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Outline

• ‘Birth’ of the IDR-theorem? A side effect of an attempt
to derive a more dimensional secant method.

• First practical use? An acceleration method for
Gauss-Seidel iteration.

• Why was it abandoned so soon? The irresistible
power of the CG-world.
CGS, BiCGSTAB, BiCGSTAB(ℓ), ...

• Why is it reanimated now? Somebody mailed me with
the question ‘What happened to IDR?’

• and finally: An explanation of the convergence!
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1-dimensional secant method

Secant method is a quasi-Newton method for solving f(x) = 0. It

constructs a sequence of approximations for x: Solve

cnfn + dnfn−1 = 0, cn + dn = 1

with fn = f(xn), etc. Calculate:

xn+1 = cnxn + dnxn−1

Let en = xn − x, then

en+1 ≈ Cenen−1 =⇒ |en+1| ≈ C̃|en|1.618

Secant cheaper than Newton since 1.6182 ≈ 2.618 > 2
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Poor Man’s N-dim. Secant ( PMS)

Is this possible in R
N for N > 1? Yes, but it is not a trivial thing.

Let

N∑

k=0

cjkf j−k = 0,

N∑

k=0

cjk = 1, xj+1 =

N∑

k=0

cjkxj−k

At increasing j, system becomes ill-conditioned .

Safer variant: Replace only the 2 most recent vectors:

[f j ,f j−1] =⇒ [f j+1,f j ]. This was tried out on a linear system

Ax − b = 0, in order to watch asymptotic convergence

behaviour.

What happened?
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Serendipity moment: experiment 2006:

n ‖fn‖
0 2.2017e+00

1 2.6116e+00

2 1.3207e+00

3 6.7938e-01

4 8.1994e-01

5 8.6446e-01

n ‖fn‖
6 8.4701e-01

7 7.8169e-01

8 9.9805e+00

9 2.6692e-01

10 4.6617e-02

11 7.9480e-03

n ‖fn‖
12 3.4924e-04

13 1.1295e-04

14 4.4870e-14

15 8.0980e-16

16 1.1736e-16

Idealized secant method, digits=16, N=7
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Why ‖f j‖ drops at j = 2N?

It turned out that f j were related by

f j+1 = B(cj0f j+cj1f j−1), with cj0f j+cj1f j−1 ⊥ p, cj0+cj1 = 1

B and p depend on the non-replaced vectors f0,f1, . . . ,fN−2.

Hence they were fixed during the process.

The norm-drop at j = 2N looks like a generic property of such a

recurrence relation.

Experiment: Choose B, p, f0 randomly, f1 = Bf0.
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Results from the random data process:

n ‖fn‖
0 1.2363e+00

1 1.5781e+00

2 8.1730e-01

3 5.2380e-01

4 7.4153e+00

5 3.3780e-01

n ‖fn‖
6 2.0971e-01

7 2.0858e-01

8 1.7339e-02

9 2.0244e-02

10 2.9124e-02

11 1.8132e-03

n ‖fn‖
12 1.6461e-04

13 7.2874e-06

14 1.1023e-18

15 9.6306e-19

16 6.0264e-19

drop-phenomenon, digits=16, N=7
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Intermezzo: A finite Krylov solver! (1)

• The recursion between f j in the simplified PMS process

might be used for solving a linear system. Which system?

• Suppose f(x) = b − Ax, then this recursion can be written

as

sj = f j − β(f j − f j−1) ⊥ p

f j+1 − f j = (B− I)sj − β(f j − f j−1)

A(xj+1 − xj) = (I − B)sj − βA(xj − xj−1)

• If A = I − B, both sides have a left factor A. Dividing out:

xj+1 − xj = sj − β(xj − xj−1)
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Intermezzo: A finite Krylov solver! (2)

• Try out the process with B the Gauss Seidel matrix.

• Let Ax = b. Let A = L+ D + U with the obvious meaning.

(D+L)xj+1 = −Uxj +b =⇒ xj+1 = −(D+L)−1(Uxj −b)

So B = −(D + L)−1U = I − (D + L)−1A.

• Call the process ‘Accelerated Gauss Seidel’ (AGS).

