Modeling Techniques and Numerical Solution Algorithms for Discrete Partial Differential Equations with Random Data

II. Solution Algorithms

Howard Elman University of Maryland

Diffusion Equation with Random Data

$$
\begin{aligned}
& -\nabla \cdot(a \nabla u)=f \text { in } \mathcal{D} \subset R^{d} \\
& u=g_{D} \text { on } \partial \mathcal{D}_{D}, \quad(a \nabla u) \cdot n=0 \text { on } \partial \mathcal{D}_{N}=\partial \mathcal{D} \backslash \partial \mathcal{D}_{D}
\end{aligned}
$$

Diffusion coefficient: truncated Karhunen-Loève expansion:

$$
\begin{aligned}
& a(x, \omega)=a_{0}(x)+\sigma \sum_{r=1}^{m} \sqrt{\lambda_{r}} a_{r}(x) \xi_{r}(\omega) \\
& a_{0}(x)=\mu(x)=E(a(x, \cdot)) \text { mean } \\
& \sigma(x)=E\left(a(x,)^{2}\right)-\mu^{2} \quad \text { standard deviation }
\end{aligned}
$$

$a_{r}(x), \lambda_{r}=$ eigenfunctions/eigenvalues of covariance operator

$$
(C a)(x)=\lambda a(x), \quad(C a)(x)=\int_{D} c(x, y) a(y) d y
$$

Assumption: coercivity and boundedness $0<\alpha_{1} \leq a \leq \alpha_{2}<\infty$

Stochastic Galerkin Method

Weak formulation

$$
\begin{equation*}
\int_{\Gamma} \int_{\mathcal{D}} a(x, \underline{\xi}) \nabla u \cdot \nabla v d x \rho(\underline{\xi}) d \underline{\xi}=\int_{\Gamma} \int_{\mathcal{D}} f v d x \rho(\underline{\xi}) d \underline{\xi} \tag{*}
\end{equation*}
$$

Finite dimensional spaces:

- spatial discretization: $S_{h} \subset H_{0}^{1}(\mathcal{D})$, spanned by $\left\{\varphi_{j}\right\}_{j=1}^{N_{x}}$ for example: piecewise linear on triangles
- stochastic discretization: $T_{p} \subset L^{2}(\Gamma)$, spanned by $\left\{\psi_{l}\right\}_{l=1}^{N_{\varepsilon}}$ determined by m -variate tensor product polynomials whose components are orthogonal wrt density measure

Discrete weak formulation: Find $u_{h p} \in S_{h} \otimes T_{p}$ such that (*) holds for all $v_{h p} \in S_{h} \otimes T_{p}$

$$
u_{h p}=\sum_{j=1}^{N_{x}} \sum_{l=1}^{N_{\xi}} u_{j l} \varphi_{j}(x) \psi_{l}(\xi)
$$

Matrix Equation $A u=f$

$a(x, \xi(\omega))=a_{0}(x)+\sigma \sum_{r=1}^{m} \sqrt{\lambda_{r}} a_{r}(x) \xi_{r}(\omega)$

$$
\begin{aligned}
& A=G_{0} \otimes A_{0}+\sum_{\mathrm{r}=1}^{\mathrm{m}} G_{r} \otimes A_{r} \\
& {\left[A_{0}\right]_{j k} }=\int_{\mathcal{D}} a_{0}(x) \nabla \varphi_{j}(x) \cdot \nabla \varphi_{k}(x) d x \\
& {\left[A_{r}\right]_{j k} }=\sqrt{\lambda_{\mathrm{r}}} \int_{\mathcal{D}} \sigma(x) a_{r}(x) \nabla \varphi_{j}(x) \cdot \nabla \varphi_{k}(x) d x \\
& {\left[G_{0}\right]_{l q} }=\left\langle\psi_{l}, \psi_{q}\right\rangle, \quad\left[G_{r}\right]_{l q}=\left\langle\xi_{r} \psi_{l}, \psi_{q}\right\rangle \\
& {[f]_{k q} }=\int_{\Gamma \mathcal{D}} \int_{\mathcal{D}}(x, \xi) \varphi_{k}(x) \psi_{q}(\xi) d x \rho(\xi) d \xi
\end{aligned}
$$

