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Sparse direct linear solvers (I)

Woudschoten conference 2010
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Context and motivations
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A selection of references

~ [Books

» Duff, Erisman and Reid, Direct methods for Sparse Matrices,
Clarenton Press, Oxford 1986.

» George, Liu, and Ng, Computer Solution of Sparse Positive
Definite Systems, book to appear (2004)

» Dauvis, Direct methods for sparse linear systems, SIAM, 2006.

> [Articles |

» Gilbert and Liu, Elimination structures for unsymmetric sparse
LU factors, SIMAX, 1993.

» Liu, The role of elimination trees in sparse factorization,
SIMAX, 1990.

» Heath and E. Ng and B. W. Peyton, Parallel Algorithms for
Sparse Linear Systems, SIAM review, 1991.

> | Lecture Notes

» P. Amestoy and J.Y. L'Excellent, Lecture notes on Linear
algebra and sparse direct methods, UNESCO (Tunis), Master
lectures (ENS-Lyon and INPT-ENSEEIHT)
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Motivations

» solution of linear systems of equations — key algorithmic

kernel

Continuous problem

!

Discretization

1

Solution of a linear system Ax = b

» Main parameters :
» Numerical properties of the linear system (symmetry, pos.
definite, conditioning, ...)
» Size and structure :

» Large (> 107 x 107 ), square/rectangular
> Dense or sparse (structured / unstructured)
> Target computer (sequential/parallel/multicore/Cell/GPU)
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Exemple of sparse matrices

Matrix from CFD
(Univ. Tel Aviv)

1000

2000

Chemical proc. Simulation

N R .
XX
200 \ \
30X
400 \Qilt \
&b . \
3000 600 N
4000 a0
5000
6000

7000

(.
. P
N\
0 1000

\
\

\

;i \

\

R

iEEi \

1200 A8 A\
;Ei \

1400
N A
2000 3000 4000 5000 6000 7000 0 200 400 500 800 1000 1200
nz = 43105 iz = 18427

1400

7/ 80



Matrix factorizations

Solution of Ax =Db

> A is unsymmetric :
» A is factorized as : A = LU, where
L is a lower triangular matrix, and
U is an upper triangular matrix.
» Forward-backward substitution : Ly = b then Ux =y
> A is symmetric :
» A=LDL" or LL”
» A is rectangular m x n with m > n and miny ||[Ax — b|| :
» A = QR where Q is orthogonal (Q~! = Q%) and R is
triangular.
» Solve : y = Qb then Rx =y

8/ 80



Example in structural mechanics
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227,362 unknowns,

5,757,996 nonzeros, Size of factors : 51.1 million entries
MSC.Software Number of operations : 44.9 x 10°
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Solve Ax = b, A sparse

’Resolution with a 3 phase approach

» Analysis phase
> preprocess the matrix
» prepare factorization
» Factorization phase
» symmetric positive definite — LL”
» symmetric indefinite — LDL"
» unsymmetric — LU
» Solution phase exploiting factored matrices.
» Postprocessing of the solution (iterative refinements and
backward error analysis).

10/ 80



Sparse solver : only a black box ?

Default (often automatic/adaptive) setting of the options is often
available ; However, a better knowledge of the options can help the
user to further improve its solution.

» Preprocessing may influence :

» Operation cost and/or computational time
Size of factors and/or memory needed
Reliability of our estimations
Numerical accuracy.

v Vvyy

» Describe preprocessing options and functionalities that are
most critical to both performance and accuracy.
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Ax =b7?

» Symmetric permutations to control inrease in the size of the
factors : (Ax = b — PAP'Px = b)

» Numerical pivoting to preserve accuracy.

» Unsymmetric matrices ( A= LU )
» numerical equilibration (scaling rows/columns)
» set large entries on the diagonal
» modified problem : A’x’ = b’ with A’ = P,,D, PAQP* D,
» Symmetric matrices ( A= LDL" ) :
Algorithms must also preserve symmetry (flops/memory
divided by 2)
» adapt equilibration and set large entries "on” diagonal while
preserving symmetry
» modified problem : A’ = PyDsPQ*AQP*Ds P},
» Preprocessing for parallelism (influence of task mapping on the
performance)
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Preprocessing - illustration

800

1000

1200

1400

Original (A =lhr01)

200 400 600 800 1000 1200 1400
nz = 18427

Preprocessed matrix (A’(lhr01))

