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1. Motivation

In the first lecture, we started from a given differential equation
with initial conditions distribute according to some probability
density function (PDF) ρ0(x). Furthermore, we assumed that
ρ0 = N(xb,B) is Gaussian.

The ensemble Kalman filter requires that we generate an appro-
priate ensemble xi of solutions with law ρ0. How to do this in
case ρ0 is not Gaussian?

Furthermore, is it possible to generalize the Kalman analysis step
to non-Gaussian PDFs? This leads us to consider particle filters.

In both cases, we may consider Monte Carlo methods to sample
from a given PDF. How to do this efficiently?



2. Monte Carlo Methods

Given a probability density function (PDF) π over a configuration
space Rn, we are often interested in expectation values

E[f ] =
∫
Rn

f(x)π(x) dx

for a given function (observable) f . If n � 1, numerical quadra-
ture can become prohibitively expensive and Monte Carlo meth-
ods are often the only alternative.

The basic Monte Carlo approach assumes that we can draw
independent and identically distributed (i.i.d) random samples xi
from the PDF π. Then an approximation to E[f ] can be obtained
as

f̄N =
1

N

N∑
i=1

f(xi).



How to generate samples from a given PDF π? Almost all meth-
ods rely on the assumption that we can draw samples from
the uniform distribution U[0,1] and/or the normal distribution
N(0,1).

If we give up the request that samples should be independent,
then the much wider class of Markov chain Monte Carlo (MCMC)
methods can be considered.

Under the assumption of geometric ergodicity we still obtain an
O(N1/2) convergence of

f̄N =
1

N

N∑
i=1

f(xi)

to the mean E[f ], but the prefactor in O(N1/2) will be reduced
from i.i.d. samples. On the other hand, generation of samples
might be much easier.



3. Markov Chain Monte Carlo (MCMC) Methods

The following strategy allows one to produce statistically depen-
dent samples from a given PDF in an elegant manner (Metropolis
et al, 1953). It is based on the idea that one can construct a
Markov process with the desired π as the (only) invariant PDF.

Let A(y|x) denote the transition rule of a Markov process, i.e.,
given a PDF ρi the next iterate is provided by

ρi+1(y) =
∫
Rn

ρi(x)A(y|x) dx.

and invariance of π amounts to

π(y) =
∫
Rn

π(x)A(y|x) dx.

A stronger assumption is that of detailed balance

π(x)A(y|x) = π(y)A(x|y).



Metropolis-Hastings algorithm. Given the current state xi:

• Draw y from the proposal distribution T (y|xi).

• Draw u ∼ U [0,1] and update

xi+1 =

{
y, ifu ≤ r(y,xi)
xi otherwise.

Here

r(y,x) =
δ(y,x)

π(x)T (y|x)

and δ(y,x) is any symmetric function in x and y that makes

r(x,y) ≤ 1 for all x, y.



The actual transition probability from x to y 6= x is given by

A(y|x) = T (y|x) r(y,x) = π(x)−1 δ(y,x).

Similarly,

A(x|y) = T (x|y) r(x,y) = π−1(y) δ(x,y).

Since δ(x,y) = δ(y,x) the detailed balance condition

π(x)A(y|x) = π(y)A(x|y)

follows.

The most popular choice for δ(y,x) is

δ(y,x) = min(π(x)T (y|x), π(y)T (x|y))

leading to

r(y,x) = min

(
1,

π(y)T (x|y)

π(x)T (y|x)

)
.



A simple random walk MCMC algorithm is provided by the pro-

posal step

y = xi + εi

where εi are i.i.d. according to some given PDF ρ(x). Provided

that ρ(x) = ρ(−x), we obtain T (y|x) = T (x|y) and the accep-

tance function reduces to

r(y,x) = min

(
1,

π(y)

π(x)

)
.

An efficient MCMC method should lead to a rapid decorrelation

of the accepted samples {xi}N
i=1.



4. Geometric ergodicity (Meyn & Tweedy)

Minorization condition. There is a compact subset C of phase

space X , a probability measure ν on X and a constant ε > 0 such

that ∫
1Ω(y)A(y|x) dV (y) ≥ εν(Ω)

for all x ∈ C and all measurable sets Ω ⊂ X .

