
lhr01 1477 18427 0.1 0.007 UF collection
qimonda07 8613291 66900289 556.4 45.7 QIMONDA AG
twotone 120750 1206265 25.0 29.1 UF collection
ultrasound80 531441 33076161 981.4 3915 Sosonkina
wang3 26064 177168 7.9 4.3 Harwell-Boeing
xenon2 157464 3866688 97.5 103.1 UF collection

Ops and nnz(L|U) when provided obtained with METIS and default MUMPS
input parameters.
UF Collection : University of Florida sparse matrix collection.
Harwell-Boeing : Harwell-Boeing collection.

PARASOL : Parasol collection
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Symmetric test problems

nnz(L) Ops
Order nnz ×106 ×109 Origin

audikw_1 943695 39297771 1368.6 5682 PARASOL
brgm 3699643 155640019 4483.4 26520 BRGM
coneshl2 837967 22328697 239.1 211.2 Samtech S.A.
coneshl 1262212 43007782 790.8 1640 Samtech S.A.
cont-300 180895 562496 12.6 2.6 Maros & Meszanos
cvxqp3 17500 69981 6.3 4.3 CUTEr
gupta2 62064 4248386 8.6 2.8 A. Gupta, IBM
ship_003 121728 4103881 61.8 80.8 PARASOL
stokes128 49666 295938 3.9 0.4 Arioli
thread 29736 2249892 24.5 35.1 PARASOL
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