200 R
o ¥
400
600 5 .
- ”,
3 7
N .\ «
¥ - ]
800 N, J i
N \
<X -
1000 }
1200 P
S
N sa) ===
1400 i
] .
) 200 400 600 800 1000 1200 1400
nz - 18427

13/ 80



Outline

(Pre)Processing sparse matrices for efficiency and accuracy
Fill-in and reordering
Numerical threshold pivoting
Preprocessing unsymmetric matrices
Preprocessing symmetric matrices
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(Pre)Processing sparse matrices for efficiency and accuracy
Fill-in and reordering
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Fill-in and reordering

Step k of LU factorization (ag pivot) :
» For i > k compute [ = aj/aik (= ay),
> Fori>k,j >k

/ djk X akj /
ag=aj— ——_—— = aj— ik X a
Akk
> If ajx # 0 and ax; # 0 then a; # 0

» If ajj was zero — non-zero ai; must be stored : fill-in

) ij
k ] k ]
kK X k @x
i i xl}
X X X X X\ /X 0 0 0 X
Interest of X X 0 0 O 0 X 0 0 X
permuting X 0 X 0 0 0 0 X 0 X
a matrix : X 0 0 X 0 0 0 0 X X
X 0 0 0 X X X X X X
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Symmetric matrices and graphs

» Assumptions : A symmetric and pivots are chosen on the

diagonal
» Structure of A symmetric represented by the graph
G=(V,E)
» Vertices are associated to columns : V ={1,...,n}

» Edges E are defined by : (i,j) € E <> aj; #0
» G undirected (symmetry of A)
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Symmetric matrices and graphs

» Remarks :

» Number of nonzeros in column j = |adj¢(J)]
» Symmetric permutation = renumbering the graph

1 2 3 4 5

X X X 1
: X X X X 3
3 X X 4
e X X X .
5 X X X 2

Symmetric matrix Corresponding graph
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The elimination graph model for symmetric
matrices

» Let A be a symmetric positive define matrix of order n

» The LLT factorization can be described by the equation :

di v]
A:A[,:Ho:(vi H11>

[ VA0 (1 o) Vi
T I 0 H; 0 1,4

= L1 A1 L'lI" where

— ViV
H; = H; —
1 1 a
» The basic step is applied on H;H3 - -- to obtain :
A= (Ll --Loo)l, (LT ;... LJL]) = LL®
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. — T
The basic step : H; = H; — %

What is viv{ in terms of structure?

| | vy is a column of A, hence the
neighbors of the corresponding

;gé ié ié vertex.
XX X X

viv] results in a dense sub-
block in Hj.

If any of the nonzeros in dense
submatrix are not in A, then

XX X X -

we have fill-ins.
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The elimination process in the graphs

Gy(V, E) < undirected graph of A
fork=1:n—1do
V 4+ V — {k} {remove vertex k}
E+ E—{(k,0): 0 eadj(k)}U{(x,y):x €adj(k)and y €
adj(k)}
Gk < (V, E) {for definition}
end for

Gy are the so-called elimination graphs (Parter,’61).
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A sequence of elimination graphs
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Fill-in and reordering

“Before permutation" Permuted matrix
(A" (Ihr01)) (A'(Ihr01))
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Fill-in characterization

Let A be a symmetric matrix (G(A) its associated graph), L the
matrix of factors A = LL*;

Fill path theorem, Rose, Tarjan, Leuker, 76

li # 0 iff there is a path in G(A) between i and j such that all
nodes in the path have indices smaller than both i and .

PIX X
XX
f \\\\ x \pk X
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Fill-in characterization (proof intuition)

Let A be a symmetric matrix (G(A) its associated graph), L the
matrix of factors A = LL*;

Fill path theorem, Rose, Tarjan, Leuker, 76

li # 0 iff there is a path in G(A) between i and j such that all
nodes in the path have indices smaller than both / and ;.

J
.T\,X\ X
S X p2 X
X ?\‘pk X
.’j x I
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Fill-in characterization (proof intuition)

Let A be a symmetric matrix (G(A) its associated graph), L the

matrix of factors A = LL?;

Fill path theorem, Rose, Tarjan,

Leuker, 76

li # 0 iff there is a path in G(A) between i and j such that all
nodes in the path have indices smaller than both / and ;.
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Fill-in characterization (proof intuition)

Let A be a symmetric matrix (G(A) its associated graph), L the
matrix of factors A = LL*;

Fill path theorem, Rose, Tarjan, Leuker, 76

li # 0 iff there is a path in G(A) between i and j such that all
nodes in the path have indices smaller than both / and ;.