Drift condition. There is a scalar (Lyapunov) function W with

W (x) ≥ 1 and W (x) → ∞ as ‖x‖ → ∞ and numbers α ∈ (0,1),

and β ∈ [0,∞) such that∫
W (y)A(y|x) dV (y) ≤ αW (x) + β1C(x)

for the MCMC method with transition density A(y|x).



Theorem. If a Markov chain transition density A(y|x) satisfies

appropriate drift and minorization conditions, then there is a

unique invariant PDF Π and

|Ex0[f(xi)]− EΠ[f ]| ≤ κriW (x0)

for all f with |f | ≤ W , where r ∈ (0,1) and κ ∈ (0,∞).

See Meyn & Tweedy (1993) for geometric ergodicity; Rosenthal

(1995,2002) for relatively elementary proofs using drift condi-

tions; Roberts & Tweedie (1996), Mengersen & Tweedie (1996),

Mattingly, Stuart and Higham (2001) for applications to MCMC

methods and numerical solutions of SDEs.



A practical measure is provided by the integrated auto-correlation

function τint(h) for a given observable h(x).

Let σ2 = var[h] and compute

ρj = corr{h(xi), h(xi+j)},
which becomes independent of i once the MCMC has equilibrated, i.e., all xi

are assumed to follow the law π. Then

Nvar

{
h(x1) + · · ·+ h(xN)

N

}
= σ2

1 + 2
N−1∑
j=1

(
1−

j

N

)
ρj


≈ σ2

1 + 2
N−1∑
j=1

ρj

 =: σ2 τint(h).

Hence the variance in the MCMC estimator is equal to that of

N

τint(h)

independent samples.



5. Dynamial systems motivated Markov chains

Given a PDF ρ(q), we introduce the potential V (q) through

C exp(−V (q)) = ρ(q) → V (q) = − log(ρ(q)) + C,

and the “guide Hamiltonian”

H =
1

2
p ·

[
M−1p

]
+ V (q).

The “mass matrix” M can be used as a “preconditioner” to

enhance sampling.

We introduce the state variable x = (qT ,pT )T and consider the

associated Hamiltonian equations of motion

q̇ = M−1p, ṗ = −∇V (q).



Properties:

(i) The canonical density

π(x) ∝ exp(−H(q,p)) ∝ exp(−pTM−1p/2)× ρ(q)

is an invariant of the dynamics (but not the only one!). We will

replace the task of sampling from ρ(q) by sampling from π(x)

and marginalization (i.e., we just ignore the p’s).

(ii) The equations of motion conserve volume and are time-

reversible, i.e., the involution

F : (q,p) → (q,−p)

reverses the direction of time.



Numerical implementation:

We will use the 2nd order Störmer-Verlet (SV) method

pn+1/2 = pn −
∆t

2
∇V (qn),

qn+1 = qn + M−1pn+1/2,

pn+1 = pn+1/2 −
∆t

2
∇V (qn+1)

The SV method conserves volume in phase space and is time-

reversible.

But since the SV method does not conserve energy H, the canon-

ical distribution π(x) ∝ exp(−H(x)) is not an invariant!



However, since the SV method is symplectic it conserves a mod-

ified energy H∆t to arbitrarely high order!

More precisely, let us denote the numerical propagator by Ψ∆t.

Then

H(Ψ∆t(x))−H(x) = O(∆t2)

for the SV method. But we can find modified energies H∆t such

that

H∆t(Ψ∆t(x))−H∆t(x) = O(∆tp)

for p arbitrarely large as ∆t → 0 (Neishtadt, Benettin & Giorgilli,

Hairer & Lubich, Reich).

Efficient methods for computing modified energies are available

(Hardy & Skeel).



6. Generalized hybrid Monte Carlo method

A Markov chain will converge to some distribution of config-

urations if it is constructed out of Markov chain Monte Carlo

(MCMC) updates each of which has the desired distribution as

an invariant PDF, and which taken together are ergodic.

