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1. Problem statement

Consider a differential equation

ẋ = f(x), x ∈ Rn,

for which we have some (but not precise) prior knowledge about

its initial state x(0) and for which we can collect observations

y(ti) ≈ Hx(ti), y ∈ Rk, H ∈ Rk×n,

k < n, at discrete times ti > 0, i = 1, . . . , I, subject to some

measurement errors.

We wish to find a solution x(t), t ∈ [0, tI], that makes opti-

mal use of the available information in terms of initial data and

observations.





A Gaussian distributed stochastic variable z ∈ Rp with mean a ∈
Rp and covariance matrix B ∈ Rp×p will be denoted by

z ∼ N(a,B).

A typical setting of our data assimilation problem is then

x(0) ∼ N(xB,B)

and

y(ti)−Hx(ti) ∼ N(0,R), i = 1, . . . , I.



2. Existing approaches

We write solution values at ti with initial condition x0 at t = 0

as x(ti,x0).

4DVar is a technique to find the optimal initial condition given

all the available information. It leads to the minimization of the

(nonlinear) cost functional

J(x0) =
1

2
(x0 − xb)

TB−1(x0 − xB)

+
1

2

I∑
i=1

(y(ti)−Hx(ti,x0))
TR−1(y(ti)−Hx(ti,x0)).



Kalman filtering provides an approach in which one marches in
time and alternates between a propagation and an analysis step:

Propagation step: Between observations propagate the mean
and the covariance under the differential equation, i.e. prior to
each observation, we have a most likely state xf(ti) and a co-
variance matrix Pf(ti) and we make the simplifying (often highly
questionable) assumption that

x(ti,x0) ∼ N(xf(ti),Pf(ti)).

Kalman analysis step: Feed in the observations y(ti) to obtain
an improved most likely state xa(ti) and a covariance matrix
Pa(ti). We continue with a propagation step using the analyzed
states

x(ti;x0) ∼ N(xa(ti),Pa(ti)).



3. Kalman analysis step

Given the prior mean xf and its covariance matrix Pf , the inclu-

sion of observations at ti leads to the Kalman analysis step

xa = xf −K
(
Hxf − y

)
with Kalman gain matrix

K = PfH
T

(
HPfH

T + R
)−1

and

Pa = (I−KH)Pf .

I will come back to this step in my second talk. For now we take

the formulas for granted.



4 Ensemble propagation and ensemble Kalman filter

We now consider a collection

X(t) = [x1(t) |x2(t) | · · · |xm(t)] ∈ Rn×m

of m independent solutions of the differential equation

ẋ = f(x)

From this matrix we extract the time-dependent ensemble

mean: x̄ = m−1 ∑
i

xi ∈ Rn,

deviations: Y = [x1 − x̄ |x2 − x̄ | · · · |xm − x̄] ∈ Rn×m,

covariance: P =
1

m− 1
YYT ∈ Rn×n.



The ensemble Kalman filter of Evensen (1996), combines en-

semble propagation with the classical Kalman analysis step, i.e.,

at ti there is a discontinuous change in X(t), i.e.

Xf := X(ti − ε) → X(ti + ε) = Xa,

where Xa is the ensemble generated from the assimilated ensem-

ble mean and deviation matrix:

Xa := xae
T + Ya, e = [1,1, . . . ,1]T ∈ Rm.

How to formulate the Kalman analysis step in terms of the en-

semble deviations Y from the mean?



Kalman square root filters rely on a presentation/approximation
of a covariance matrix P ∈ Rn×n as the product of a n×m matrix
Y and its transpose, i.e.

P =
1

m− 1
YYT .

The Kalman analysis becomes

Ya = YfTr

or equivalently

Ya = TlYf .

The matrices Tr ∈ Rm×m and Tl ∈ Rn×n are given in terms of
square roots of symmetric matrices involving P, R, and H.

We are interested in particular in the case m� n and then Tr is
to be preferred. Note that Tr is not uniquely defined.



We now got a complete filter implementation for nonlinear ODEs.

We have ignored model and numerical time-stepping errors.

There are problems for small ensemble sizes m and very large val-

ues of the phase space dimension n due to a poor representation

of the ensemble covariance matrix P ∼ YYT .

These problems are addressed (partially) by ensemble inflation

and localization.



5. Continuous factorization algorithms

In Bergemann et al, 2009, we have introduced two new ideas for

the implementation of ensemble Kalman filters:

The Kalman analysis step for the ensemble deviations Y is for-

mulated in terms of an ODE

dY

ds
= −

1

2m− 2
YYTHTR−1HY

with initial condition Y(0) = Yf and Ya = Y(1). The equation

is typically solved using two time-steps with forward Euler.

(NB. This ODE is, of course, well known; but has not been used

in the context of ensemble Kalman filters before.)



The second idea is to write the matrix Y(t) of ensemble devia-

tions as a (generalized) SVD decomposition

Y(t) = U(t)Σ(t)V(t)

with orthogonal U ∈ Rn×m, diagonal Σ ∈ Rm×m and orthogonal

V ∈ Rm×m.

To compute such a decomposition from scratch at each time-

step would be rather time consuming. Instead one can consider

continuous/incremental updates in terms of underlying ODEs for

the factors U(t), Σ(t), V(t).

Similar ideas have been developed previously for the computation

of Lyapunov exponents.



6. Localization

The empirical covariance matrix P contains spurious long-distance

correlations due to under-sampling (m � n). This problem has

led to the idea of localization, i.e., PfH
T in the Kalman analysis

step is replaced by

PfH
T → C ◦

(
PfH

T
)
,

where C is a “local” (in some distance) covariance matrix and

◦ denotes the Schur product of two matrices C,A ∈ Rn×k, i.e.