. i
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Fill-reducing heuristics

Three main classes of methods for minimizing fill-in during
factorization
> Global approach : The matrix is permuted into a matrix with a
given pattern

» Fill-in is restricted to occur within that structure

> Cuthill-McKee (block tridiagonal matrix)

» Nested dissections (“block bordered” matrix)
(Remark : interpretation using the fill-path theorem)

Graph partitioning Permuted matrix

S1
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Fill-reducing heuristics

» Local heuristics : At each step of the factorization, selection of
the pivot that is likely to minimize fill-in.

» Method is characterized by the way pivots are selected.
» Markowitz criterion (for a general matrix).
» Minimum degree or Minimum fill-in (for symmetric matrices).
» Hybrid approaches : Once the matrix is permuted to block
structure, local heuristics are used within the blocks.
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Local heuristics to reduce fill-in during
factorization

Let G(A) be the graph associated to a matrix A that we want to
order using local heuristics.

Let Metric such that Metric(v;) < Metric(v;) implies v; is a better
than v;

Generic algorithm
Loop until all nodes are selected

Stepl : select current node p (so called pivot) with
minimum metric value,

Step2 : update elimination graph,

Step3 : update Metric(v;) for all non-selected nodes v;.

Step3 should only be applied to nodes for which the Metric value
might have changed.
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Reordering unsymmetric matrices : Markowitz
criterion

» At step k of Gaussian elimination :

» rf = number of non-zeros in row i of A¥
> Cf = number of non-zeros in column j of A¥
» a;; must be large enough and should minimize
k k . .
(F=1)x (¢ —1) Vi,j>k

> ’ Minimum degree‘ : Markowitz criterion for symmetric
diagonally dominant matrices
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Minimum fill based algorithm

» Metric(v;) is the amount of fill-in that v; would introduce if it
were selected as a pivot.

» lllustration : r has a degree d = 4 and a fill-in metric of
d x (d —1)/2 = 6 whereas s has degree d =5 but a fill-in
metric of d x (d —1)/2 -9 =1.
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Minimum fill-in properties

» The situation typically occurs when {i1, i, i3} and {i, i3, ia, is }
were adjacent to two already selected nodes (here e, and e;)

el X X X X X
2 X X X X

r X X X X
X X s X X X X X
X | XX XX X X
X X Xix 2 XX X ix
X X | Xixix i3ix X
X XX ix x i4 x
X X IX X X i5
X X i1
X j2
X X i3
X X 4

el and 2 are previously selected nodes

» The elimination of a node v affects the degree of nodes

adjacent to vi. The fill-in metric of Adj(Adj(vx)) is also
affected.

» lllustration : selecting r affects the fill-in of i (fill edge (J3,ja)
should be deduced).



Impact of fill-reducing heuristics

Number of operations (millions)

METIS | SCOTCH PORD AMF AMD
gupta2 2757.8 4510.7 4993.3 2790.3 2663.9
ship_003 | 83828.2 02614.0 | 112519.6 | 96445.2 | 155725.5
twotone 29120.3 | 27764.7 | 37167.4 29847.5 29552.9
wang3 4313.1 5801.7 5009.9 6318.0 10492.2
xenon2 99273.1 | 112213.4 | 126349.7 | 237451.3 | 298363.5

» METIS (Karypis and Kumar) and SCOTCH (Pellegrini) are global
strategies (recursive nested dissection based orderings).

» PORD (Schulze, Paderborn Univ.) recursive dissection based on a
bottom up strategy to build the separator

» AMD (Amestoy, Davis and Duff) is a local strategy based on
Approximate Minimum Degree.