The generalized hybrid Monte Carlo (GHMC) algorithm of Horowitz

(1991) and Kennedy & Pendleton (2001) for sampling from the

canonical ensemble with density function

π(q,p) ∝ exp(−H(q,p)),

is defined as the concatenation of a classical mechanics Monte

Carlo (CMMC) and a partial momentum refreshment Monte

Carlo (PMMC) step.



Classical mechanics Monte Carlo (CMMC):

(i) Classical mechanics (CM): Solution of Hamilton’s equations
with a time-reversible and volume conserving method Ψ∆t
(e.g., the SV method) over L steps and step-size ∆t.

The resulting time-reversible and sympletic (and hence vol-
ume conserving) map from the initial to the final state is
denoted by Uτ : (q,p) → (q′,p′), τ = L∆t.

(ii) A momentum flip F : (q,p) → (q,−p).

(iii) Monte Carlo (MC): a Metropolis accept/reject test

(q′,p′) =

{
FUτ(q,p) with probability min(1, exp(−δH))

(q,p) otherwise
,

with

δH := H(Uτ(q,p))−H(q,p) = H(FUτ(q,p))−H(q,p).



Partial momentum refreshment Monte Carlo (PMMC)

We first apply an extra momentum flip F so that the trajec-

tory is reversed upon an CMMC rejection (instead of upon an

acceptance). The momenta p are now mixed with a normal

(Gaussian) i.i.d. distributed noise vector u ∈ Rm and the com-

plete partial momentum refreshment step is given by(
u′

p′

)
=

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)(
u
−p

)
(1)

where

u = M(q)1/2ξ, ξ = (ξ1, . . . , ξm)T , ξi ∼ N(0,1),

and 0 ≤ φ ≤ π/2. Here N(0,1) denotes the normal distribution

with zero mean and unit variance.



Detailed balance of CMMC step:

Given two subsets A and B of phase space R2m, let πAB denote

the probability to go from A to B. Then

πAB =
∫
B

∫
A

A(x′|x)π(x) dx dx′

=
∫
R2m

χA(x)χB(FUτ(x)) min

{
1,

π(FUτ(x))

π(x)

}
π(x) dx

=
∫
R2m

χA(x)χB(FUτ(x)) min {π(x), π(FUτ(x))} dx

=
∫
R2m

χA(FUτ(x̂))χB(x̂) min {π(FUτ(x̂)), π(x̂)} dx̂

= πBA

where we used the substitution x̂ = FUτ(x) (volume conserving!)

and (FUτ)2 = id!



Comments:

The GHMC method can be viewed as a Metropolis corrected
time-stepping method for second-order Langevin dynamics pro-
vided L = 1 (number of time-steps per MC step) and φ =

√
2∆tγ

(angle in the momentum refreshment step).

The special case L = 1 and φ = π/2 leads to the hybrid Monte
Carlo (HMC) method and can be viewed as a Metropolis cor-
rected time-stepping method for Brownian dynamics with step-
size h =

√
∆t.

Neither the CMMC nor the PMMC step on its own are geo-
metrically ergodic. Roberts & Tweedie (1996) and Mengersen
& Tweedie (1996) have discussed geometric ergodicity of HMC
method. We are working on the extension of these results to the
generalized hybrid MC method.



7. Analysis of acceptance rates

We now analyze the acceptance rate of the classical mechanics Monte Carlo
step.

Step 1. We obtain

〈exp(−δH)〉 =
1

C

∫ ∞

−∞
exp(−δH) exp(−H) dz

=
1

C

∫ ∞

−∞
exp(−H ◦ Uτ) dx =

1

C

∫ ∞

−∞
exp(−H) dx′ = 1

Step 2. Cumulants:

0 = log (〈exp(−δH)〉)

=
∞∑

n=1

κn

n!
= −〈δH〉+

1

2
〈(δH − 〈δH〉)2〉+ . . .

Hence

〈δH〉 ≈
1

2
〈(δH − 〈δH〉)2〉 = O(m∆t2p)

p ≥ 1 the order of the method and m the number of DOFs.



