A multilevel Jacobi-Davidson method for polynomial eigenvalue pde problems

Marlis Hochbruck and Dominik Löchel

Research Training Group "Dynamic of hot plasmas"

October 2009

Physical background

Multilevel Jacobi-Davidson method

Summary and perspectives

Energy gain by nuclear fusion

- fusion of deuterium and tritium to helium
- ignition of fusion:
 - overcome Coulomb barrier
 - high temperature and high density required for a long time
 - gas is in plasma state (atoms fully ionized)
- magnetic confinement
 - high energy loss if particles hit wall

TEXTOR at Research Center Jülich

Tokamak Experiment for Technology Oriented Research

Tokamak

- toroidal coil
- magnetic field lines within the flux surface
- primary coil
- transformer iron

Drift instabilities

Fourier analysis

$$\Phi(\theta, t) = \phi(\theta) \cdot \exp(\mathbf{i}\mathbf{k}_r r + \mathbf{i}\mathbf{k}_\perp y - \mathbf{i}\omega t), \qquad \text{Im}(\omega) \text{ maximal}$$

Eigenvalue pde problem

$$\begin{aligned} \frac{\partial^2 \phi}{\partial \theta^2} &= \frac{\omega (\widehat{\beta} + z \gamma_3 \widehat{\mu} K_{\perp}^2) - (1 + \widehat{\lambda}) \widehat{\beta} K_{\perp} + i z \gamma_3 \widehat{C} K_{\perp}^2}{\gamma_1^3 z \Big(K_{\perp} - \omega \big(1 + z \gamma_3 (1 + \widehat{\alpha}) K_{\perp}^2 \big) \Big)} \\ &\cdot \left((1 + \widehat{\alpha}) \frac{\gamma_2}{\gamma_3} L_{\mathrm{B}} (1 - z \gamma_3 \omega K_{\perp}) + z \omega (\omega + \widehat{\alpha} K_{\perp}) \right) \phi \end{aligned}$$

generic form:

$$\left[\omega^{3}a_{3}+\omega^{2}a_{2}+\omega\left(a_{1}+b_{1}\frac{\partial^{2}}{\partial\theta^{2}}\right)+a_{0}+b_{0}\frac{\partial^{2}}{\partial\theta^{2}}\right]\phi=0$$

 a_j, b_j, ϕ : [0, 2 π [\mapsto \mathbb{C} , 2 π -periodic smooth functions in θ

sought: eigenpair (ω , ϕ) with maximum growth rate Im(ω)

Löchel, Tokar, H., Reiser, PoP 2009

Spatial discretization

polynomial pde eigenvalue problem

$$\left[\omega^{3}a_{3}+\omega^{2}a_{2}+\omega\left(a_{1}+b_{1}\frac{\partial^{2}}{\partial\theta^{2}}\right)+a_{0}+b_{0}\frac{\partial^{2}}{\partial\theta^{2}}\right]\phi=0$$

discretization

- ▶ [0, 2π[→ θ
- ► $a_j(\theta) \rightarrow \text{diag}(a_j(\vec{\theta})), \quad b_j(\theta) \rightarrow \text{diag}(b_j(\vec{\theta}))$
- ► finite differences or pseudo-spectral-method (periodic b.c.)

$$\frac{\partial^2}{\partial\theta^2}\phi\mapsto D_2\,\vec{\phi}$$

cubic matrix eigenvalue problem

$$P(\omega)\vec{\phi} := (\omega^3 M_3 + \omega^2 M_2 + \omega M_1 + M_0)\vec{\phi} = 0$$

$$\begin{aligned} & \left(\omega^{3}M_{3} + \omega^{2}M_{2} + \omega M_{1} + M_{0}\right)\vec{\phi} = 0 \\ \Leftrightarrow \left(\omega \begin{bmatrix} M_{3} & \\ & I \\ & I \end{bmatrix} + \begin{bmatrix} M_{2} & M_{1} & M_{0} \\ -I & \\ & -I \end{bmatrix} \right) \begin{bmatrix} \omega^{2}\vec{\phi} \\ & \omega\vec{\phi} \\ & \vec{\phi} \end{bmatrix} = 0. \\ \Leftrightarrow \omega Bx = -Ax, \qquad \text{(generalized eigenvalue problem)} \end{aligned}$$

Higham, D.S.+N. Mackey, Mehl, Mehrmann, Tisseur, ...

