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Assumption:  coercivity and boundedness

Diffusion Equation with Random Data
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Diffusion coefficient: truncated Karhunen-Loève expansion:
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Discrete weak formulation:  Find                         such that (*) 

holds for all
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Stochastic Galerkin Method
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Finite dimensional spaces:

• spatial discretization:

for example:  piecewise linear on triangles  

• stochastic discretization:

determined by m-variate tensor product polynomials 
whose components are orthogonal wrt density measure
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Matrix Equation Au=f
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Properties of A:

• order = Nx x Nξ = (size of spatial basis) x (size of stochastic basis)

• sparsity:  inherited from that of { } and {  }rG rA
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Example of Sparsity Pattern
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For m-variate

polynomials of

total degree p:



spatial discretization parameter h,     , )()( hh
rr AAAA
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Multigrid Solution of Matrix Equation  I (E. & Furnival)
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rr AAAA spatial discretization parameter 2h

Solving   Au=f
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Multigrid algorithm (two-grid)
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for i=0,1,…

for j=1:k   k smoothing steps

end

Restriction

Solve                                            Coarse grid correction

Prolongation

end
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Prolongation and restriction:
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Let                                    Q = smoothing operator,)( NQA h
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Convergence analysis:  use “standard” approach
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Error propagation matrix:
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Convergence analysis:  smoothing property

For smoothing property (Braess):

Q = θI  (Richardson iteration) works with θ≥ max(λ( ))

In experiments described below:  

we use damped Jacobi, Q = diag(A)/ω
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Approximation property

2

)(

)(

2

)(

2

2

2

2/1

222

)2()(1)2(1)(

                        

                        

2                        

                         

)),((                          

 ]))([

2

22

)()(

)(

yC

fCh

uDhCuDCh

uuuu

uuuuauu

uuyAA

L

LL

ahah

hhhhahh

A

hh

A

hh

hh

D

DD

RP(

Approximability

Property of mass 

matrix

Regularity

“Standard” MG analysis for deterministic problem:
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For approximation property in stochastic case

Introduce semi-discrete space 
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Similarly for other steps used for deterministic analysis

Discrete stochastic

space
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•Establishes convergence of multigrid with rate independent of

spatial discretization size h

•No dependence on stochastic parameters m, p

•Applies to any basis of stochastic space

For polynomial chaos                           degrees of freedom

•N.B.  Coarse grid solve is with matrix (at least) this large

This is a topic of ongoing study

(E. & Ullmann)
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Experimental results 

Du
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a derived from an exponential covariance function

Tested both uniform and normal distributions with 

orthogonal basis (multidimensional Legendre / Hermite

polynomials) 

Multigrid scheme:

V-cycle

Damped Jacobi smoother, damping parameter 2/3

2 times 2 coarsest grid

3 presmoothing, 3 postsmoothing steps

Stop when relative residual ≤ 1.d-6

Problem:
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Iteration counts / normal distribution 

Polynomial 

degree

# terms (m) in KL-expansion

m=1 m=2 m=3 m=4

p=1 8 8 8 8

p=2 8 8 8 8

p=3 9 9 9 9

p=4 9 10 10 10

h=1/16

Polynomial 

degree

m=1 m=2 m=3 m=4

p=1 7 7 8 8

p=2 8 8 8 8

p=3 8 8 9 9

p=4 9 9 9 9

h=1/32
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Multigrid Solution of Matrix Equation  II

Solving   Au=f

Preconditioner for use with CG: 00 AGQ
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(Kruger, Pellissetti, 

Ghanem)

Deterministic diffusion,

from mean
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Analysis (Powell & E.)

Theorem :  For μ constant, the Rayleigh quotient satisfies
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Consequence:                     dictates convergence of PCG
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Sketch of proof
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Sketch of proof
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In stochastic space:
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derives from basis of multivariate polynomials of total

degree p, orthogonal wrt probability measure ρ(ξ)dξ
rG

Consequence:

• three-term recurrence handles 

• maximum eigenvalue is largest root of scalar orthogonal 

polynomial

• ~        for Gaussian measure (Hermite polynomials)

• ~   1   for uniform measure (Legendre polynomials)
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Example of Eigenvalues &Bounds of Preconditioned 

Operator
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.89
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.59
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1.11
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1.50

h=1/8

σ=.01
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Multigrid Variant of this Idea