» AMF (Amestoy) is a local strategy based on Approx. Minimum Fill.
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Impact of fill-reducing heuristics

Time for factorization (seconds)

1p | 16p | 32p | 64p | 128p
coneshl | METIS | 970 | 60 | 41 | 27 14
PORD | 1264 | 104 | 67 | 41 26
audi METIS | 2640 | 198 | 108 | 70 42
PORD | 1599 | 186 | 146 | 83 54

Matrices with quasi dense rows :
Impact on the analysis time (seconds) of gupta2 matrix

AMD | METIS | QAMD

Analysis | 361 52 23

Total 379 76 59

» QAMD (Amestoy) Approximate Minimum Degree (local) strategy
designed for matrices with quasi dense rows.
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(Pre)Processing sparse matrices for efficiency and accuracy

Numerical threshold pivoting
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Numerical pivoting during LU factorization

wr[ 1]|

k2(A) =1+ O(e).

If we solve :
e 1 x1 | | 1+e
1 1 x> | 2

Exact solution :x* = (1,1).

A= =
= O
[
X
| —
O ™
A= =
[

€
103 [ 6x10°°
107° | 9x10°8
10715 | 7x 10

Table: Relative error as a function of e.
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Numerical pivoting during LU factorization (I1)

» Even if A well-conditioned then Gaussian elimination might
introduce errors.

» Explanation : pivot € is too small (relative)

» Solution : interchange rows 1 and 2 of A.

B

— No more error.
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Threshold pivoting for sparse matrices

> ‘Sparse LU factorization ‘

» Threshold u : Set of eligible pivots =
{r| |a£:)| > u X max; |a§:)|}, where 0 < v < 1.
» Among eligible pivots select one preserving sparsity.
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Threshold pivoting for sparse matrices

> ’Sparse LU factorization‘

» Threshold u : Set of eligible pivots =
{r| |as:)| > u X max; |a§:)|}, where 0 < v < 1.
» Among eligible pivots select one preserving sparsity.

> | Sparse LDLT factorization

» Symmetric indefinite case : requires 2 by 2 pivots, e.g.

(% %)

> 2x2 pivot P = [ Kk AW )
alk aj

-1 max; |axi| < 1/u
max; |aj| 1/u
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Threshold pivoting for sparse matrices

> ’Sparse LU factorization‘

» Threshold u : Set of eligible pivots =
{r| |a£,’:)| > u X max; |a§:)|}, where 0 < u < 1.
» Among eligible pivots select one preserving sparsity.

> | Sparse LDLT factorization

» Symmetric indefinite case : requires 2 by 2 pivots, e.g.

(5 )

> 2x2 pivot P = [ Kk AW )
alk aj

-1 max; |a| < 1/u
max; |aj| 1/u

> | Static pivoting‘ : Add small perturbations to the matrix of
factors to reduce the amount of numerical pivoting.
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(Pre)Processing sparse matrices for efficiency and accuracy

Preprocessing unsymmetric matrices
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Preprocessing unsymmetric matrices - scaling

» Objective : Matrix equilibration to help threshold pivoting.
» Row and column scaling : B = D,AD. where D,, D, are
diagonal matrices to respectively scale rows and columns of A
» reduce the amount of numerical problems

1 2 1 2

» better detect real problems.

1 1016

1 1

LetA_[ 11

—16
]—)LetB_D,A_{lo 1}

» Influence quality of fill-in estimations and accuracy.

» Should be activated when the number of uneliminated
variables is large.
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Preprocessing - Maximum weighted matching (1)

» Objective : Set large entries on the diagonal
» Unsymmetric permutation and scaling
» Preprocessed matrix B = D; AQD>»
is such that |b;| =1 and |b;| <1

Original (A =lhr01) Permuted (A" = AQ)
N s O N :
20 \ \ 20 [

w W \

800

}5 \ 800
s
¢
;ii \

120 [ I \ 120
\
Y :
1400 N

1400
SN
x N

[

0 200 400 600 800 1000 1200 1400
nz = 18427

°
8
&

600 800 1000 1200 1400
nz = 18427
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Combine maximum transversal and fill-in
reduction

» Consider the LU factorization A = LU of an unsymmetric
matrix.

» Compute the column permutation Q leading to a maximum
numerical transversal of A. AQ has large (in some sense)
numerical entries on the diagonal.

» Find best ordering of AQ preserving the diagonal entries.
Equivalent to finding symmetric permutation P such that the
factorization of PAQPT has reduced fill-in.
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Preprocessing - Maximum weighted matching

» Influence of maximum weighted matching (Duff and Koster
(99,01) on the performance

Matrix Symmetry | |[LU| Flops | Backwd
(10%)  (109) Error
twotone  OFF 28 235 1221
ON 43 22 29
fidapmll OFF | 100 16 10
ON 46 28 29

» On very unsymmetric matrices

memory used.