Linearization – symmetric form

- $P(\omega)$ is complex symmetric (for equidistant grids)
- symmetric linearization

$$\begin{pmatrix} \omega \begin{bmatrix} M_3 & & \\ & -M_1 & -M_2 \\ & -M_0 & \end{bmatrix} + \begin{bmatrix} M_2 & M_1 & M_0 \\ M_1 & M_0 & \\ M_0 & & \end{bmatrix} \end{pmatrix} \begin{bmatrix} \omega^2 \vec{\phi} \\ \omega \vec{\phi} \\ \vec{\phi} \end{bmatrix} = \mathbf{0}$$

 advantage: left and right eigenvectors coincide except for complex conjugation

Higham, Li, Tisseur, Mackey (2006–2007)

- \triangleright N = 1024. QZ-algorithm: 1 hour.
- simulations with 100 000 eigenvalue equations: 10 years
- only interested in one eigenpair: subspace method

(0.) choose search space $V \in \mathbb{C}^{N \times k}$, $k \ll N$ loop

- (1.) orthonormalize V
- (2.) calculate eigenpairs (ν, y) of $V^H P(\nu) V y = 0$
- (3.) select Ritz pair (ν , u := Vy).
- (4.) calculate residual $r := P(\nu)u$.
- if ||r|| small enough **do** Stop **end** if
- (5.) find new expansion vector *t* by solving the correction equation
- (6.) expand search space to [V, t].

end loop

(0.) choose search space $V \in \mathbb{C}^{N \times k}$, $k \ll N$ loop

- (1.) orthonormalize V
- (2.) calculate eigenpairs (ν, y) of $V^H P(\nu) V y = 0$
- (3.) select Ritz pair $(\nu, u := Vy)$.
- (4.) calculate residual $r := P(\nu)u$.
- if ||r|| small enough **do** Stop **end** if
- (5.) find new expansion vector *t* by solving the correction equation
- (6.) expand search space to [V, t].

end loop

Solution of correction equation

$$\left(I - \frac{P'(\nu)uu^{H}}{u^{H}P'(\nu)u}\right)P(\nu)(I - uu^{H})t = -r, \quad t \perp u$$

corresponds to one Newton step for

$$F(\lambda, x) := \begin{pmatrix} P(\lambda)x \\ x^H x - 1 \end{pmatrix} = 0.$$

one step approximation

$$t = \frac{u^H Q(\nu) r}{u^H Q(\nu) P'(\nu) u} Q(\nu) P'(\nu) u - Q(\nu) r, \qquad Q(\nu) P(\nu) = I$$

Sleijpen 1998

Solution of correction equation – preconditioning

one step approximation

$$t = \frac{u^H Q(\nu) r}{u^H Q(\nu) P'(\nu) u} Q(\nu) P'(\nu) u - Q(\nu) r, \qquad Q(\nu) P(\nu) = I$$

requires solution of two linear systems

Voss, 2007; Heuveline, Bertsch 2000

Solution of correction equation – preconditioning

one step approximation

$$t = \frac{u^H Q(\nu) r}{u^H Q(\nu) P'(\nu) u} Q(\nu) P'(\nu) u - Q(\nu) r, \qquad Q(\nu) P_{\mathsf{f}}(\nu) = I$$

requires solution of two linear systems

 $Q(\nu)r = z \Leftrightarrow P_{\mathbf{f}}(\nu)z = r, \qquad Q(\nu)P'(\nu)u = s \Leftrightarrow P_{\mathbf{f}}(\nu)s = P'(\nu)u$ $P_{\mathbf{f}}(\nu) = \begin{bmatrix} \vdots \vdots \vdots \\ \vdots \vdots \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \vdots \vdots \\ \vdots \vdots \\ \vdots \end{bmatrix} \begin{bmatrix} \vdots \vdots \\ \vdots \\ \vdots \end{bmatrix}$

Voss, 2007; Heuveline, Bertsch 2000

wanted: eigenpair with strongest growth rate $Im(\omega)$.

experiment (N = 4): $V = [v^1]$, v^1 with random vectors v^1

wanted: eigenpair with strongest growth rate $Im(\omega)$.

experiment (N = 4): $V = [v^1]$, v^1 with random vectors v^1

wanted: eigenpair with strongest growth rate $Im(\omega)$.

experiment (N = 4): $V = [v^1]$, v^1 with random vectors v^1

wanted: eigenpair with strongest growth rate $Im(\omega)$.

experiment (N = 4): $V = [v^1]$, v^1 with random vectors v^1

big chance to miss desired eigenpair

- random vector
 - \longrightarrow not reliable
- Fourier modes V = (exp(ijθ))_{j=−m,...,m} → useful for very smooth eigenfunctions only
- new idea: multilevel approach

multilevel approach

compute (cheap) approximation on coarse grid

- QZ algorithm on coarsest grid (e.g. N = 8)
- crucial: reliable selection of eigenpair
- can expect good approximation if eigenfunction is smooth (for pseudo-spectral method or fd on adaptive grid)
- refinement of eigenpair: prolongation to finer grid + Jacobi-Davidson method
- selection of Ritz pair by similarity to coarse grid approximation.