Properties of A :

- order $=N x \times N \xi=$ (size of spatial basis) \times (size of stochastic basis)
- sparsity: inherited from that of $\left\{G_{r}\right\}$ and $\left\{A_{r}\right\}$

Example of Sparsity Pattern

For m-variate polynomials of total degree p :

$$
\begin{aligned}
N_{\xi} & =\frac{(m+p)!}{m!p!} \\
& =\frac{10!}{6!4!} \\
& =210
\end{aligned}
$$

Multigrid Solution of Matrix Equation I (E. \& Furnival)

Solving $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{f}$

$$
\begin{gathered}
\Delta=G_{0} \otimes A_{0}+\sum_{\mathrm{r}=1}^{\mathrm{m}} G_{r} \otimes A_{r} \\
{\left[A_{r}\right]_{j k}=\sqrt{\lambda_{\mathrm{r}}} \sigma \int_{D} a_{r}(x) \nabla \varphi_{j}(x) \cdot \nabla \varphi_{k}(x) d x,} \\
{\left[G_{r}\right]_{l q}=\int_{\Omega} \psi_{l}(\xi) \psi_{q}(\xi) \xi_{r} \rho(\xi) d \xi}
\end{gathered}
$$

$A_{r}=A_{r}^{(h)}, \quad A=A^{(h)}, \quad$ spatial discretization parameter h
$A_{r}=A_{r}^{(2 h)}, \quad A=A^{(2 h)}$, spatial discretization parameter $2 h$
Develop MG algorithm for spatial component of the problem

Multigrid algorithm (two-grid)

Let $A^{(h)}=Q-N, \quad Q=$ smoothing operator for $i=0,1, \ldots$

$$
\text { for } j=1: k \quad \mathrm{k} \text { smoothing steps }
$$

$$
u^{(h)} \leftarrow\left(I-Q^{-1} A^{(h)}\right) u^{(h)}+Q^{-1} f^{(h)}
$$

end

$$
r^{(2 h)}=\mathcal{R}\left(f^{(h)}-A^{(h)} u^{(h)}\right) \quad \text { Restriction }
$$

$$
\text { Solve } A^{(2 h)} c^{(2 h)}=r^{(2 h)} \quad \text { Coarse grid correction }
$$

$$
u^{(h)} \leftarrow u^{(h)}+\mathcal{P}^{(2 h)} \quad \text { Prolongation }
$$

end
Prolongation and restriction:
$\mathcal{P}=I \otimes P$, induced by natural inclusion in spatial domain

$$
\mathcal{R}=\mathcal{P}^{T}=I \otimes R, \quad R=P^{T}
$$

Convergence analysis: use "standard" approach

Error propagation matrix:

$$
\left.e^{(i+1)}=\left[\left(A^{(h)}\right)^{-1}-\mathcal{P}\left(A^{(2 h)}\right)^{-1} \mathcal{R}\right)\right]\left[A^{(h)}\left(I-Q^{-1} A^{(h)}\right)^{k}\right] e^{(i)}
$$

Establish approximation property

$$
\left\|\left[\left(A^{(h)}\right)^{-1}-\mathcal{P}\left(A^{(2 h)}\right)^{-1} \mathcal{R}\right] y\right\|_{A^{(h)}} \leq C\|y\|_{2} \quad \forall y
$$

and smoothing property

$$
\left\|\left[A^{(h)}\left(I-Q^{-1} A^{(h)}\right)^{k}\right] y\right\|_{2} \leq \eta(k)\|y\|_{A^{(h)}} \quad \forall y, \quad \eta(k) \stackrel{\text { kincreases }}{\rightarrow} 0
$$

Analysis is:

$$
\begin{aligned}
\left\|e^{(i+1)}\right\|_{A^{(h)}} & \left.\left.\leq \|\left(A^{(h)}\right)^{-1}-\mathcal{P}\left(A^{(2 h)}\right)^{-1} \mathcal{R}\right)\right]\left[A^{(h)}\left(I-Q^{-1} A^{(h)}\right)^{k}\right] e^{(i)} \|_{A^{(h)}} \\
& \leq C\left\|\left[A^{(h)}\left(I-Q^{-1} A^{(h)}\right)^{k}\right] e^{(i)}\right\|_{2} \\
& \leq C \eta(k)\left\|e^{(i)}\right\|_{A^{(h)}}
\end{aligned}
$$