: reduce flops, factor size and
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Preprocessing - Maximum weighted matching

» Influence of maximum weighted matching (Duff and Koster
(99,01) on the performance

Matrix Symmetry | |[LU| Flops | Backwd
(10%)  (109) Error

twotone  OFF 28 235 1221 10 —°
ON 43 22 29 10712
fidapm1l OFF 100 16 10| 10710
ON 46 28 29 | 1071

» On very unsymmetric matrices : reduce flops, factor size and
memory used.

» In general improve accuracy, and reduce number of iterative
refinements.

» Improve reliability of memory estimates.
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Preprocessing - Maximum weighted matching

» Influence of maximum weighted matching (Duff and Koster
(99,01) on the performance

Matrix Symmetry | |[LU| Flops | Backwd
(10%)  (109) Error

twotone  OFF 28 235 1221 10 —°
ON 43 22 29 10712
fidapm1l OFF 100 16 10| 10710
ON 46 28 29 | 1071

» On very unsymmetric matrices : reduce flops, factor size and
memory used.

» In general improve accuracy, and reduce number of iterative
refinements.

» Improve reliability of memory estimates.
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(Pre)Processing sparse matrices for efficiency and accuracy

Preprocessing symmetric matrices
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Preprocessing symmetric matrices (Duff and
Pralet (2004, 2005)

> ’Symmetric scaling‘ : Adapt MC64 (Duff and Koster, 2001)
unsymmetric scaling :

let D = +/D,D., then B = DAD is a symmetrically scaled
matrix which satisfies

Vi, [bio(i)| = |1b.oiylloc = |67 |0 = 1

where o is the permutation from the unsym. transv. algo.

_ _ H A
> Influence of scaling on augmented matrices K = < AT 0 )

Total time | Nb of entries in factors (millions)

(seconds) | (estimated) (effective)
Scaling : OFF ON | OFF ON | OFF ON
cont-300 45 51122 122 | 320 12.4
cxqp3 | 1816 28| 3.9 3.9 | 624 9.3
stokes128 3 2 3.0 3.0 5.5 3.3
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Preprocessing - Compressed ordering

» Perform an unsymmetric weighted matching

X [<]x

O X[x]
X [x]O X
X X O

D Matched entry
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Preprocessing - Compressed ordering

» Perform an unsymmetric weighted matching

» Select matched entries

x >< Select Matched entr \X S
P Y <

O X /\ O x

X O X X [x]o %

X X0 XX O

AN AN

[[] Selected Matched entry
[] Matched entry
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Preprocessing - Compressed ordering

» Perform an unsymmetric weighted matching

» Select matched entries
» Symmetrically permute matrix to set large entries near diagonal

il 2 B s

B
\>< >< Permute B=Qt A Q X X
O x x
o < T
X x0OX X .-Q-
XHixo X x 20

\ \

[ selected entries
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Preprocessing - Compressed ordering

v

Perform an unsymmetric weighted matching

v

Select matched entries

v

Symmetrically permute matrix to set large entries near diagonal

» Compression : 2 x 2 diagonal blocks become supervariables.
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Preprocessing - Compressed ordering

v

Perform an unsymmetric weighted matching

Select matched entries

v

v

Symmetrically permute matrix to set large entries near diagonal

» Compression : 2 x 2 diagonal blocks become supervariables.

\x x ~
O X x e ) X
Xl o \
XX X X ><
N N
Influence of using a compressed graph (with scaling)
Total time | Nb of entries in factors in Millions
(seconds) | (estimated) (effective)
Compression : | OFF ON | OFF ON | OFF ON
cont-300 5 4 | 123 11.2 | 32.0 12.4
cvxgp3 28 11 3.9 7.1 9.3 8.5
stokes128 1 2 3.0 5.7 3.4 5.7
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Preprocessing - Constrained ordering

> Part of matrix sparsity is lost during graph compression

> ’Constrained ordering‘ : only pivot dependency within 2 x 2
blocks need be respected.
Ex : k — j indicates that if k is selected before j then j must
be eliminated toggthsr with k.

J

X
X
X
X

if j Is selected first then no more constraint on k.
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Preprocessing - Constrained ordering

> ’Constrained ordering‘ : only pivot dependency within 2 x 2

blocks need be respected.

