
Sparse direct linear solvers
Woudschoten conference on

Parallel numerical linear algebra

6-7 Octobre 2010

Patrick Amestoy
INPT-IRIT (University of Toulouse)

http://amestoy.perso.enseeiht.fr/

in collaboration with members of MUMPS team
A. Buttari, A. Guermouche, J.Y. L'Excellent, B. Ucar, and F.H. Rouet

http://mumps.enseeiht.fr or

http://graal.ens-lyon.fr/MUMPS/

1/ 80

http://amestoy.perso.enseeiht.fr/
http://mumps.enseeiht.fr
http://graal.ens-lyon.fr/MUMPS/

Outline

Context and motivations

(Pre)Processing sparse matrices for e�ciency and accuracy
Fill-in and reordering
Numerical threshold pivoting
Preprocessing unsymmetric matrices
Preprocessing symmetric matrices

Approaches for parallel factorization
Elimination trees
Distributed memory sparse solvers
Some parallel solvers
Case study : comparison of MUMPS and SuperLU

Conclusion (Part I)

2/ 80

Sparse direct linear solvers (I)

Woudschoten conference 2010

3/ 80

Outline

Context and motivations

4/ 80

A selection of references

I Books

I Du�, Erisman and Reid, Direct methods for Sparse Matrices,
Clarenton Press, Oxford 1986.

I George, Liu, and Ng, Computer Solution of Sparse Positive
De�nite Systems, book to appear (2004)

I Davis, Direct methods for sparse linear systems, SIAM, 2006.

I Articles

I Gilbert and Liu, Elimination structures for unsymmetric sparse
LU factors, SIMAX, 1993.

I Liu, The role of elimination trees in sparse factorization,
SIMAX, 1990.

I Heath and E. Ng and B. W. Peyton, Parallel Algorithms for
Sparse Linear Systems, SIAM review, 1991.

I Lecture Notes

I P. Amestoy and J.Y. L'Excellent, Lecture notes on Linear

algebra and sparse direct methods, UNESCO (Tunis), Master
lectures (ENS-Lyon and INPT-ENSEEIHT)

5/ 80

Motivations

I solution of linear systems of equations → key algorithmic
kernel

Continuous problem
↓

Discretization
↓

Solution of a linear system Ax = b

I Main parameters :
I Numerical properties of the linear system (symmetry, pos.

de�nite, conditioning, . . .)
I Size and structure :

I Large (> 107 × 107), square/rectangular
I Dense or sparse (structured / unstructured)
I Target computer (sequential/parallel/multicore/Cell/GPU)

6/ 80

Exemple of sparse matrices

Matrix from CFD Chemical proc. Simulation
(Univ. Tel Aviv) lhr01

0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000

5000

6000

7000

nz = 43105
0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 18427

7/ 80

Matrix factorizations

Solution of Ax = b

I A is unsymmetric :
I A is factorized as : A = LU, where
L is a lower triangular matrix, and
U is an upper triangular matrix.

I Forward-backward substitution : Ly = b then Ux = y

I A is symmetric :
I A = LDLT or LLT

I A is rectangular m × n with m ≥ n and minx ‖Ax− b‖2 :
I A = QR where Q is orthogonal (Q−1 = QT) and R is

triangular.
I Solve : y = QTb then Rx = y

8/ 80

Example in structural mechanics

BMW car body,
227,362 unknowns,
5,757,996 nonzeros,
MSC.Software

Size of factors : 51.1 million entries
Number of operations : 44.9× 109

9/ 80

Solve Ax = b, A sparse

Resolution with a 3 phase approach

I Analysis phase
I preprocess the matrix
I prepare factorization

I Factorization phase
I symmetric positive de�nite → LLT

I symmetric inde�nite → LDLT

I unsymmetric → LU

I Solution phase exploiting factored matrices.
I Postprocessing of the solution (iterative re�nements and

backward error analysis).

10/ 80

Sparse solver : only a black box ?

Default (often automatic/adaptive) setting of the options is often
available ; However, a better knowledge of the options can help the
user to further improve its solution.

I Preprocessing may in�uence :
I Operation cost and/or computational time
I Size of factors and/or memory needed
I Reliability of our estimations
I Numerical accuracy.

I Describe preprocessing options and functionalities that are
most critical to both performance and accuracy.

11/ 80

Ax = b ?

I Symmetric permutations to control inrease in the size of the
factors : (Ax = b → PAPtPx = b)

I Numerical pivoting to preserve accuracy.

I Unsymmetric matrices (A = LU)
I numerical equilibration (scaling rows/columns)
I set large entries on the diagonal
I modi�ed problem : A′x ′ = b′ with A′ = PnDrPAQP

tDc

I Symmetric matrices (A = LDLt) :
Algorithms must also preserve symmetry (�ops/memory
divided by 2)

I adapt equilibration and set large entries �on� diagonal while
preserving symmetry

I modi�ed problem : A′ = PNDsPQ
tAQPtDsP

t
N

I Preprocessing for parallelism (in�uence of task mapping on the
performance)

12/ 80

Preprocessing - illustration

Original (A =lhr01) Preprocessed matrix (A′(lhr01))

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 18427
0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 18427

13/ 80

Outline

(Pre)Processing sparse matrices for e�ciency and accuracy
Fill-in and reordering
Numerical threshold pivoting
Preprocessing unsymmetric matrices
Preprocessing symmetric matrices

14/ 80

(Pre)Processing sparse matrices for e�ciency and accuracy
Fill-in and reordering
Numerical threshold pivoting
Preprocessing unsymmetric matrices
Preprocessing symmetric matrices

15/ 80

Fill-in and reordering

Step k of LU factorization (akk pivot) :