Convergence analysis: smoothing property

Assumption of boundedness $0<\alpha_{1} \leq a \leq \alpha_{2}<\infty$

$$
\begin{aligned}
\frac{\left(A^{(h)} \underline{v}, \underline{v}\right)}{(\underline{v}, \underline{v})} & =\frac{\iint_{R, \mathcal{D}} a(x, \underline{\xi}) \nabla v_{h p} \cdot \nabla v_{h p} d x \rho(\underline{\xi}) d \underline{\xi}}{\iint_{R_{, \mathcal{D}}} v_{h p}^{2} d x \rho(\underline{\xi}) d \underline{\xi}} \\
& \leq \alpha_{2} \frac{\iint_{, \mathcal{D}} \nabla v_{h p} \cdot \nabla v_{h p} d x \rho(\underline{\xi}) d \underline{\xi}}{\iint_{R, \mathcal{D}} v_{h p}^{2} d x \rho(\underline{\xi}) d \underline{\xi}} \leq \alpha_{2} c
\end{aligned}
$$

Thus, maximum eigenvalue of $A^{(h)}$ is bounded
For smoothing property (Braess):

$$
Q=\theta I \text { (Richardson iteration) works with } \theta \geq \max \left(\lambda\left(A^{(h)}\right)\right)
$$

In experiments described below:

$$
\text { we use damped Jacobi, } Q=\operatorname{diag}(A) / \omega
$$

Approximation property

"Standard" MG analysis for deterministic problem:

$$
\begin{gathered}
\left\|\left[\left(A^{(h)}\right)^{-1}-\mathcal{P}\left(A^{(2 h)}\right)^{-1} \mathcal{R}\right] y\right\|_{A^{(h)}}=\left\|u^{(h)}-u^{(2 h)}\right\|_{A^{(h)}} \\
=\left\|u_{h}-u_{2 h}\right\|_{a}\left(=a\left(u_{h}-u_{2 h}, u_{h}-u_{2 h}\right)^{1 / 2}\right) \\
\leq\left\|u_{h}-u\right\|_{a}+\left\|u-u_{2 h}\right\|_{a}
\end{gathered}
$$

Approximability $\leq \sqrt{\alpha_{2}}\left(C h\left\|D^{2} u\right\|_{L^{2}(\mathcal{D})}+C 2 h\left\|D^{2} u\right\|_{L^{2}(\mathcal{D})}\right)$
Regularity $\leq C h\|f\|_{L^{2}(\mathcal{D})}$
Property of mass $\leq C\|y\|_{2}$ matrix

For approximation property in stochastic case

Introduce semi-discrete space $H_{0}^{1}(\mathcal{D}) \otimes T_{p}$
Weak formulation

Discrete stochastic

$$
a\left(u_{p}, v_{p}\right)=\ell\left(v_{p}\right) \quad \text { for all } v_{p} \in H_{0}^{1}(\mathcal{D}) \otimes T_{p}
$$

Solution u_{p}

$$
\begin{aligned}
\left\|\left[\left(A^{(h)}\right)^{-1}-\mathcal{P}\left(A^{(2 h)}\right)^{-1} \mathcal{R}\right] y\right\|_{A^{(h)}} & =\left\|u_{h p}-u_{2 h, p}\right\|_{a} \\
& \leq\left\|u_{h}-u_{p}\right\|_{a}+\left\|u_{p}-u_{2 h}\right\|_{a}
\end{aligned}
$$

Approximation (in 2D):

$$
\left\|u_{p}-u_{h p}\right\|_{a} \leq C h\left\|D^{2} u_{p}\right\|_{L^{2}(\mathcal{D}) \otimes L^{2}(\Gamma)}
$$

Established using best approximation property of $u_{h p}$ and interpolant $\widetilde{u}_{p}\left(x_{j}, \xi\right)=u_{p}\left(x_{j}, \xi\right) \forall \xi$

Similarly for other steps used for deterministic analysis

Comments

-Establishes convergence of multigrid with rate independent of spatial discretization size h