Replace action of          with multigrid preconditioner
1

0A

MGMG AGQ ,00
(Le Maitre, et al.)
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Crimes and misdemeanors
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For either problem definition:

if distribution of a is Gaussian, then a is unbounded
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Example:  eigenvalues of A and           (method II)AQ 1
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m=2

σ=.3
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Experiment

fua )(-

Starting  with a with specified covariance and small σ (=.01): 

# Samples s

Max SFEM 100 1000 10,000 40,000

Mean .06311 .06361 .06330 .06313 .06313

Variance 2.360(-5) 2.161(-5) 2.407(-5) 2.258(-5) 2.316(-5)

Compare Monte-Carlo simulation with SFEM, for 

N.B.:  No negative samples of diffusion obtained in MC

Solve one system

of order 210x225 Solve s systems of size 225 21
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Return to crimes and misdemeanors
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Fix:  use a different distribution, e.g. uniform 
Require joint

density function

associated with ξm
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Difficulty: recall

Except for Gaussian distribution           are not independent

)()()( 11 mm

}{ r

In common use
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Still have )()()( 11 mm
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Alternative Fixes

Enforce  coercivity by requiring a(x,ω) to come from 

a truncated Gaussian distribution:  omit tails so that

210 a

but (perhaps) less of a crime

23

Note:  can work with such a distribution even though orthogonal 

polynomials are not known (Gautschi code); Rys polynomials



Comparison of Galerkin and Collocation

Recall from last talk:  

Stochastic Collocation, alternative to method discussed so far
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Obtained by solving 
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For set of samples             situated in a sparse grid}{
)(k

Advantage of this approach:  simpler (decoupled) systems

Disadvantage:  larger stochastic space for comparable accuracy

larger by factor approximately p2



Dimensions of Stochastic Space

m

(#KL)

p Galerkin Collocation

Sparse

Collocation

Tensor

4 1

2

3

4

5

15

35

70

9

41

137

401

16

81

256

625

10 1

2
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11

66

286

1001

21

221

1582

8,801

1024

59,049

1,048,576

9,765,625

30 1

2

3

4

31

496

5456

46,376

61

1861

37,941

582,801

1.07(9)

2.06(14)

1.15(18)

9.31(20)

~ size of coarse grid space

for MG / Version 1

# systems for collocation

MG / Version II



Experiment

• Solve the stochastic diffusion equation by both methods

• Compare the accuracy achieved for different parameter sets¹

• For parameter choices giving comparable accuracy, compare 

solution costs

• Spatial discretization fixed (32x32 finite difference grid)

Solution algorithm for both discretizations:  

Preconditioned conjugate gradient with

mean-based preconditioning, using AMG for the

approximate diffusion solve

¹Estimated using a high-degree (p=10) Galerkin solution.

(E., Miller, Phipps, Tuminaro)



Experimental results: accuracy
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polynomial degree for SG 

“level” for collocationSimilar p = produces comparable errors

p=1

p=2

p=3

p=4

p=5

For fixed m=4::



Experimental results: performance
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Performed on a serial machine with C-code and 

CG/AMG code from Trilinos

Observation:  Galerkin faster, more so as number of

stochastic variables (KL terms) grows

p=3
p=4

p=5
p=4

p=2

p=1

p=5

p=6

p=3
p=2

p=1



More General Problems
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Nonlinear
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For the problem discussed, based on a KL expansion, has

a linear dependence on the stochastic variable ξ

Other models have nonlinear dependence.  For example
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In particular:  coercivity is guaranteed with this choice

For Gaussian c, called a log-normal distribution



More General Problems
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For stochastic Galerkin, need a finite term expansion for a

Note:  not  ξr
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matrix

 ][ jirijrG Less sparse

More importantly:  # terms M will be larger 

perhaps as large as 2Nξ

mvp will be more expensive



comes from                                         for each

sparse grid point 

In contrast
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Collocation is less dependent on this expansion

D
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Many matrices to assemble, but mvp is not a difficulty 



Concluding remarks
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• Exciting new developments models of PDEs with uncertain

coefficients

• Replace pure simulation (Monte Carlo) with finite-dimensional

models that simulate sampling at potentially lower cost

• Two techniques, the stochastic Galerkin method and the

stochastic collacation method, were presented, each with some 

advantages

• Solution algorithms are available for both methods, and work 

continues in this direction