I For i > k compute lik = aik/akk (= a′ik),

I For i > k , j > k

a′ij = aij −
aik × akj

akk
= aij − lik × akj

I If aik 6= 0 and akj 6= 0 then a′ij 6= 0

I If aij was zero → non-zero a′ij must be stored : �ll-in

 k j

k

i

x

x

x

x

 k j

k

i

x

x

x

0

Interest of
permuting
a matrix :


X X X X X

X X 0 0 0
X 0 X 0 0
X 0 0 X 0
X 0 0 0 X



X 0 0 0 X

0 X 0 0 X

0 0 X 0 X

0 0 0 X X

X X X X X


16/ 80

Symmetric matrices and graphs

I Assumptions : A symmetric and pivots are chosen on the
diagonal

I Structure of A symmetric represented by the graph
G = (V ,E)

I Vertices are associated to columns : V = {1, . . . , n}
I Edges E are de�ned by : (i , j) ∈ E ↔ aij 6= 0

I G undirected (symmetry of A)

17/ 80

Symmetric matrices and graphs

I Remarks :
I Number of nonzeros in column j = |adjG (j)|
I Symmetric permutation ≡ renumbering the graph

3

4

2
5

11

2

3

4

5

1 2 3 4 5

Symmetric matrix Corresponding graph

18/ 80

The elimination graph model for symmetric
matrices

I Let A be a symmetric positive de�ne matrix of order n

I The LLT factorization can be described by the equation :

A = A0 = H0 =

(
d1 vT

1

v1 H1

)
=

(√
d1 0
v1√
d1

In−1

)(
1 0
0 H1

)(√
d1

v
T

1√
d1

0 In−1

)
= L1A1L

T

1
, where

H1 = H1 −
v1v

T

1

d1

I The basic step is applied on H1H2 · · · to obtain :

A = (L1L2 · · ·Ln−1) In
(
LT
n−1 . . .L

T
2
LT
1

)
= LLT

19/ 80

The basic step : H1 = H1 − v1v
T

1

d1

What is v1v
T

1
in terms of structure ?

v1 is a column of A, hence the
neighbors of the corresponding
vertex.

v1v
T

1
results in a dense sub-

block in H1.

If any of the nonzeros in dense
submatrix are not in A, then
we have �ll-ins.

20/ 80

The elimination process in the graphs

GU(V ,E)← undirected graph of A
for k = 1 : n − 1 do
V ← V − {k} {remove vertex k}
E ← E − {(k , `) : ` ∈ adj(k)} ∪ {(x , y) : x ∈ adj(k) and y ∈
adj(k)}
Gk ← (V ,E) {for de�nition}

end for

Gk are the so-called elimination graphs (Parter,'61).

4

321

6 5

1
2

3
4

5
6

H0 =G0 :

21/ 80

A sequence of elimination graphs

4

321

6 5

G0 :

4

32

6 5

6 5

34
G2 : H2 =

3
4

5
6

4
5

6
H3 =

6 5

4

G1 :

G3 :

1
2

3
4

5
6

H0 =

2
3

4
5

6

H1 =

22/ 80

Fill-in and reordering

�Before permutation" Permuted matrix
(A”(lhr01)) (A′(lhr01))

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 18427
0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 18427

Factored matrix (LU(A′))

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 76105

23/ 80

Fill-in characterization

Let A be a symmetric matrix (G (A) its associated graph), L the
matrix of factors A = LLt ;

Fill path theorem, Rose, Tarjan, Leuker, 76

lij 6= 0 i� there is a path in G (A) between i and j such that all
nodes in the path have indices smaller than both i and j .

p1

p2

p2

pk

i

pk

p1

j

j

i

24/ 80

Fill-in characterization (proof intuition)

Let A be a symmetric matrix (G (A) its associated graph), L the
matrix of factors A = LLt ;

Fill path theorem, Rose, Tarjan, Leuker, 76

lij 6= 0 i� there is a path in G (A) between i and j such that all
nodes in the path have indices smaller than both i and j .

p2

p2

pk

i

pk

j

j

i
p1

p1

24/ 80

Fill-in characterization (proof intuition)

Let A be a symmetric matrix (G (A) its associated graph), L the
matrix of factors A = LLt ;

Fill path theorem, Rose, Tarjan, Leuker, 76

lij 6= 0 i� there is a path in G (A) between i and j such that all
nodes in the path have indices smaller than both i and j .

p2

p2

pk

i

pk

j

j

i
p1

p1

24/ 80

Fill-in characterization (proof intuition)

Let A be a symmetric matrix (G (A) its associated graph), L the
matrix of factors A = LLt ;

Fill path theorem, Rose, Tarjan, Leuker, 76

lij 6= 0 i� there is a path in G (A) between i and j such that all
nodes in the path have indices smaller than both i and j .

p2

p2

pk

i

j

j

i
p1

p1

pk

Fill−in!

Fill−in!

24/ 80

Fill-reducing heuristics

Three main classes of methods for minimizing �ll-in during
factorization

I Global approach : The matrix is permuted into a matrix with a
given pattern

I Fill-in is restricted to occur within that structure
I Cuthill-McKee (block tridiagonal matrix)
I Nested dissections (�block bordered� matrix)

(Remark : interpretation using the �ll-path theorem)

Graph partitioning Permuted matrix

(1)

(5)

(4)

(2)

S1

S2

S3

S1

1
2

3
4

S2

S3

25/ 80

Fill-reducing heuristics

I Local heuristics : At each step of the factorization, selection of
the pivot that is likely to minimize �ll-in.

I Method is characterized by the way pivots are selected.
I Markowitz criterion (for a general matrix).
I Minimum degree or Minimum �ll-in (for symmetric matrices).

I Hybrid approaches : Once the matrix is permuted to block
structure, local heuristics are used within the blocks.