- No dependence on stochastic parameters m, p
-Applies to any basis of stochastic space
For polynomial chaos $N_{\xi}=\frac{(m+p)!}{m!p!}$ degrees of freedom
-N.B. Coarse grid solve is with matrix (at least) this large
This is a topic of ongoing study
(E. \& Ullmann)

Experimental results

Problem:

$$
\begin{array}{ccc}
-\nabla \cdot(a \nabla u)=f & \text { in } D \times \Omega, & D=(-1,1)^{2} \\
u=0 & \text { on } \partial D \times \Omega &
\end{array}
$$

a derived from an exponential covariance function
Tested both uniform and normal distributions with orthogonal basis (multidimensional Legendre / Hermite polynomials)

Multigrid scheme:

V-cycle
Damped Jacobi smoother, damping parameter $2 / 3$
2 times 2 coarsest grid
3 presmoothing, 3 postsmoothing steps
Stop when relative residual ≤ 1.d-6

Iteration counts / normal distribution

\# terms (m) in KL-expansion

$\mathrm{h}=1 / 16$					
Polynomial degree	$\mathrm{p}=1$	8	8	8	8
	$\mathrm{p}=2$	8	8	8	8
	$\mathrm{p}=3$	9	9	9	9
	$\mathrm{p}=4$	9	10	10	10

$\mathrm{h}=1 / 32$	$\mathrm{~m}=1$	$\mathrm{~m}=2$	$\mathrm{~m}=3$	$\mathrm{~m}=4$	
		7	7	8	8
Polynomial degree	$\mathrm{p}=1$	8	8	8	8
	$\mathrm{p}=2$	8	8	9	9
	$\mathrm{p}=3$	9	9	9	9

Multigrid Solution of Matrix Equation II

Solving $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{f}$

$$
\begin{aligned}
& A=G_{0} \otimes A_{0}+\sum_{\mathrm{r}=1}^{\mathrm{m}} G_{r} \otimes A_{r} \\
& {\left[A_{r}\right]_{j k}=\sqrt{\lambda_{\mathrm{r}}} \sigma \int_{\mathcal{D}} a_{r}(x) \nabla \varphi_{j}(x) \cdot \nabla \varphi_{k}(x) d x, } \\
& {\left[G_{r}\right]_{l q}=\int_{\Omega} \psi_{l}(\xi) \psi_{q}(\xi) \xi_{r} \rho(\xi) d \xi }
\end{aligned}
$$

Preconditioner for use with CG: $Q=G_{0} \otimes A_{0} \quad$ (Kruger, Pellissetti, Ghanem)

$$
A_{0} \sim \int_{\mathcal{D}} a_{0}(x) \nabla \varphi_{j}(x) \cdot \nabla \varphi_{k}(x) d x \quad \begin{aligned}
& \text { Deterministic diffusion }, \\
& \text { from mean }
\end{aligned}
$$

$$
G_{0}=I
$$

Analysis (Powell \& E.)

Recall $a(x, \omega)=a_{0}(x)+\sigma \sum_{r=1}^{m} \sqrt{\lambda_{r}} a_{r}(x) \xi_{r}(\omega)$

$$
\longrightarrow \quad \begin{aligned}
& A \\
& \longrightarrow G_{0} \otimes A_{0}+\sum_{\mathrm{r}=1}^{\mathrm{m}} G_{r} \otimes A_{r} \\
& Q=G_{0} \otimes A_{0}
\end{aligned}
$$

Theorem : For μ constant, the Rayleigh quotient satisfies

$$
\begin{gathered}
1-\tau \leq \frac{(w, A w)}{(w, Q w)} \leq 1+\tau \\
\tau=(\sigma / \mu) c(p) \sum_{r=1}^{m} \sqrt{\lambda_{r}}\left\|a_{r}\right\|_{\infty}
\end{gathered}
$$