• Apply to discrete Poisson equation on unit square, Dirichlet

b.c.
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Results of AGS...

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Convection Diffusion on (25 * 25) grid, 529 equations
random rhs, Peclet=[0.30 , 0.00], 

re
s/

re
s 0

matvecs

Gauss Seidel    
IDR acceleration

It works much faster than in 1058 steps!

Smashing! but how smashing??
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Now compare to the real competitors ...
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AGS can compete with

SOR, ωopt slightly to high.

As problem size increases,

SOR(ωopt + 2%) wins.

But determination of ωopt
is then increasingly difficult

too!

Question: Why does it converge so fast?

and still Why is it finite?
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Still, Why is this solver finite?!

• Consider the sequence {f0,f1, . . .}, with f1 = Bf0, and

f j+1 = B[f j − βj(f j − f j−1)]

with βj chosen such that f j − βj(f j − f j−1) ⊥ p.

• Then for j ≥ 2, all f j are in B(p⊥).

• Then for j ≥ 4, f j−1 − βj−1(f j−1 − f j−2) are in p⊥∩B(p⊥).

Hence for j ≥ 4: f j ∈ B(p⊥ ∩ [B(p⊥)])⊂ B(p⊥).

• And so on and on and on.

• Define G0 = R
N , and Gj+1 = B(Gj ∩ p⊥), then f i≥2j ∈ Gj .

Proposition: The G- spaces form a nest: Gj+1 ⊂ Gj .
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Inductive proof of the nest-property

• First step: G1 = B(G0 ∩ p⊥) ⊂ G0.

• Assume Gj ⊂ Gj−1, then (Gj ∩ p⊥) ⊂ (Gj−1 ∩ p⊥).

• Therefore B(Gj ∩ p⊥) ⊂ B(Gj−1 ∩ p⊥), which is equivalent

to Gj+1 ⊂ Gj .

• Assume dim(Gj+1) < dim(Gj): G-spaces are shrinking.

• Assume dim(Gj+1) = dim(Gj). Then Gj+1 ≡ Gj , and Gj is an

invariant subspace for B. Also: Gj ⊂ p⊥.

• For random p, this will happen ‘almost never’

• This is the first (1976) Induced Dimension Reduction

theorem.
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IDR-theorem (1980)

Theorem 1 (IDR) Let A be any matrix in R
N×N ,

let v0 be any nonzero vector in R
N ,

let G0 be the full Krylov space KN (A,v0),

let S denote any (proper) subspace of R
N , and let the sequence

Gj , j = 1, 2, . . . be defined by

Gj = (I − ωjA)(Gj−1 ∩ S)

where ωj are nonzero numbers. Then

i: Gj ⊂ Gj−1, ii: M ≤ N exists such that

Gj = GM , j = M + 1,M + 2, . . .



7 October 2009 15

Delft University of Technology

How to implement this

• Choose initial estimate x0, and a suitable vector p ∈ R
N .

Let S = p⊥.

• Start residual r0 = b − Ax0, x1 = x0 − r0

We have two residuals in G0.

• Assume rn−1 and rn both in Gj . Make

sn = rn − β(rn − rn−1) ⊥ p. Then sn ∈ S ∩ Gj

• Then rn+1 = (I − ωjA)sj is in Gj+1

• Before calculating the first residual in Gj+1, ωn may be

chosen free. Mostly to minimize ‖rn+1‖
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Primitive IDR-algorithm (1977)

x0 is initial guess; r0 = b − Ax0.

Calculate ω0 such that r1 = r0 − ω0Ar0 in minimal in norm.

dr = r1 − r0, dx = ω0r0, x1 = x0 + dx.

For j = 1, 2, . . .