26/ 80

Local heuristics to reduce �ll-in during
factorization

Let G (A) be the graph associated to a matrix A that we want to
order using local heuristics.
Let Metric such that Metric(vi) < Metric(vj) implies vi is a better
than vj

Generic algorithm
Loop until all nodes are selected

Step1 : select current node p (so called pivot) with
minimum metric value,

Step2 : update elimination graph,
Step3 : update Metric(vj) for all non-selected nodes vj .

Step3 should only be applied to nodes for which the Metric value
might have changed.

27/ 80

Reordering unsymmetric matrices : Markowitz
criterion

I At step k of Gaussian elimination :

A
k

L

U

I rki = number of non-zeros in row i of Ak

I ckj = number of non-zeros in column j of Ak

I aij must be large enough and should minimize
(rki − 1)× (ckj − 1) ∀i , j > k

I Minimum degree : Markowitz criterion for symmetric
diagonally dominant matrices

28/ 80

Minimum �ll based algorithm

I Metric(vi) is the amount of �ll-in that vi would introduce if it
were selected as a pivot.

I Illustration : r has a degree d = 4 and a �ll-in metric of
d × (d − 1)/2 = 6 whereas s has degree d = 5 but a �ll-in
metric of d × (d − 1)/2− 9 = 1.

r

s

i2

i1

i5

i3 i4
j1

j2
j3 j4

29/ 80

Minimum �ll-in properties

I The situation typically occurs when {i1, i2, i3} and {i2, i3, i4, i5}
were adjacent to two already selected nodes (here e2 and e1)

e1 and e2 are previously selected nodes

r
s

i1
i2

i3
i4

i5
j1

j2
j3

j4

r

s

i2

i1

i5

i3 i4
j1

j2
j3 j4

e2
e1

I The elimination of a node vk a�ects the degree of nodes
adjacent to vk . The �ll-in metric of Adj(Adj(vk)) is also
a�ected.

I Illustration : selecting r a�ects the �ll-in of i1 (�ll edge (j3, j4)
should be deduced).

Impact of �ll-reducing heuristics

Number of operations (millions)

METIS SCOTCH PORD AMF AMD
gupta2 2757.8 4510.7 4993.3 2790.3 2663.9

ship_003 83828.2 92614.0 112519.6 96445.2 155725.5

twotone 29120.3 27764.7 37167.4 29847.5 29552.9
wang3 4313.1 5801.7 5009.9 6318.0 10492.2

xenon2 99273.1 112213.4 126349.7 237451.3 298363.5

I METIS (Karypis and Kumar) and SCOTCH (Pellegrini) are global
strategies (recursive nested dissection based orderings).

I PORD (Schulze, Paderborn Univ.) recursive dissection based on a
bottom up strategy to build the separator

I AMD (Amestoy, Davis and Du�) is a local strategy based on
Approximate Minimum Degree.

I AMF (Amestoy) is a local strategy based on Approx. Minimum Fill.

31/ 80

Impact of �ll-reducing heuristics

Time for factorization (seconds)

1p 16p 32p 64p 128p

coneshl METIS 970 60 41 27 14
PORD 1264 104 67 41 26

audi METIS 2640 198 108 70 42
PORD 1599 186 146 83 54

Matrices with quasi dense rows :
Impact on the analysis time (seconds) of gupta2 matrix

AMD METIS QAMD

Analysis 361 52 23
Total 379 76 59

I QAMD (Amestoy) Approximate Minimum Degree (local) strategy

designed for matrices with quasi dense rows.

32/ 80

(Pre)Processing sparse matrices for e�ciency and accuracy
Fill-in and reordering
Numerical threshold pivoting
Preprocessing unsymmetric matrices
Preprocessing symmetric matrices

33/ 80

Numerical pivoting during LU factorization

Let A =

[
ε 1
1 1

]
=

[
1 0
1

ε 1

]
×
[
ε 1
0 1− 1

ε

]
κ2(A) = 1+ O(ε).
If we solve : [

ε 1
1 1

] [
x1
x2

]
=

[
1+ ε

2

]
Exact solution :x∗ = (1, 1).

ε ‖x∗−x‖
‖x∗‖

10−3 6× 10−6

10−9 9× 10−8

10−15 7× 10−2

Table: Relative error as a function of ε.

34/ 80

Numerical pivoting during LU factorization (II)

I Even if A well-conditioned then Gaussian elimination might
introduce errors.

I Explanation : pivot ε is too small (relative)

I Solution : interchange rows 1 and 2 of A.[
1 1
ε 1

] [
x1
x2

]
=

[
2

1+ ε

]
→ No more error.

35/ 80

Threshold pivoting for sparse matrices

I Sparse LU factorization

I Threshold u : Set of eligible pivots =

{r | |a(k)rk | ≥ u ×maxi |a(k)ik |}, where 0 < u ≤ 1.
I Among eligible pivots select one preserving sparsity.

I Sparse LDLT factorization

I Symmetric inde�nite case : requires 2 by 2 pivots, e.g.(
ε X

X ε

)

I 2×2 pivot P =

(
akk akl
alk all

)
:

|P−1|
(

maxi |aki |
maxj |alj |

)
≤
(

1/u
1/u

)

II Static pivoting : Add small perturbations to the matrix of
factors to reduce the amount of numerical pivoting.

36/ 80

Threshold pivoting for sparse matrices

I Sparse LU factorization

I Threshold u : Set of eligible pivots =

{r | |a(k)rk | ≥ u ×maxi |a(k)ik |}, where 0 < u ≤ 1.
I Among eligible pivots select one preserving sparsity.