Error control

► Tisseur 00: normwise backward error of $(\tilde{\lambda}, \tilde{x})$

$$\begin{split} \eta(\widetilde{\lambda},\widetilde{x}) &:= \min_{\epsilon} \Big\{ \big(P(\widetilde{\lambda}) + \Delta P(\widetilde{\lambda}) \big) \widetilde{x} = \mathbf{0}, \ \|\Delta M_{j}\| \leq \epsilon \|E_{j}\| \Big\} \\ &= \frac{\|P(\widetilde{\lambda})\widetilde{x}\|_{2}}{\widetilde{\alpha}\|\widetilde{x}\|_{2}}, \qquad \qquad \widetilde{\alpha} = \sum_{j=0}^{d} |\widetilde{\lambda}|^{j} \|E_{j}\|_{2} \end{split}$$

• normwise condition number of exact eigentriple (y, λ, x)

$$\kappa(\lambda, P) = \frac{\alpha \|\mathbf{y}\|_2 \|\mathbf{x}\|_2}{|\lambda| |\mathbf{y}^H P'(\lambda) \mathbf{x}|}, \qquad \alpha = \sum_{j=0}^d |\lambda|^j \|\mathbf{E}_j\|_2 \qquad (1)$$

• forward error estimate: $(y, \lambda, x) \approx (\tilde{y}, \tilde{\lambda}, \tilde{x})$

$$\eta(\widetilde{\lambda},\widetilde{x})\kappa(\widetilde{\lambda},\boldsymbol{P}) = \frac{\|\boldsymbol{P}(\widetilde{\lambda})\widetilde{x}\|_{2}\|\widetilde{y}\|_{2}}{|\widetilde{\lambda}||\widetilde{y}^{H}\boldsymbol{P}'(\widetilde{\lambda})\widetilde{x}|}$$

▶ stop if forward error estimate ≤ tol

Scaling of eigenvalues

- original problem: $P(\omega)x = 0$
- choose scaling parameter α , $\widehat{\omega}$ scaled eigenvalue

$${m P}(\omega)={m P}(lpha \widehat{\omega}), \qquad lpha=|\omega|$$

- problem: requires unkown eigenvalue ω
- impact on companion linearization

$$\begin{pmatrix} \omega \begin{bmatrix} M_3 & & \\ & I \\ & & I \end{bmatrix} + \begin{bmatrix} M_2 & M_1 & M_0 \\ -I & & \\ & -I \end{bmatrix} \end{pmatrix} \begin{bmatrix} \omega^2 \vec{\phi} \\ \omega & \vec{\phi} \\ \vec{\phi} \end{bmatrix} = \mathbf{0}$$
$$\begin{pmatrix} \widehat{\omega} \begin{bmatrix} \alpha^3 M_3 & & \\ & I \end{bmatrix} + \begin{bmatrix} \alpha^2 M_2 & \alpha M_1 & M_0 \\ -I & & \\ & -I \end{bmatrix} \end{pmatrix} \begin{bmatrix} \widehat{\omega}^2 \vec{\phi} \\ \widehat{\omega} & \vec{\phi} \\ \vec{\phi} \end{bmatrix} = \mathbf{0}$$

Scaling of eigenvectors

- choose nonsingular diagonal matrix S
- Betcke 2008: optimal scaling for (ϕ_I, ω, ϕ_r)

$$S_I P(\omega) S_r y = 0, \qquad x = S_r y,$$

with $S_I = \text{diag}(|\phi_I|), S_r = \text{diag}(|\phi_r|)$

Scaling of eigenvectors

- choose nonsingular diagonal matrix S
- Betcke 2008: optimal scaling for (ϕ_I, ω, ϕ_r)

$$S_I P(\omega) S_r y = 0, \qquad x = S_r y,$$

with $S_l = \text{diag}(|\phi_l|), S_r = \text{diag}(|\phi_r|)$

problem: requires unknown left and right eigenvectors

Scaling of eigenvectors

- choose nonsingular diagonal matrix S
- Betcke 2008: optimal scaling for (ϕ_I, ω, ϕ_r)

$$S_l P(\omega) S_r y = 0, \qquad x = S_r y,$$

with $S_l = \text{diag}(|\phi_l|), S_r = \text{diag}(|\phi_r|)$

- problem: requires unknown left and right eigenvectors
- solution by multilevel approach
 - interpolate coarse grid solution to approximate S_l , S_r
 - ϕ_l can be computed from (ω, ϕ_r) , since

$$\mathbf{0} = \mathbf{P}(\omega)\phi = \left(\mathbf{a}(\omega) + \mathbf{b}(\omega)\frac{\partial^2}{\partial\theta^2}\right)\phi_r$$