Influence of using a constrained ordering (with scaling)

Total time | Nb of entries in factors in Millions

(seconds) | (estimated) (effective)
Constrained : | OFF ON | OFF ON | OFF ON
cvxqp3 11 8 7.2 6.3 8.6 7.2
stokes128 2 2 57 5.2 5.7 5.3
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Outline

Approaches for parallel factorization
Elimination trees
Distributed memory sparse solvers
Some parallel solvers
Case study : comparison of MUMPS and SuperLU

46/ 80



Approaches for parallel factorization
Elimination trees
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Elimination DAG and unsymmetric matrices

- C—O

22

Ly L
O——0
Yo |la
Yo |15 |1ss Lss
L factors of unsymmetric matrix reduction

Elimination dag (L)

Elimination dags : transitive reduction of the G(L)

48/ 80



Elimination DAG and unsymmetric matrices

- C—®

31 ]33

O—"—G
Yo | lu
Directed graph G(L
Y |15 |1ss lss graph G
Transitive
L factors (unsymmetric matrix) reduction

@ Not a tree!
Elimination dag (L)

Elimination dags : transitive reduction of the G(L)

» Because of unsymmetry the transitive reduction is not a tree

» What makes L be the factors of an unsymmetric matrix ?
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Elimination tree and symmetric matrices

- C—
131 133 ><> >
. O, @

4
Lo | 1s [1ss | FO1ss Directed graph G(L)
L factors of symmetric matrix n:’:\r\‘::u::
©
Elimination dag (L)

Elimination dags : transitive reduction of the G(L)
» Because of unsymmetry the transitive reduction is not a tree

» What makes L be the factors of an unsymmetric matrix ?
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Elimination tree

To summarize (for symmetric structured matrices) :

» The elimination tree expresses dependencies between the
various steps of the factorization.

> |t also exhibits parallelism arising from the sparse structure of
the matrix.

Building the elimination tree
» Permute matrix (to reduce fill-in) PAP™.
» Build filled matrix Ar = L + L™ where PAPT = LLT
» Transitive reduction of associated filled graph

— Each column corresponds to a node of the graph. Each node k
of the tree corresponds to the factorization of a frontal matrix
whose row structure is that of column k of Ar.
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Approaches for parallel factorization

Distributed memory sparse solvers
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Distributed memory sparse solvers
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Computational strategies for parallel direct solvers

» The parallel algorithm is characterized by :
» Computational graph dependency
» Communication graph
» Three classical approaches
1. “Fan-in"
2. “Fan-out”
3. “Multifrontal”
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Preamble : left and right looking approaches for
Cholesky factorization

» cmod(j, k) : Modification of column j by column k, k < j,
» cdiv(j) division of column j by the pivot

‘ Left-looking approach ‘
for j=1tondo
for k € Struct(row L;1._1) do
cmod(J, k)
cdiv(j)
‘ Right-looking approach ‘
for k=1to ndo
cdiv(k)
for j € Struct(col Lyy1.n k) do
cmod(J, k)
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[llustration of Left and right looking

Left-looking Right-looking

I used for modification
Hl  modified
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Fan-in variant (similar to left looking)

@ ) 3) “)

n Left Looking

2) I

3)

@ W N M Modified
| ] Used for modification
|
|

Algorithm: (Cholesky)

@ For j=1 to n do
(3)/.\. For kin Struct(L ., ) do
@ Ji*

cmod(j,k)
Endfor
cdiv(j)
Endfor

if map(1) = map(2) = map(3) = p and map(4) # p (only) one
message sent by p to update column 4 — exploits data locality in
the tree



Fan-in variant

P4

PO P1 P2 P3
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Fan-in variant

P4

PO P1 P2 P3
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Fan-in variant

P4

PO P1 P2 P3
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Fan-in variant

P4

PO P1 P2 P3
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Fan-in variant

P4

PO P1 P2 P3
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Fan-in variant

P4

— Communication

PO P1 P2 P3
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Fan-in variant

P4

— Communication

PO PO PO PO

if Vi € children map(i) = PO and map(father) # PO (only) one
message sent by PO — exploits data locality in the tree.
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Fan-out variant (similar to right-looking)

@ 2 3 @

) Right Looking
@) '
[
[©) m
(]
@ || ! Updated
[
(I} Computed
B O .
i
i [
[ [ O
[