I Sparse LDLT factorization

I Symmetric inde�nite case : requires 2 by 2 pivots, e.g.(
ε X

X ε

)

I 2×2 pivot P =

(
akk akl
alk all

)
:

|P−1|
(

maxi |aki |
maxj |alj |

)
≤
(

1/u
1/u

)

II Static pivoting : Add small perturbations to the matrix of
factors to reduce the amount of numerical pivoting.

36/ 80

Threshold pivoting for sparse matrices

I Sparse LU factorization

I Threshold u : Set of eligible pivots =

{r | |a(k)rk | ≥ u ×maxi |a(k)ik |}, where 0 < u ≤ 1.
I Among eligible pivots select one preserving sparsity.

I Sparse LDLT factorization

I Symmetric inde�nite case : requires 2 by 2 pivots, e.g.(
ε X

X ε

)

I 2×2 pivot P =

(
akk akl
alk all

)
:

|P−1|
(

maxi |aki |
maxj |alj |

)
≤
(

1/u
1/u

)

II Static pivoting : Add small perturbations to the matrix of
factors to reduce the amount of numerical pivoting.

36/ 80

(Pre)Processing sparse matrices for e�ciency and accuracy
Fill-in and reordering
Numerical threshold pivoting
Preprocessing unsymmetric matrices
Preprocessing symmetric matrices

37/ 80

Preprocessing unsymmetric matrices - scaling

I Objective : Matrix equilibration to help threshold pivoting.

I Row and column scaling : B = DrADc where Dr , Dc are
diagonal matrices to respectively scale rows and columns of A

I reduce the amount of numerical problems

Let A =

[
1 2

1016 1016

]
→ Let B = DrA =

[
1 2
1 1

]
I better detect real problems.

Let A =

[
1 1016

1 1

]
→ Let B = DrA =

[
10−16 1

1 1

]
I In�uence quality of �ll-in estimations and accuracy.

I Should be activated when the number of uneliminated
variables is large.

38/ 80

Preprocessing - Maximum weighted matching (I)

I Objective : Set large entries on the diagonal
I Unsymmetric permutation and scaling
I Preprocessed matrix B = D1AQD2

is such that |bii | = 1 and |bij | ≤ 1

Original (A =lhr01) Permuted (A′ = AQ)

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 18427
0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

1400

nz = 18427

39/ 80

Combine maximum transversal and �ll-in
reduction

I Consider the LU factorization A = LU of an unsymmetric
matrix.

I Compute the column permutation Q leading to a maximum
numerical transversal of A. AQ has large (in some sense)
numerical entries on the diagonal.

I Find best ordering of AQ preserving the diagonal entries.
Equivalent to �nding symmetric permutation P such that the
factorization of PAQPT has reduced �ll-in.

40/ 80

Preprocessing - Maximum weighted matching

I In�uence of maximum weighted matching (Du� and Koster
(99,01) on the performance

Matrix Symmetry |LU| Flops Backwd
(106) (109) Error

twotone OFF 28 235 1221
ON 43 22 29

�dapm11 OFF 100 16 10
ON 46 28 29

I On very unsymmetric matrices : reduce �ops, factor size and
memory used.

I In general improve accuracy, and reduce number of iterative
re�nements.

I Improve reliability of memory estimates.

41/ 80

Preprocessing - Maximum weighted matching

II In�uence of maximum weighted matching (Du� and Koster
(99,01) on the performance

Matrix Symmetry |LU| Flops Backwd
(106) (109) Error

twotone OFF 28 235 1221 10 −6

ON 43 22 29 10−12

�dapm11 OFF 100 16 10 10−10

ON 46 28 29 10−11

I On very unsymmetric matrices : reduce �ops, factor size and
memory used.

I In general improve accuracy, and reduce number of iterative
re�nements.

I Improve reliability of memory estimates.

41/ 80

Preprocessing - Maximum weighted matching

II In�uence of maximum weighted matching (Du� and Koster
(99,01) on the performance

Matrix Symmetry |LU| Flops Backwd
(106) (109) Error

twotone OFF 28 235 1221 10 −6

ON 43 22 29 10−12

�dapm11 OFF 100 16 10 10−10

ON 46 28 29 10−11

I On very unsymmetric matrices : reduce �ops, factor size and
memory used.

I In general improve accuracy, and reduce number of iterative
re�nements.

I Improve reliability of memory estimates.

41/ 80

(Pre)Processing sparse matrices for e�ciency and accuracy
Fill-in and reordering
Numerical threshold pivoting
Preprocessing unsymmetric matrices
Preprocessing symmetric matrices

42/ 80

Preprocessing symmetric matrices (Du� and
Pralet (2004, 2005)

II Symmetric scaling : Adapt MC64 (Du� and Koster, 2001)
unsymmetric scaling :
let D =

√
DrDc , then B = DAD is a symmetrically scaled

matrix which satis�es

∀i , |biσ(i)| = ||b.σ(i)||∞ = ||bTi . ||∞ = 1

where σ is the permutation from the unsym. transv. algo.

I In�uence of scaling on augmented matrices K =

(
H A
AT 0

)
Total time Nb of entries in factors (millions)

(seconds) (estimated) (e�ective)
Scaling : OFF ON OFF ON OFF ON

cont-300 45 5 12.2 12.2 32.0 12.4
cvxqp3 1816 28 3.9 3.9 62.4 9.3
stokes128 3 2 3.0 3.0 5.5 3.3

43/ 80

Preprocessing - Compressed ordering

I Perform an unsymmetric weighted matching

Matched entry

44/ 80

Preprocessing - Compressed ordering

I Perform an unsymmetric weighted matching

I Select matched entries

Select Matched entry

Selected Matched entry
Matched entry

44/ 80

Preprocessing - Compressed ordering

I Perform an unsymmetric weighted matching

I Select matched entries

I Symmetrically permute matrix to set large entries near diagonal
j1 j2 j3 j4 j5 j6 j1 j4 j2 j3 j5 j6

Selected entries

Permute B = Qt A Q

44/ 80

Preprocessing - Compressed ordering

I Perform an unsymmetric weighted matching

I Select matched entries

I Symmetrically permute matrix to set large entries near diagonal

I Compression : 2× 2 diagonal blocks become supervariables.