Calculate β such that

dr = rj − rj−1, sj = rj − βdr ⊥ p, t = Asj

If j is odd ω = tT s/tT t; (‖s − ωAs‖ is made minimal)

dx = ωsj − βdx, dr = −ωtj − βdr

rj+1 = rj + dr, xj+1 = xj + dx
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IDR-algorithm (1978)

n = 0, ω = 0, r = b − Ax

dr̂ = 0, dy = 0, γ = 0

while not convergent do

n = n+ 1

s = r + γdr̂, t = As

if (n = 1 or n even): ω = (sT t)/(tT t)

dx = γdy + ωs

dr = γdr̂ − ωt

x = x + dx, r = r + dr

if n odd : dr̂ = dr, dy = dx

γ = −(pT r)/(pT dr̂)

end
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Convergence

• Why does IDR process converge?
• IDR is a Krylov subspace method
• Residuals satisfy rn = Φn(A)r0, Φn is an n-th

degree polynomial.
• Analyse those polynomials
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The IDR polynomials.

• First element in Gj , r2j , satisfies r2j = Φ2j(A)r0.

• For arbitrary r ∈ Gj , r = (1 − ωjA)r′, with r′ ∈ Gj−1.

• Going down, finally : r = Ωj(A)r̃, with r̃ ∈ G0. Here

Ωj(t) = (1 − ωjt)(1 − ωj−1t). · · · (1 − ω1t).

• Hence Φ2j is ‘divisible’ by Ωj , Φ2j(t) = Ωj(t)φj(t)

• From the intersections with p⊥ follows for l < j:

pT Ωl(A)φj(A)r0 = 0, so Ωl(A
T )p ⊥ φj(A)r0.

Hence φj is the j-th BiCG .- polynomial

• Obtained without calculating AT products.
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Why IDR was abandoned so soon?

• Relation with BiCG: Convergence analysis!

• Inner product c = (φ(AT )p)Tψ(A)r0 can be
calculated as:

c = pT [φ(A)ψ(A)r0]

Meaning possibly a transposefree BiGC
algorithm?
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Polynomial CG algorithm

Regular steps in (Bi-)CG algorithm:

ρn = r̃T
nrn, βn = ρn/ρn−1

pn = rn + βnpn−1, qn = Apn;

p̃n = r̃n + βnp̃n−1, q̃n = AT p̃n

σn = p̃T
nqn, αn = ρn/σn

rn+1 = rn − αnqn;

r̃n+1 = r̃n − αnq̃n

xn+1 = xn + αnpn
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The polynomial relations

• The relevant vectors satisfy:

rn = ϕn(A)r0, pn = ψn(A)r0

r̃n = ϕn(AT )r̃0, p̃n = ψn(AT )r̃0

where ϕn and ψn are polynomials of degree n.

• Define “inner product’ between polynomials:

〈φ1, φ2〉 = rT
0 φ1(A)φ2(A)r0 = [φ1(A

T )r0]
Tφ2(A)r0

• then bi-orthogonality between rn and r̃k corresponds to

orthogonality of ϕn and ϕk.
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CG for orthogonal polynomials

The coefficients and polynomials can also be calculated by

ρn = 〈ϕn, ϕn〉, βn = ρn/ρn−1

ψn(t) = ϕn(t) + βnψn−1(t),

σn = 〈ψn, tψn〉, αn = ρn/σn

ϕn+1(t) = ϕn(t) − αntψn(t)

This is (part of) CG-algorithm for orthogonal polynomials.
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Algorithm for squared polynomials 1

Coefficients could as well have been calculated by

ρn = 〈1, ϕ2
n〉, σn = 〈1, tψ2

n〉 = 〈t, ψ2
n〉

But, then ϕ2
n and ψ2

n must be explicitly known. Assume that ϕ2
n

and ψ2
n−1 are explicitly known. Then

ψ2
n(t) = ϕ2

n(t) + 2βnϕn(t)ψn−1(t) + β2
nψ

2
n−1(t)

ϕ2
n+1(t) = ϕ2

n(t) − 2αntϕn(t)ψn(t) + α2
nt

2ψ2
n(t)

Extra required: ϕnψn−1 and ϕnψn, but these are dependent:

ϕn(t)ψn(t) = ϕ2
n(t) + βnϕn(t)ψn−1(t)
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Algorithm for squared polynomials 2

Descendant ϕn+1ψn (of ϕnψn−1):

ϕn+1(t)ψn(t) = φ2
n(t) + βnϕn(t)ψn−1(t) − αntψ

2
n(t)

Complete recursion:

Define Φn = ϕ2
n, Θn = ϕnψn−1, Ψn = ψ2

n, then

Ψn(t) = Φn(t) + 2βnΘn(t) + β2
nΨn−1(t)

Θn+1(t) = Φn(t) + βnΘn(t) − αntΨn(t)

Φn+1(t) = Φn(t) − 2αnt[Φn(t) + βnΘn(t)] + α2
nt

2Ψn(t)

where βn = ρn

ρn−1
, αn = ρn

σn

, ρn = 〈1,Φn〉, and σn = 〈t,Ψn〉
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Back to vectors

• r̂n = Φn(A)r0, p̂n = Ψn(A)r0, and q̂n = Θn(A)r0.

• Substitute A for t in the ‘squared polynomial algorithm’, and

apply the obtained operators to r0. Then we get

p̂n = r̂n + 2βnq̂n + β2
np̂n−1

q̂n+1 = r̂n + βnq̂n − αnAp̂n

r̂n+1 = r̂n − 2αnA[r̂n + βnq̂n] + α2
nA2p̂n

• r̂n+1 − rn is ‘divisible by A’, so we can update the solution:

x̂n+1 = x̂n + 2αn[r̂n + βnq̂n] − α2
nAp̂n
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Heart of CGS algorithm

Careful translation of squared-polynomial algorithm to vectors:

ρn = r̃T
0 r̂n, βn = ρn/ρn−1

û = r̂n + βnq̂n

p̂n = û + βn(q̂n + βnp̂n−1)

v̂ = Ap̂n, σn = r̃T
0 v̂, αn = ρn/σn

q̂n+1 = û − αnv̂

v̂ = αn(û + q̂n+1)

r̂n+1 = r̂n − Av̂

x̂n+1 = x̂n + v̂
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BiCG versus CGS, simple Poisson
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The price of squaring
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Other way for calculation of ρn and σn

• Main property of ϕn: 〈ϑ,ϕn〉 = 0 for all ϑ of degree lower

than n.

• A polynomial Ω of degree n satisfies Ω(t) = γϕn(t) + ϑ(t),

with ϑ of degree at most n− 1.

• Alternative calculation:

ρn =
〈Ω, ϕn〉
γ

, σn =
〈Ω, tϕn〉

κ

where Ω(t) = γϕn(t) + ϑ(t) = κψn(t) + υ(t).

• Only problem: the value of the scalefactors γ and κ.
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Birth of BiCGSTAB 1

Old IDR algorithm had a polynomial connection:

r2k = Ωk(A)ϕk(A)r0, r2k+1 = Ωk(A)ψk+1(A)r0

where

Ω0(t) = 1, Ωk(t) = (1 − ωkt)Ωk−1(t), k = 1, 2, . . .

(Here the polynomial ψn is not the BiCG-polynomial ψn.)

Polynomial Ωn is build factor by factor. Each factor can be chosen

the best contractor as possible for the vector it operates on.
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Birth of BiCGSTAB 2

Alternative calculation:

ϕn(t) = (−1)nα0α1 · · ·αn−1t
n + lower degree.

On the other hand

Ωn(t) = (−1)nω1ω2 · · ·ωnt
n + lower degree.

from which γ follows. A similar expresion holds for κ.

Now use Ωϕ instead of ϕ2 etc. The first algorithm that imple-

ments this was Bi-CGSTAB, in which ‘STAB’ means stabilization.
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Old IDR versus BiCGSTAB
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IDR and Bi-CGSTAB are different??

Observations:

• The methods behave identical, until IDR starts to suffer from

instability. Natural: they produce the same residuals.

• A few peaks lead to loss of about 3 decimal digits compared

to BiCGSTAB.

• For difficult problems, this occurred often,

• The author accepted the BiCGSTAB construction of the

IDR-polynomials to be superior.

This, after all, was wrong. It was only a not so lucky implementa-

tion of the old IDR algorithm..
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BiCGStab developments...

• Of course also BiCGSTAB sometimes suffered from

problems.

• This led to the development of modifications and

generalizations of BiCGSTAB.