Algorithm: (Cholesky)

For k=1 to n do
cdiv(k)
) For j in Struct(L,, IQ do

@

cmod(j,k)
2 Endfor
Endfor

if map(2) = map(3) = p and map(4) # p then 2 messages (for
column 2 and 3) are sent by p to update column. 4.
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messages (where n is the number of children) are sent by P0 to
update the processor in charge of the father
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Fan-out variant

’ Properties of fan-out : ‘

>

>

Historically the first implemented.
Incurs greater interprocessor communications than fan-in (or
multifrontal) approach both in terms of

» total number of messages
» total volume

Does not exploit data locality in the mapping of nodes in the
tree

Improved algorithm (local aggregation) :

» send aggregated update columns instead of individual factor
columns for columns mapped on a single processor.

» Improve exploitation of data locality

» But memory increase to store aggregates can be critical (as in
fan-in).



Multifrontal variant
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Elimination tree
@ Algorithm:
3 -
Yo For k=1ton do
OOGE) Build full frontal matrix

@ with all indices in Struct(L =)
(i) Partial factorisation
)
35) Send Contribution Block to Father

Endfor

"Multifrontal Method"'
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Multifrontal variant
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Fan-in. Fan-out. Multifrontal.

Figure: Communication schemes for the three approaches.
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Approaches for parallel factorization

Some parallel solvers
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Some parallel solvers
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Distributed-memory sparse direct codes

Code Technique Scope Availability (www.)
DSCPACK  Multifr./Fan-in  SPD cse.psu.edu/~raghavan/Dscpack
MUMPS Multifrontal SYM/UNS  MuMPS Bordeaux-Lyon-Toulouse
PaStiX Fan-in SPD labri.fr/perso/ramet/pastix
PSPASES  Multifrontal SPD cs.umn.edu/~mjoshi/pspases
SPOOLES Fan-in SYM/UNS  netlib.org/linalg/spooles
SuperLU Fan-out UNS nersc.gov/~xiaoye/SuperLU

S+ Fan-out' UNS cs.ucsb.edu/research/S+
WSMP * Multifrontal SYM IBM product

1 Only object code is available.
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Approaches for parallel factorization

Case study : comparison of MUMPS and SuperLU
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MUMPS (Multifrontal sparse solver)
http://mumps.enseeiht.fr or
http://graal.ens-1lyon.fr/MUMPS

1. Analysis and Preprocessing
e Preprocessing (max. transversal, scaling)
e Fill-in reduction on A + AT
e Partial static mapping (elimination tree) with dynamic scheduling
during factorization.

2. Factorization
e Multifrontal (elimination tree of A + A7)
Struct(L) = Struct(U)
e Partial threshold pivoting
e Node and tree level asynchronous parallelism
- Partitioning (1D Front - 2D Root)

- Dynamic distributed scheduling

3. Solution step and iterative refinement



SuperLU (Gaussian elimination with static
pivoting)
X.S. Li and J.W. Demmel

1. Analysis and Preprocessing
e Preprocessing (Max. transversal, scaling)
e Fill-in reduction on A + AT
e Static mapping on a 2D grid of processes

2. Factorization
e Fan-out based on elimination DAGs (preserves unsymmetry)
e Static pivoting
if (|ail < VEIA[) set aj to VEI|A|
e 2D irregular block cyclic partitioning (based on supernode
structure)
e Pipelining / BLAS3 based factorization

3. Solution step and iterative refinement



Traces of execution(bbmat, 8 proc. CRAY T3E)
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Influence of maximum wheighted matching ucss on
flops (10°) for factorization (an ordering)

Matrix MC64 | StrSym MUMPS | SuperLU
Ihr71c No 0 | 1431.0% -
Yes 21 1.4 0.5
twotone No 28 1221.1 159.0
Yes 43 29.3 8.0
fidapm1l | No 100 9.7 8.9
Yes 29 28.5 22.0

() Estimated during analysis,

— Not enough memory to run the factorization.
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Backward error analysis

MUMPS

: Berr = max; (

|rli
|A[-|x]+]b]);