Compress permuted matrix B

44/ 80

Preprocessing - Compressed ordering

I Perform an unsymmetric weighted matching

I Select matched entries

I Symmetrically permute matrix to set large entries near diagonal

I Compression : 2× 2 diagonal blocks become supervariables.

Compress permuted matrix B

In�uence of using a compressed graph (with scaling)

Total time Nb of entries in factors in Millions
(seconds) (estimated) (e�ective)

Compression : OFF ON OFF ON OFF ON
cont-300 5 4 12.3 11.2 32.0 12.4
cvxqp3 28 11 3.9 7.1 9.3 8.5
stokes128 1 2 3.0 5.7 3.4 5.7

44/ 80

Preprocessing - Constrained ordering

I Part of matrix sparsity is lost during graph compression
I Constrained ordering : only pivot dependency within 2× 2

blocks need be respected.
Ex : k → j indicates that if k is selected before j then j must
be eliminated together with k .j k

if j is selected �rst then no more constraint on k.
45/ 80

Preprocessing - Constrained ordering

I Constrained ordering : only pivot dependency within 2× 2
blocks need be respected.j k

In�uence of using a constrained ordering (with scaling)

Total time Nb of entries in factors in Millions

(seconds) (estimated) (e�ective)
Constrained : OFF ON OFF ON OFF ON

cvxqp3 11 8 7.2 6.3 8.6 7.2
stokes128 2 2 5.7 5.2 5.7 5.3

45/ 80

Outline

Approaches for parallel factorization
Elimination trees
Distributed memory sparse solvers
Some parallel solvers
Case study : comparison of MUMPS and SuperLU

46/ 80

Approaches for parallel factorization
Elimination trees
Distributed memory sparse solvers
Some parallel solvers
Case study : comparison of MUMPS and SuperLU

47/ 80

Elimination DAG and unsymmetric matrices

l
11

l
52

l
53

l
55

l
44

l
33

l
22

l
31

l
43

l
51

1

3 4

25

Directed graph G(L)

1

43

5 2

Elimination dag (L)

L factors of unsymmetric matrix
Transitive

reduction

Elimination dags : transitive reduction of the G(L)

I Because of unsymmetry the transitive reduction is not a tree

I What makes L be the factors of an unsymmetric matrix ?

48/ 80

Elimination DAG and unsymmetric matrices

Directed graph G(L)

Elimination dag (L)

1

3

25

1

43

5 2

1

3

5

4

2

l
11

l
52

l
53

l
55

l
44

l
33

l
22

l
31

l
43

l
51

4

Transitive

reductionL factors (unsymmetric matrix)

Not a tree!

Elimination dags : transitive reduction of the G(L)

I Because of unsymmetry the transitive reduction is not a tree

I What makes L be the factors of an unsymmetric matrix ?

48/ 80

Elimination tree and symmetric matrices

Directed graph G(L)

Elimination dag (L)

1

3 4

25

1

43

5 2

1

3

5

4

2

l
11

l
52

l
53

l
55

l
44

l
33

l
22

l
31

l
43

l
51

Transitive

reduction

F

Elimination tree

L factors of symmetric matrix

Elimination dags : transitive reduction of the G(L)

I Because of unsymmetry the transitive reduction is not a tree

I What makes L be the factors of an unsymmetric matrix ?

48/ 80

Elimination tree

To summarize (for symmetric structured matrices) :

I The elimination tree expresses dependencies between the
various steps of the factorization.

I It also exhibits parallelism arising from the sparse structure of
the matrix.

Building the elimination tree

I Permute matrix (to reduce �ll-in) PAPT.

I Build �lled matrix AF = L+ LT where PAPT = LLT

I Transitive reduction of associated �lled graph

→ Each column corresponds to a node of the graph. Each node k
of the tree corresponds to the factorization of a frontal matrix
whose row structure is that of column k of AF .

49/ 80

Approaches for parallel factorization
Elimination trees
Distributed memory sparse solvers
Some parallel solvers
Case study : comparison of MUMPS and SuperLU

50/ 80

Distributed memory sparse solvers

51/ 80

Computational strategies for parallel direct solvers

I The parallel algorithm is characterized by :
I Computational graph dependency
I Communication graph

I Three classical approaches

1. �Fan-in�
2. �Fan-out�
3. �Multifrontal�

52/ 80

Preamble : left and right looking approaches for
Cholesky factorization

I cmod(j , k) : Modi�cation of column j by column k , k < j ,

I cdiv(j) division of column j by the pivot

Left-looking approach
for j = 1 to n do

for k ∈ Struct(row Lj ,1:j−1) do
cmod(j , k)

cdiv(j)

Right-looking approach
for k = 1 to n do

cdiv(k)
for j ∈ Struct(col Lk+1:n,k) do
cmod(j , k)

53/ 80

Illustration of Left and right looking

modified

Left−looking Right−looking

used for modification

54/ 80

Fan-in variant (similar to left looking)

Left Looking
(1) (2) (3)

(1)

(3)

(4)

(2)

Modified

Used for modification

(4)

Algorithm:

For j=1 to n do

cdiv(j)

Endfor

(Cholesky)

For k in Struct(L) do

Endfor

cmod(j,k)
j,*(1)

(3)

(2)

(4)

if map(1) = map(2) = map(3) = p and map(4) 6= p (only) one
message sent by p to update column 4 → exploits data locality in
the tree.