• Very clever generalizations have been developed by Martin

Gutknecht, and Gerard Sleijpen

• The author had other things on his mind, and went on with a

not specifically Krylov-subspace-related life....
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Zemke, and a short monologue

• 2006: Jens-Peter Zemke, from Hamburg, mails: What

happened to IDR?

• Have to read carefully the 1980 version of the theorem, and

the ancient history.

• Theorem used a space S , not just p⊥.

• Serendipity moment: Why didn’t I use more vectors p, say s

instead of 1???

• Because it costs s+ 1 matvecs per Gj-space.

• But maybe there is more dimension reduction per Gj

• .... Never thought about, must try... and call it IDR(s)
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IDR-theorem again

Theorem 2 (IDR) Let A be any matrix in R
N×N ,

let v0 be any nonzero vector in R
N ,

let G0 be the full Krylov space KN (A,v0),

let S denote any (proper) subspace of R
N , and let the sequence

Gj , j = 1, 2, . . . be defined by

Gj = (I − ωjA)(Gj−1 ∩ S)

where ωj are nonzero numbers. Then

i: Gj ⊂ Gj−1, ii: M ≤ N exists such that

Gj = GM , j = M + 1,M + 2, . . .
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Principle of IDR( s) algorithms

1. Suppose P is some N × s matrix P,and let S = N (P).

2. Suppose we have s+ 1 independent vectors

r(n), r(n−1), r(n−2), . . . , r(n−s) in Gj−1.

3. Define Rn = [r(n), r(n−1), r(n−2), . . . , r(n−s)]

4. Determine a solution of PT Rnc = 0, with
∑
cj = 1.

5. Then Rnc is in S ∩ Gj−1, and therefore

6. (I − ωjA)(Rnc) is in Gj .

7. Since Gj ⊂ Gj−1, this can be repeated to generate more

vectors in Gj .

8. Since
∑
cj = 1, an x-update can be made.
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Termination of IDR( s) on 60 × 60 system.
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Scaling the ‘matvecs-axis’ (1)

Finite behavior for IDR(s): s+1
s
N steps. This sug-

gests a rescaling of the matvecs count with a factor s
s+1 :
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Convergence 2-D problem’
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Scaling the matvecs-axis
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haviour.

Do not be mislead: s = 1

and s = 2 show only half

and two third of the work re-

spectively.
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IDR(s) on a realistic problem

Problem: Convection diffusion equation from oceanography

Size: 42248 equations. Sparseness: About 300000 nonzeros.
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What have we seen?

In the picture with scaled matvec-axis, IDR(1) and IDR(2) show

better behaviour than the rest. But appearances are deceptive,

the actual work is 2 resp 3
2 times as much.

IDR(s) for higher s-values appears to be comparable to GMRES

which is the best (with respect to matvec-economy)

However: GMRES has O(n) inprods/vector-updates at step n,

leading to O(n2) total extra work.
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Begin of exlanation

Polynomials again! If n ∈ [l(s+ 1), l(s+ 1) + s], the

residuals satisfy

r(n) = Ωl(A)Ψn−l(A)r(0)

where

Ωl(t) =

l∏

k=1

(1 − ωkt), Ψn−l(t) = 1 +

n−l∑

j=1

cjt
j

similar as in the old IDR algorithm. The factors (I − ωlA) in

Ωl(A) are constructed as damping factor, for stabilization (just as

in old IDR).
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Continuation of explanation

In IDR(s), roughly speaking in every s+ 1 steps, one damping

factor is applied. Therefore low values of s will show more

damping.

To explain the rest of the behavior, we need an interpretation of

the other polynomials Ψn−l. How?

By removing the Ω-factors. This is not a trivial job, the process

is not very stable, and rather inefficient.

Have pity with the programmer.
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Removing the Ω-factors
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Upper plot: Only scaled

matvecs.

Lower plot: rl = Ψn(A)r0.

So the Ω-factors are re-

moved as well.