SuperLU

10° ; T T 10° T T T T ¥
NO MC64 (MUMPS) % NO MC64 (Superiu) o
MC64 (MUMPS) O MC64 (Superlu)
107 107 - O
107 10"
10 * 10 * ® o
* *
510 g10
@ *
o o *
10 10
5o %
- o R o o o)
* * (6}
® 5
© bbmal  eoi32 invextrl fidapmi garon2 Insp3937 mixtank rmai0 twotone ° Bomal  ed32 invextri fidapmi1 garon2 Insp3937 mixtank rmal0  twolone

One step of iterative refinement generally leads to Berr ~ ¢
Cost (1 step of iterative refinement) ~ Cost (LUx = b — Ax)
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Communication issues

Average Vol.(64 procs)

Average Communication Volume on 64 Processors

Average

Message Size (64 procs)

Average Message Size on 64 Processors

MUMPS (AMD)
SuperLU (AMD)
MUMPS (ND)

B SuperlU_(ND)

twotone

mixtank

invextri

2 T

bomat

MUMPS (AMD)
SuperLU (AMD)
MUMPS (ND)
B SuperLU (ND)

twotone

mixtank

eclaz invextri
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Time Ratios of the numerical phases
Time(superLv) / Time(runps)

Factorization Solve
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Summary

» Sparsity and Total memory
-SuperLU preserves better sparsity
-SuperLU (= 20%) less memory on 64 Procs (Asymmetry -
Fan-out/Multifrontal)

-Global volume is comparable
-MUMPS : much smaller (/10) nb of messages

» Factorization / Solve time
-MUMPS is faster on nprocs < 64
-SuperLU is more scalable

» Accuracy
-MUMPS provides a better initial solution
-SuperLU : one step of iter. refin. often enough
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Outline

Conclusion (Part 1)
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Sparse solver : only a black box ?

Default (often automatic/adaptive) setting of the options is often
available; However, a better knowledge of the options can help the
user to further improve its solution.

» Preprocessing options are critical to both performance and
accuracy.
» Preprocessing may influence :

» Operation cost and/or computational time
Size of factors and/or memory needed
Reliability of our estimations

Numerical accuracy.

vV Vvyy
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Numerical accuracy.
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» Therefore, not a real black box ...

» Even if in general more a black box than most iterative solvers
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Direct solver : also kernels for iterative solvers?

Direct Iterative
» Very general /robust » Efficiency depends on :
- Numerical accuracy - Convergence
- lrregular/unstructured preconditioning
problems - Numerical prop./struct. of
» Factorization of A A
- May be costly > Rely on efficient Mat-Vect
(memory /flops) product
- Factors can be reused for - Memory effective
multiple/successive - Successive right-hand
right-hand sides sides is problematic

Hybrid approaches
(Domain Decompostion, Schur, Block Cimmino)

often strongly rely on both iterative and direct technologies
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Unsymmetric test problems

nnz(L|U) Ops
Order nnz %108 x10° | Origin

conv3d64 836550 | 12548250 2693.9 23880 | CEA/CESTA
fidapm11 22294 623554 11.3 4.2 | Matrix market
Ihr01 1477 18427 0.1 0.007 | UF collection
gqimonda07 8613291 | 66900289 556.4 45.7 | QIMONDA AG
twotone 120750 1206265 25.0 29.1 | UF collection
ultrasound80 531441 | 33076161 981.4 3915 | Sosonkina
wang3 26064 177168 7.9 4.3 | Harwell-Boeing
xenon2 157464 3866688 97.5 103.1 | UF collection

Ops and nnz(L|U) when provided obtained with METIS and default MUMPS
input parameters.

UF Collection : University of Florida sparse matrix collection.
Harwell-Boeing : Harwell-Boeing collection.

PARASOL : Parasol collection
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Symmetric test problems

nnz(L) Ops

Order nnz x10° x10° | Origin
audikw_1 943695 39297771 | 1368.6 5682 | PARASOL
brgm 3699643 | 155640019 | 4483.4 | 26520 | BRGM
coneshl2 837967 22328697 239.1 211.2 | Samtech S.A.
coneshl 1262212 43007782 790.8 1640 | Samtech S.A.
cont-300 180895 562496 12.6 2.6 | Maros & Meszanos
cvxap3 17500 69981 6.3 43 | CUTEr
gupta2 62064 4248386 8.6 2.8 | A. Gupta, IBM
ship_ 003 121728 4103881 61.8 80.8 | PARASOL
stokes128 49666 295938 3.9 0.4 | Arioli
thread 29736 2249892 24.5 35.1 | PARASOL
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