Fan-in variant

P0 P1 P2 P3

P4

if ∀i ∈ children map(i) = P0 and map(father) 6= P0 (only) one
message sent by P0 → exploits data locality in the tree.

56/ 80

Fan-in variant

P0 P1 P2 P3

P4

if ∀i ∈ children map(i) = P0 and map(father) 6= P0 (only) one
message sent by P0 → exploits data locality in the tree.

56/ 80

Fan-in variant

P0 P1 P2 P3

P4

if ∀i ∈ children map(i) = P0 and map(father) 6= P0 (only) one
message sent by P0 → exploits data locality in the tree.

56/ 80

Fan-in variant

P0 P1 P2 P3

P4

if ∀i ∈ children map(i) = P0 and map(father) 6= P0 (only) one
message sent by P0 → exploits data locality in the tree.

56/ 80

Fan-in variant

P0 P1 P2 P3

P4

if ∀i ∈ children map(i) = P0 and map(father) 6= P0 (only) one
message sent by P0 → exploits data locality in the tree.

56/ 80

Fan-in variant

P0 P1 P2 P3

P4

Communication

if ∀i ∈ children map(i) = P0 and map(father) 6= P0 (only) one
message sent by P0 → exploits data locality in the tree.

56/ 80

Fan-in variant

P0 P0 P0 P0

P4

Communication

if ∀i ∈ children map(i) = P0 and map(father) 6= P0 (only) one
message sent by P0 → exploits data locality in the tree.

56/ 80

Fan-out variant (similar to right-looking)

Right Looking
(1) (3)

(1)

(2)

(3)

(4)

(4)

Algorithm:

Endfor

(Cholesky)

For k=1 to n do

cmod(j,k)

cdiv(k)

(1)
(3)

Computed

Updated

(4)

(2)

For j in Struct(L*,k) do

Endfor(2)

if map(2) = map(3) = p and map(4) 6= p then 2 messages (for
column 2 and 3) are sent by p to update column 4.

Fan-out variant

P0 P1 P2 P3

P4

if ∀i ∈ children map(i) = P0 and map(father) 6= P0 then n
messages (where n is the number of children) are sent by P0 to
update the processor in charge of the father

58/ 80

Fan-out variant

P0 P0 P0 P0

P4

Communication

if ∀i ∈ children map(i) = P0 and map(father) 6= P0 then n
messages (where n is the number of children) are sent by P0 to
update the processor in charge of the father

58/ 80

Fan-out variant

P0 P0 P0 P0

P4

Communication

if ∀i ∈ children map(i) = P0 and map(father) 6= P0 then n
messages (where n is the number of children) are sent by P0 to
update the processor in charge of the father

58/ 80

Fan-out variant

P0 P0 P0 P0

P4

Communication

if ∀i ∈ children map(i) = P0 and map(father) 6= P0 then n
messages (where n is the number of children) are sent by P0 to
update the processor in charge of the father

58/ 80

Fan-out variant

P0 P0 P0 P0

P4

Communication

if ∀i ∈ children map(i) = P0 and map(father) 6= P0 then n
messages (where n is the number of children) are sent by P0 to
update the processor in charge of the father

58/ 80

Fan-out variant

Properties of fan-out :

I Historically the �rst implemented.

I Incurs greater interprocessor communications than fan-in (or
multifrontal) approach both in terms of

I total number of messages
I total volume

I Does not exploit data locality in the mapping of nodes in the
tree

I Improved algorithm (local aggregation) :
I send aggregated update columns instead of individual factor

columns for columns mapped on a single processor.
I Improve exploitation of data locality
I But memory increase to store aggregates can be critical (as in

fan-in).

Multifrontal variant

Elimination tree

(1)
(3)

(4)

(2)

Computed

Updated

Right Looking

(1) (2) (3)

(1)

(3)

(4)

(4)

(5)

(5)

(2)

(2)
(2)
(3)
(4)
(5)

L

(1)
(3)

(2)

(4)

"Multifrontal Method"

Algorithm:

For k=1 to n do

Endfor

Partial factorisation

Send Contribution Block to Father

(3)(4)(5)

C B

Build full frontal matrix
with all indices in Struct(L *,k)

60/ 80

Multifrontal variant

P0 P0

P1

P2

Fan-in.

P0 P0

P1

P2

Fan-out.

P0 P0

P1

P2

Multifrontal.

Figure: Communication schemes for the three approaches.

61/ 80

Multifrontal variant

P0 P0

P1

P2

Fan-in.

P0 P0

P1

P2

Fan-out.

P0 P0

P1

P2

Multifrontal.

Figure: Communication schemes for the three approaches.

61/ 80

Multifrontal variant

P0 P0

P1

P2

Fan-in.

P0 P0

P1

P2

Fan-out.

P0 P0

P1

P2

Multifrontal.

Figure: Communication schemes for the three approaches.

61/ 80

Multifrontal variant

P0 P0

P1

P2

Fan-in.

P0 P0

P1

P2

Fan-out.

P0 P0

P1

P2

Multifrontal.

Figure: Communication schemes for the three approaches.

61/ 80

Multifrontal variant

P0 P0

P1

P2

Fan-in.

P0 P0

P1

P2

Fan-out.

P0 P0

P1

P2

Multifrontal.

Figure: Communication schemes for the three approaches.

61/ 80

Approaches for parallel factorization
Elimination trees
Distributed memory sparse solvers
Some parallel solvers
Case study : comparison of MUMPS and SuperLU

62/ 80

Some parallel solvers

63/ 80

Distributed-memory sparse direct codes

Code Technique Scope Availability (www.)