with complex symmetric (diagonal) $a(\omega)$, $b(\omega)$

$$\phi_I = \overline{b(\omega)^{-1}\phi_r}$$

linearization		comp		comp		sym		sym	
scaling		no		yes		no		yes	
ℓ	Ν	dim V	t/sec						
11	2 ¹⁴	1	0.08	1	0.07	1	0.08	1	0.06
10	2 ¹³	17	5.10	4	0.68	4	0.69	4	0.66
9	2 ¹²	11	1.31	9	0.94	7	0.67	8	0.81
8	2 ¹¹	15	0.95	9	0.45	9	0.45	9	0.45
7	2 ¹⁰	9	0.23	10	0.27	9	0.24	10	0.27
6	2 ⁹	10	0.15	10	0.15	9	0.13	10	0.14
5	2 ⁸	9	0.08	9	0.08	9	0.08	9	0.08
4	2 ⁷	9	0.06	9	0.05	9	0.05	9	0.06
3	2 ⁶	8	0.04	8	0.05	8	0.04	8	0.03
2	2 ⁵	7	0.01	7	0.02	7	0.03	7	0.03
1	2 ⁴	6	0.03	6	0.02	6	0.02	6	0.01
	total	102	8.04	82	2.78	78	2.48	81	2.60

linearization		comp		comp		sym		sym	
scaling		no		yes		no		yes	
ℓ	Ν	dim V	t/sec	dim V	t/sec	dim V	t/sec	dim V	t/sec
11	2 ¹⁴	1	0.06	1	0.08	1	0.07	1	0.07
10	2 ¹³	3	0.45	3	0.51	3	0.47	3	0.49
9	2 ¹²	\geq 64	32.79	7	0.71	\geq 64	33.86	7	0.74
8	2 ¹¹	15	0.92	9	0.45	10	0.52	9	0.49
7	2 ¹⁰	\geq 64	14.61	10	0.27	10	0.26	10	0.30
6	2 ⁹	27	0.86	10	0.15	10	0.16	10	0.16
5	2 ⁸	19	0.28	10	0.10	10	0.09	10	0.09
4	2 ⁷	10	0.07	10	0.07	10	0.07	10	0.08
3	2 ⁶	10	0.05	10	0.05	10	0.05	10	0.05
2	2 ⁵	9	0.04	9	0.03	9	0.04	9	0.05
1	2 ⁴	8	0.04	8	0.04	8	0.03	8	0.02
	total	230	50.17	87	2.46	145	35.62	87	2.54

Eigenvalue error

Prolongation by linear interpolation

minimum, average, maximum

Prolongation by splines

minimum, average, maximum

Prolongation by trigonometric interpolation

minimum, average, maximum

$$\begin{split} &\frac{\partial^2 \phi}{\partial \theta^2} = \frac{\omega (\widehat{\beta} + z \gamma_3 \widehat{\mu} K_{\perp}^2) - (1 + \widehat{\lambda}) \widehat{\beta} K_{\perp} + i z \gamma_3 \widehat{C} K_{\perp}^2}{\gamma_1^3 z \Big(K_{\perp} - \omega \big(1 + z \gamma_3 (1 + \widehat{\alpha}) K_{\perp}^2 \big) \Big)} \\ &\cdot \left((1 + \widehat{\alpha}) \frac{\gamma_2}{\gamma_3} L_B (1 - z \gamma_3 \omega K_{\perp}) + z \omega (\omega + \widehat{\alpha} K_{\perp}) \right) \phi \end{split}$$

- discrete representation of wave number range
- define modes $(\omega(\mathbf{K}_{\perp}), \phi(\mathbf{K}_{\perp}))$
- trace modes and find wave number of maximal growth rate

 $K_{\perp} = 0.4, \, K_{\perp} = 0.5$

$K_{\perp} = 0.4, \, K_{\perp} = 0.5$

$\textit{K}_{\perp}=0.4,\,\textit{K}_{\perp}=0.5$

$K_{\perp}=0.4,~K_{\perp}=0.5$

Wave number K_{\perp}

Summary and perspectives

- multilevel Jacobi-Davidson eigenvalue solver
 - approximation of search space on coarser grid
 - correction equation by low cost LU decomposition
- tracing eigenpairs with respect to the wave number
- other linearizations
- nonlinear (e.g. rational) eigenvalue problems (in progress)
- ► transport model needs improvement, especially modeling of heat power from plasma core (→ 2d model).

 D. Löchel, M.Z. Tokar, M. Hochbruck, and D. Reiser, Effect of poloidal inhomogeneity in plasma parameters on edge anomalous transport, Physics of Plasmas, 16 (2009), p. 044508

M. Hochbruck, D. Löchel,

A multilevel Jacobi-Davidson method for a polynomial pde eigenvalue problem arising in plasma physics, Technical Report, University of Düsseldorf, 2009