These plots are general-

izations of BiCG, except

for high-numbered iteration

steps, due to the instable

implementation
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Galerkin interpretation (1)

• If n = l(s+ 1), the polynomials Ψn−l satisfy

pH
r AjΨn−l(A)r(0) = 0, j = 0, 1, . . . , l − 1, r = 1, 2, . . . , s

Ψ(0) = 1

• This can be interpreted as a Galerkin approximation for an

overdetermined system

r(0) +

n−l∑

j=1

cjA
jr(0) = 0

• with testvectors (AT )jpr, r = 1, 2, . . . , s, j = 0, 1, . . . , l − 1

• We call this Krylov Galerkin.
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Galerkin interpretation (2)

The vectors Ajr0 act as columns in a modelmatrix M.

If we choose these as testvectors as well: We get the least

squares solution:

‖r0 +

n−l∑

j=1

cjA
jr(0)‖ is minimal

GMRES is an excellent practical implementation of this principle,

with only one disadvantage: a full depth recursion, with quadrati-

cally growing overhead.
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On Galerkin methods (1)

• Classical overdetermined linear system:

Mc = b, where M is an N × k matrix, N > k

• Galerkin approximation: Solve THMc = THb instead, for

some N × k testmatrix T.

Formal solution: c = (THM)−1THb.

• Residual: r = b − Mc = (I − P)b, with P = M(THM)−1TH

.

• P is an oblique projection, satisfying P2 = P.
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On Galerkin methods (2)

• If the test space coincides with the model space, i.e.

R(T) = R(M), we get the least squares solution.

r̂ = (I − P̂)b, with P̂ = M(MHM)−1MH

• The residual r̂ is perpendicular to the columns of M, since

P̂ = P̂
H

.

• ‖r̂‖ is not larger than ‖r‖ for any residual obtained by any

other Galerkin procedure.

• How much smaller???
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A funny property of projections

All projection operators for Galerkin methods have the same

column space, R(M).

Theorem: If P1 and P2 are projections such that

R(P1) = R(P2), then P1P2 = P2, and

(I − P1)(I − P2) = I − P1.

Proof:

Let x be arbitrary. Then

P2x ∈ R(P2) =⇒ P2x ∈ R(P1) =⇒ P2x = P1y for some y

Then P1P2x = P1P1y = P1y = P2x and finally

(I − P1)(I − P2) = I − P1 − P2 + P1P2 = I − P1
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Application of funny property

Let P denote some ‘Galerkin projector’ on R(M), and let P̂

denote the least squares projector on the same space.

The Galerkin residual satisfies r = (I − P)b, the least squares

residual satisfies r̂ = (I − P̂)b.

According to the funny property we have

r = (I − P)b = (I − P)(I − P̂)b= (I − P)r̂

The surplus dr to the least-squares residual then satisfies:

dr = r − r̂ = −Pr̂ ⊥ r̂
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An estimate for the Galerkin residual

The least squares residual is perpendicular to R(P̂) and thus to

R(P). Therefore dr ⊥ r̂.

Let the k columns of Q1 and the N − k columns of Q2 be

orthonormal bases for R(P) and R(P)⊥ respectively. So

QH
1 Q2 = O, QH

1 Q1 = Ik, and QH
2 Q2 = IN−k. Then

• 1) P = Q1(T
HQ1)

−1TH

• 2) r̂ = Q2z for some z, with ‖z‖ = ‖r̂‖
• 3) The residual surplus can be written as

dr = Pr̂ = Q1(T
HQ1)

−1(THQ2)z

where z can be any vector in IR
N−k
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Back to Krylov Galerkin

In general not much can be said about ‖Q1(T
HQ1)

−1THQ2z‖.

A clever choice seems to be T = M, because in that case

THQ2 = O. But this is GMRES, and that will be expensive in

overhead.

In the IDR(s) algorithms, we usually choose random vectors pk,

since we do not (yet) know better.

From the pictures can be seen that for large s, say s ≥ 16, there

is not much difference in convergence behaviour of the Krylov

Galerkin method with random pk vectors.

So we’ll consider the case s = ∞, meaning testvectors that are

completely randomly chosen.
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Random testvectors (1)

• Let T be an N × k matrix, of which all entries are

stochastically independent, and normally distributed N(0, 1).

We’re interested in ‖dr‖ = ‖Q1(T
HQ1)

−1THQ2z‖
• Q1 and Q2 are complementary, i.e. the compound matrix

Q = [Q1 |Q2] square and unitary. Then T̃ = QHT has the

same joint probability distribution as T.