Step 3. Hence we may assume that δH is N(σ2
0/2, σ2

0) distributed with σ2
0 =

〈(δH − 〈δH〉)2〉 = 2〈δH〉. The average acceptance rate is determined by

〈Pacc〉 =
1√

2πσ0

∫ +∞

−∞
min (1, exp(−x)) exp

(
−

(x− σ2
0/2)2

2σ2
0

)
dx

= function of σ2
0

Step 4. To keep the average acceptance rate constant as the system size
changes we have to keep the variance σ2

0 constant, i.e.,

∆t2p m = constant.

However, the CMMC step becomes increasingly computationally demanding
as we either decrease ∆t (i.e., increase the number of time-steps L for τ =
L∆t = const.) or increase the order p of the method. We got p = 2 for the
Störmer-Verlet method.



8. Generalized shadow hybrid Monte Carlo methods

Our work has been motivated by the desire to use

π̃ ∝ exp(−H∆t),

where H∆t is a modified/shadow energy computed by the meth-
ods described earlier.

This choice achieves an optimal acceptance rate Pacc in the
CMMC part (arbitrarily close to one even as the system size
m increases).

What about the momentum refreshment step? The GHMC
methodology allows one to implement the partial momentum re-
freshment (PMMC) step as a Markov chain Monte Carlo method
with invariant density π̃.



In the partial momentum refreshment step, we consider H∆t for

fixed q as a function of p and introduce H∆t,q(p) as a short hand

to emphasize this point.

The idea is to construct a standard hybrid Monte Carlo method

in the “position” vector p and a set of “conjugate momenta”

ξ ∈ Rm. The required “Hamiltonian” is provided by

H(p, ξ) = H∆t,q(p) +
1

2
ξT ξ

and defines the reference density

π̂ ∝ exp(−H) ∝ exp(−H∆t,q)× exp(−ξT ξ/2)

for the Metropolis acceptance criterion.



The generalized shadow HMC (GSHMC) method of Akhmatskaya
& Reich (2005,2008) achieves a quasi m-independent acceptance
rate in both the CMMC and PMMC steps for given fixed step-size
∆t in the classical mechanics propagator Ψ∆t.

GSHMC can be viewed as an importance sampling method using
the modified ensemble

π̃ ∝ exp(−H∆t).

The computational overhead compared to GHMC consists in two
evaluations of the modified energy H∆t per time step (and hence
in a small number of additional force evaluations).

Other forms of the momentum update under a modified Hamilto-
nian have been discussed by Izaguirre, Skeel Hampton and Sweet
(2004,2009).



9. A nonlinear Kalman analysis step

A natural application of GSHMC is in Bayesian parameter esti-
mation (and other statistical inference problems) (Neal, 1996).

In Bayesian estimation, we consider the unknown parameters x

as random variables with some a priori distribution ρ(x). The a
priori information is combined with the measurement y through
a conditional density function ρ(y|x).

In case of the Kalman filter, we had

ρ(x) = N(xf ,Pf)

and

ρ(y|x) = N(y −Hx,R).



Recall that Bayes’ rule is given by

ρ(x|y) =
ρ(y|x) ρ(x)

ρ(y)
,

where

ρ(y) =
∫ +∞

−∞
ρ(y|x) ρ(x) dx

is just a normalization constant since y is a set of known quan-
tities.

If all involved PDFs are Gaussian then

ρ(x|y) = N(xa,Pa)

and Kalman’s formulas follow.

For the general case, Monte Carlo methods can be used to gen-
erate samples {xi} from the distribution ρ(x|y).



10. Summary

Sampling of a given PDF can be achieved by embedding into a classical
mechanics system. This allows for proposal steps that lead “far away” from
the current state (on a given energy level).

Time-stepping artificts can be eliminated by applying a Metropolis acceptance
criterion. The rejection rate increases with system size, however.

Acceptance rate can be increased by importance sampling with respect to a
modified energy. The computational overhead is minor.

These methods could be used for nonlinear generalizations of Kalman filters
(particle filters).

Geometric ergodicity might not hold unless the potential energy function V is
globally Lipschitz and growths sufficiently fast at infinity. This can be cured
by time-reversible variable step-size methods.

High energy barriers might also lead to a slow exploration of phase space.
Here an artificial temperature can often help (simulated annealing / parallel
tempering).
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