DSCPACK Multifr./Fan-in SPD cse.psu.edu/∼raghavan/Dscpack
MUMPS Multifrontal SYM/UNS MUMPS Bordeaux-Lyon-Toulouse

PaStiX Fan-in SPD labri.fr/perso/ramet/pastix

PSPASES Multifrontal SPD cs.umn.edu/∼mjoshi/pspases

SPOOLES Fan-in SYM/UNS netlib.org/linalg/spooles

SuperLU Fan-out UNS nersc.gov/∼xiaoye/SuperLU
S+ Fan-out† UNS cs.ucsb.edu/research/S+

WSMP † Multifrontal SYM IBM product

‡ Only object code is available.

64/ 80

Distributed-memory sparse direct codes

Code Technique Scope Availability (www.)

DSCPACK Multifr./Fan-in SPD cse.psu.edu/∼raghavan/Dscpack
MUMPS Multifrontal SYM/UNS MUMPS Bordeaux-Lyon-Toulouse

PaStiX Fan-in SPD labri.fr/perso/ramet/pastix

PSPASES Multifrontal SPD cs.umn.edu/∼mjoshi/pspases

SPOOLES Fan-in SYM/UNS netlib.org/linalg/spooles

SuperLU Fan-out UNS nersc.gov/∼xiaoye/SuperLU
S+ Fan-out† UNS cs.ucsb.edu/research/S+

WSMP † Multifrontal SYM IBM product

Case study : Comparison of MUMPS and SuperLU

64/ 80

Approaches for parallel factorization
Elimination trees
Distributed memory sparse solvers
Some parallel solvers
Case study : comparison of MUMPS and SuperLU

65/ 80

MUMPS (Multifrontal sparse solver)
http://mumps.enseeiht.fr or

http://graal.ens-lyon.fr/MUMPS

1. Analysis and Preprocessing
• Preprocessing (max. transversal, scaling)
• Fill-in reduction on A+ AT

• Partial static mapping (elimination tree) with dynamic scheduling

during factorization.

2. Factorization
• Multifrontal (elimination tree of A+ AT)

Struct(L) = Struct(U)
• Partial threshold pivoting
• Node and tree level asynchronous parallelism

- Partitioning (1D Front - 2D Root)

- Dynamic distributed scheduling

3. Solution step and iterative re�nement

SuperLU (Gaussian elimination with static
pivoting)
X.S. Li and J.W. Demmel

1. Analysis and Preprocessing
• Preprocessing (Max. transversal, scaling)
• Fill-in reduction on A+ AT

• Static mapping on a 2D grid of processes

2. Factorization
• Fan-out based on elimination DAGs (preserves unsymmetry)
• Static pivoting

if (|aii | <
√
ε‖A‖) set aii to

√
ε‖A‖

• 2D irregular block cyclic partitioning (based on supernode
structure)
• Pipelining / BLAS3 based factorization

3. Solution step and iterative re�nement

Traces of execution(bbmat, 8 proc. CRAY T3E)

Process 0 5 5 5 5 4 4 5 108 5 5 5 5 5 5 5 Facto_L1 4 5 5 5 5 5 5 5 5 5

Process 1 108 4 4 108 5 108 5 5 5 5 5 5 5 Facto_L1 4 5 5 5 5 5 5 5 5 5

Process 2 108 4 4 108 5 5 5 5 5 5 5 5 108 5 108 5 5 5 5 5 5 5 5 4

Process 3 5 5 5 4 108 5 5 4 108 5 5 5 5 5 5 4 108 5 5 5 5 5 5 5 5 5

Process 4 4 108 5 5 4 5 5 5 5 5 5 108 5 108 5 5 5 5 5 5 5 5

Process 5 4 4 4 5 5 4 108 5 5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 4

Process 6 4 4 108 108 5 108 5 5 5 5 5 5 5 108 5 5 4 108 5 5 5 5 5 5 5

Process 7 108 4 4 108 2 2 2 2 2 2 2 2 4 108 5 5 5 5 5 5 5 5 5

MPI
Application

L

9.05s9.0s8.95s8.9s

Process 0

Process 1 80 80 80 80 80 80 80 80 80

Process 2 80 80 80 80 80 80 80 80 80 80 80

Process 3

Process 4

Process 5 80 80 80 80 80 80 80 80 80 80

Process 6 80 80 80 80 80 80 80 80 80 80 80

Process 7

MPI
VT_API
Comm

9.32s9.3s9.28s

68/ 80

In�uence of maximum wheighted matching MC64 on
�ops (109) for factorization (AMD ordering)

Matrix MC64 StrSym MUMPS SuperLU

lhr71c No 0 1431.0(∗) �
Yes 21 1.4 0.5

twotone No 28 1221.1 159.0
Yes 43 29.3 8.0

�dapm11 No 100 9.7 8.9
Yes 29 28.5 22.0

(∗) Estimated during analysis,

� Not enough memory to run the factorization.

69/ 80

Backward error analysis : Berr = maxi
|r |i

(|A|·|x |+|b|)i

MUMPS SuperLU

 bbmat ecl32 invextr1 fidapm11 garon2 lnsp3937 mixtank rma10 twotone
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

B
er

r

NO MC64 (MUMPS)
MC64 (MUMPS)

 bbmat ecl32 invextr1 fidapm11 garon2 lnsp3937 mixtank rma10 twotone
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

B
er

r

NO MC64 (SuperLu)
MC64 (SuperLu)

One step of iterative re�nement generally leads to Berr ≈ ε
Cost (1 step of iterative re�nement) ≈ Cost (LUx = b − Ax)