• Let T̃
H

j = TQj , for j = 1, 2, then all entries of these matrices

are stochastically independent, and N(0, 1) distributed.

• We may write ‖dr‖ = ‖Q1T̃
H

1 T̃2z‖ = ‖T̃H

1 T̃2z‖, with

z ∈ IR
N−k a given vector that is completely determined by

the least squares solution.
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Random testvectors (2)

Denote matrices and vectors of which all entries are

stochastically independent, and distributed normally N(0, 1) by

Gaussian matrices and vectors respectively.

• Let u = T̃2z. According to rather elementary probability

theory, the entries of u are stochastically independent

normally distributed N(0, ‖z‖). Or we can say: u = ‖z‖v,

where v is a Gaussian vector in IR
k.

• Then dr = ‖r̂‖.T̃H

1 v,

• where T̃
H

1 and v are a Gaussian k × k matrix, and a

Gaussian vector in IR
k respectively.
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Random testvecors (3)

• For large k the inverse norm of the Gaussian matrix ‖T̃−1

1 ‖
is of order O(

√
k) (Alan Edelman). The norm of a Gaussian

vector in IR
k also is O(

√
k).

• It follows ‖dr‖ ≤ ‖r̂‖.‖(T̃H

1 )−1‖.‖v‖ ≤ C‖r̂‖k for moderate

value of C.

• Experiments showed something like ‖dr‖ = O(
√
k) instead.

• Therefore a statistical experiment was done on the

distribution of ‖B−1v‖, for Gaussian B and v.
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Experimental Distribution
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log10(Norm(A−1b)) for random A and b, 500 samples

N=  50 mean=1.119  var=0.220 stdev=0.469
N= 100 mean=1.240  var=0.211 stdev=0.459
N= 200 mean=1.422  var=0.205 stdev=0.452
N= 400 mean=1.577  var=0.226 stdev=0.476
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Scaled experimental Distribution
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log10(Norm(A−1b)/sqrt(n)) for random A and b, 500 samples

N=  50 mean=0.270  var=0.220 stdev=0.469
N= 100 mean=0.240  var=0.211 stdev=0.459
N= 200 mean=0.272  var=0.205 stdev=0.452
N= 400 mean=0.276  var=0.226 stdev=0.476
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What does this all mean?

• The 10-logarithm of dr is expected to behave like

log10(‖r̂‖) + 0.27 + log10(k)/2.

• With probability close to one we have

log10(‖dr‖) ≤ log10(‖r̂‖) + 0.27 + log10(k)/2 + 1.4

• So random Galerkin is expected to run about

0.27 + log10(k)/2 decimal digits behind least squares at step

k. At most 1.5 decimal digits extra may be lost.

• For IDR(s), with s ≥ 16, a same kind of result may be

expected. As we have seen a few sheets before.
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Result of experiment.
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log(Gal(1) − GMRES)      
−12.5714+10.3437*log10(n)
log(Gal(2) − GMRES)      
−5.2893+4.8534*log10(n)  
log(Gal(16) − GMRES)     
0.2541+0.6152*log10(n)   
log(Gal(32) − GMRES)     
0.4442+0.4420*log10(n)   

Reduced IDR(s)-GMRES,

logarithmic graph.

The reduced residual-

logarithms are fitted with

C0 + C1 log10(k).

For s = 1 and s = 2, we are

far from the ‘full random’

property. Hence a bad fit.

s C0 C1

16 0.2541 0.6152

32 0.4442 0.4420
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Final remarks

The author thinks that serendipity is an important part of

scientific research, and at least it is an extremely satisfying part.

According to Peter Wynn, ‘numerical analysis is much of an

experimental science’, and in the IDR-CGS-IDR(s) development,

the experimental part was the main source of serendipity.

So the numerical mathematician should never hesitate to do

numerical experiments, nor hesitate to look not only to his/her

results, but also the non-results. There may be something in it!

Without Martin van Gijzen, this story wouldn’t have been told be-

fore I was 80 years old. Thank you Martin.
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