(C ◦A)i,j = (C)i,j (A)i,j.

While it is straightforward to apply localization to the update

of the ensemble mean, localized updates of the deviation matrix

Yf → Ya are the subject of ongoing research.



Based on our continuous update formulation, we can implement

localization easily.

For example, we take the (linearized) ODE update equation

dY

dt
= −

1

2
PfH

TR−1HY

with Pf constant and temper/localize it to

dY

dt
= −

1

2

[
C ◦

(
PfH

T
)]

R−1HY.

This is a linear, constant coefficient ODE in Y(s) with Y(0) =

Yf and the “Kalman” update is provided by Ya = Y(1).

See Bergemann and Reich, 2009, for details.



7. Numerical results for a barotropic fluid model

We use a 1.5 layer reduced-gravity quasi-geostrophic model with
double-gyre wind forcing and biharmonic friction:

qt = −ψx − εJ(ψ, q)−A∆3ψ+ 2π sin(2πy),

where q = ∆ψ − Fψ, J(ψ, q) = ψxqy − ψyqx. See Sakov & Oke,
Tellus A, 2008, for details.

The number of degrees of freedom (phase space) after spatial
discretization is n = 127× 127 = 16129, the number of observ-
ables at each ti is k = 300, and the size of the ensemble is
m = 25. The variance of the observation error is 4, i.e., R = 4I.
We also use

Cij,i′j′ = exp
(
−(i− i′)2/r20 − (j − j′)2/r20

)
for grid points xij and xi′j′; r0 the localization radius.



Observations are obtained from a reference numerical trajectory
with added noise of variance R, i.e., we treat our numerical
model as “perfect”. Simulations are run over 4000 time-steps
with data assimilated every fourth time-step.

We compute the standard deviation (STD) of the difference
between the “true” (unperturbed) trajectory and the ensemble
mean at each observation point ti. Roughly speaking the filter
yields “skill” if the STD is less than 2 on average.

We study the behavior of the localized filter for different values of
the localization radius r0 (r0 →∞ corresponds to no localization)
and ensemble inflation

Y(ti) → δY(ti), δ > 1

after each assimilation step.



Results at final time:



δ\r0 5 10 15 20 25 30 35 40
1.00 1.46 1.95 Inf Inf Inf Inf Inf Inf
1.02 0.60 0.64 0.75 1.03 1.49 1.70 Inf Inf
1.04 0.65 0.61 0.62 0.74 0.92 1.49 Inf Inf
1.06 0.76 0.66 0.64 0.69 0.76 1.02 Inf Inf
1.08 0.88 0.73 0.66 0.68 0.77 1.05 Inf Inf
1.10 0.97 0.80 0.71 0.69 0.74 0.92 Inf Inf
1.12 1.06 0.87 0.76 0.72 0.75 0.86 Inf Inf
1.14 1.14 0.93 0.80 0.76 0.77 0.84 Inf Inf
1.16 Inf 0.99 0.84 0.78 0.76 0.90 Inf Inf
1.18 Inf 1.04 0.88 0.81 0.83 0.86 Inf Inf

Mean RMS error for the ensemble mean update over the last 3000 time steps as a functions
of the localization radius r0 (over grid point indices) and the inflation factor δ. For clarity,
the value Inf is assigned if the RMS error exceeds the value 2.0 (no filter skill).



8. Numerical results from the Lorenz 96 model

The standard implementation of the Lorenz-96 model has state
vector x = (x1, . . . , xn)

T with n = 40 and its time evolution is
given by the equation

ẋj = (xj+1 − xj−2)xj−1 − xj + 8

with periodic boundary conditions.

We observer every second grid point, i.e., k = 20, with measure-
ment variance R = I.

The model is chaotic with 13 positive Lyapunov exponents. One
would expect that the necessary ensemble size m should be larger
than the number of positive Lyapunov exponents. But this is not
the case if localization is used! We show results for m = 10.



Impact of localization on 40 x 40 covariance matrix. We indicate

all entries that are above a certain threshold.
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Final fields with and without localization (ensemble size m = 10):
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9. Numerical results from a linear balance model

We consider two dynamic variables (PV and geopotential) in an
idealized setting of linear advection

qt = qx, Ψt = Ψx.

We assume that these two variables are related by the balance
relation (PV inversion)

Ψ− α2Ψxx = q. (1)

We only (partially) observe Ψ and initialize the ensemble mem-
bers xi = (Ψi, qi) such that the balance relation (1) holds.

We study the impact of localization on the conservation of (1)
for localization radii r0 ∼ α.



No localization:
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localization with α = r0:
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good tracking in Ψ (which is partially observed), balance is dis-
rupted, less optimal tracking of the q field.



Impact of localization on 2000 x 2000 covariance matrix. We

indicate all entries that are above a certain threshold.
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Here is the magic solution combinging balance with localization (work in
progress, keep watching my homepage)
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10. Conclusion

• Ensemble Kalman filters are a very powerful tool for data assimilation
now being used, for example, by the DWD.

• Problems arise for small ensemble sizes due to underestimation of vari-
ances and spurious covariances.

• Ensemble inflation and localization are common approaches to overcome
these limitations.

• These techniques can be implemented efficiently and robustly within the
continuous in time covariance updates.

• Localization is problematic for multi-scale problems and is subject to
ongoing research.

• The numerical model is, of course, not “perfect”. What is the impact
of systematic discretization errors?

• The assumption of Gaussian distributed solutions in the Kalman analysis
step is also questionable.
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