70/ 80

Communication issues

Average Vol.(64 procs) Average Message Size (64 procs)

 bbmat ecl32 invextr1 mixtank twotone
0

10

20

30

40

50

60
Average Communication Volume on 64 Processors

M
by

te
s

MUMPS (AMD)
SuperLU (AMD)
MUMPS (ND)
SuperLU (ND)

 bbmat ecl32 invextr1 mixtank twotone
0

5

10

15

20

25
Average Message Size on 64 Processors

K
by

te
s

MUMPS (AMD)
SuperLU (AMD)
MUMPS (ND)
SuperLU (ND)

71/ 80

Time Ratios of the numerical phases
Time(SuperLU) / Time(MUMPS)

Factorization Solve

4 8 16 32 64 128 256 512
0.5

1

1.5

2

2.5

3

3.5

4

Processors

R
at

io
(S

up
er

LU
/M

U
M

P
S

)

bbmat
ecl32
invextr1
mixtank
twotone

4 8 16 32 64 128 256 512
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Processors

R
at

io
(S

up
er

LU
/M

U
M

P
S

)

bbmat
ecl32
invextr1
mixtank
twotone

72/ 80

Summary

I Sparsity and Total memory
-SuperLU preserves better sparsity
-SuperLU (≈ 20%) less memory on 64 Procs (Asymmetry -

Fan-out/Multifrontal)

I Communication
-Global volume is comparable
-MUMPS : much smaller (/10) nb of messages

I Factorization / Solve time
-MUMPS is faster on nprocs ≤ 64
-SuperLU is more scalable

I Accuracy
-MUMPS provides a better initial solution
-SuperLU : one step of iter. re�n. often enough

73/ 80

Outline

Conclusion (Part I)

74/ 80

Sparse solver : only a black box ?

Default (often automatic/adaptive) setting of the options is often
available ; However, a better knowledge of the options can help the
user to further improve its solution.

I Preprocessing options are critical to both performance and
accuracy.

I Preprocessing may in�uence :
I Operation cost and/or computational time
I Size of factors and/or memory needed
I Reliability of our estimations
I Numerical accuracy.

I Therefore, not a real black box . . .

I Even if in general more a black box than most iterative solvers
. . .

75/ 80

Sparse solver : only a black box ?

Default (often automatic/adaptive) setting of the options is often
available ; However, a better knowledge of the options can help the
user to further improve its solution.

I Preprocessing options are critical to both performance and
accuracy.

I Preprocessing may in�uence :
I Operation cost and/or computational time
I Size of factors and/or memory needed
I Reliability of our estimations
I Numerical accuracy.

I Therefore, not a real black box . . .

I Even if in general more a black box than most iterative solvers
. . .

75/ 80

Sparse solver : only a black box ?

Default (often automatic/adaptive) setting of the options is often
available ; However, a better knowledge of the options can help the
user to further improve its solution.

I Preprocessing options are critical to both performance and
accuracy.

I Preprocessing may in�uence :
I Operation cost and/or computational time
I Size of factors and/or memory needed
I Reliability of our estimations
I Numerical accuracy.

I Therefore, not a real black box . . .

I Even if in general more a black box than most iterative solvers
. . .

75/ 80

Direct solver : also kernels for iterative solvers ?

Direct
I Very general/robust

- Numerical accuracy
- Irregular/unstructured
problems

I Factorization of A

- May be costly
(memory/�ops)

- Factors can be reused for
multiple/successive
right-hand sides

Iterative
I E�ciency depends on :

- Convergence
preconditioning

- Numerical prop./struct. of
A

I Rely on e�cient Mat-Vect
product

- Memory e�ective
- Successive right-hand
sides is problematic

Hybrid approaches
(Domain Decompostion, Schur, Block Cimmino)

often strongly rely on both iterative and direct technologies

76/ 80

Outline

77/ 80

Appendix

78/ 80

Unsymmetric test problems

nnz(L|U) Ops
Order nnz ×106 ×109 Origin

conv3d64 836550 12548250 2693.9 23880 CEA/CESTA
�dapm11 22294 623554 11.3 4.2 Matrix market
lhr01 1477 18427 0.1 0.007 UF collection
qimonda07 8613291 66900289 556.4 45.7 QIMONDA AG
twotone 120750 1206265 25.0 29.1 UF collection
ultrasound80 531441 33076161 981.4 3915 Sosonkina
wang3 26064 177168 7.9 4.3 Harwell-Boeing
xenon2 157464 3866688 97.5 103.1 UF collection

Ops and nnz(L|U) when provided obtained with METIS and default MUMPS
input parameters.
UF Collection : University of Florida sparse matrix collection.
Harwell-Boeing : Harwell-Boeing collection.

PARASOL : Parasol collection

79/ 80

Symmetric test problems

nnz(L) Ops
Order nnz ×106 ×109 Origin

audikw_1 943695 39297771 1368.6 5682 PARASOL
brgm 3699643 155640019 4483.4 26520 BRGM
coneshl2 837967 22328697 239.1 211.2 Samtech S.A.
coneshl 1262212 43007782 790.8 1640 Samtech S.A.
cont-300 180895 562496 12.6 2.6 Maros & Meszanos
cvxqp3 17500 69981 6.3 4.3 CUTEr
gupta2 62064 4248386 8.6 2.8 A. Gupta, IBM
ship_003 121728 4103881 61.8 80.8 PARASOL
stokes128 49666 295938 3.9 0.4 Arioli
thread 29736 2249892 24.5 35.1 PARASOL

80/ 80

	Sparse direct linear solvers (I)
	Context and motivations
	(Pre)Processing sparse matrices for efficiency and accuracy
	Fill-in and reordering
	Numerical threshold pivoting
	Preprocessing unsymmetric matrices
	Preprocessing symmetric matrices

	Approaches for parallel factorization
	Elimination trees
	Distributed memory sparse solvers
	Some parallel solvers
	Case study: comparison of MUMPS and SuperLU

	Conclusion (Part I)

	Appendix