Consequence: $\kappa \leq \frac{1+\tau}{1-\tau}$ dictates convergence of PCG

Sketch of proof

$$
\tau=(\sigma / \mu) c(p) \sum_{r=1}^{m} \underline{\sqrt{\lambda_{r}}}\left\|a_{r}\right\|_{\infty}
$$

$$
A=G_{0} \otimes A_{0}+\sum_{\mathrm{r}=1}^{\mathrm{m}} G_{r} \otimes A_{r}
$$

In spatial domain:

$$
\begin{aligned}
\left(\varphi, A_{r} \varphi\right) & \sim \sigma \sqrt{\lambda_{r}} \int_{D} a_{r}(x) \nabla \varphi(x) \cdot \nabla \varphi(x) d x \\
& \leq \sigma \sqrt{\lambda_{r}}\left\|a_{r}\right\|_{\infty} \int_{D} \nabla \varphi(x) \cdot \nabla \varphi(x) d x \\
& =(\sigma / \mu) \sqrt{\lambda_{r}}\left\|a_{r}\right\|_{\infty}\left(\varphi, A_{0} \varphi\right)
\end{aligned}
$$

Sketch of proof $\tau=(\sigma / \mu) \underline{c(p)} \sum_{r=1}^{m} \sqrt{\lambda_{r}}\left\|a_{r}\right\|_{\infty}$

$$
A=G_{0} \otimes A_{0}+\sum_{\mathrm{r}=1}^{\mathrm{m}} G_{r} \otimes A_{r}
$$

In stochastic space:

$$
\left(\psi, G_{r} \psi\right) \sim \int_{-} \xi_{r} \psi(\xi) \psi(\xi) \rho(\xi) d \xi
$$

G_{r} derives from basis of multivariate polynomials of total degree p, orthogonal wrt probability measure $\rho(\xi) d \xi$

Consequence:

- three-term recurrence handles $\xi_{r} \psi(\xi)$
- maximum eigenvalue is largest root of scalar orthogonal polynomial

Example of Eigenvalues \&Bounds of Preconditioned Operator

$h=1 / 8$
$\sigma=.01$

m $(\# \mathrm{KL})$	p	\min λ	\min bound	\max λ	\max bound
1	1	.92	.92	1.08	1.08
	2	.85	.85	1.15	1.15
	3	.80	.80	1.20	1.20
	4	.76	.76	1.24	1.24
2	1	.91	.90	1.09	1.10
	2	.85	.77	1.15	1.23
	3	.80	.70	1.20	1.30
	4	.75	.63	1.25	1.37
3	1	.91	.89	1.09	1.11
	2	.85	.70	1.15	1.30
	3	.79	.59	1.21	1.41
	4	.74	.50	1.26	1.50

Multigrid Variant of this Idea

Replace action of A_{0}^{-1} with multigrid \longrightarrow preconditioner

$$
Q_{M G}=G_{0} \otimes A_{0, M G} \quad(\text { Le Maitre, et al. })
$$

Analysis: $\frac{(w, A w)}{\left(w, Q_{M G} w\right)}=\frac{(w, A w)}{(w, Q w)} \underbrace{\frac{(w, Q w)}{\left(w, Q_{M G} w\right)}} \quad \begin{aligned} & \text { Spectral equivalence } \\ & \text { of MG approximation }\end{aligned}$

$$
\Longrightarrow \kappa \leq \frac{(1+\tau)}{(1-\tau)} \frac{\beta_{2}}{\beta_{1}}
$$

Crimes and misdemeanors

For coercivity in $-\nabla \cdot(a \nabla u)=f$ require $0<a_{1} \leq a \leq a_{2}<\infty$
For either problem definition: if distribution of a is Gaussian, then a is unbounded

Example: eigenvalues of A and $Q^{-1} A$ (method II)
$h=1 / 8$
$m=2$
$\sigma=.3$

p	\min $\lambda(\mathrm{A})$	\max $\lambda(\mathrm{A})$	\min $\lambda(\mathrm{A} / \mathrm{Q})$	\max $\lambda(\mathrm{A} / \mathrm{Q})$
4	.11	6.51	.25	1.75
5	.07	6.95	.13	1.87
6	.03	7.35	.02	1.98
7	-.27	7.71	-.09	2.09
8	-.60	8.06	-.18	2.18

Experiment

Starting with a with specified covariance and small $\sigma(=.01)$:
Compare Monte-Carlo simulation with SFEM, for

$$
-\nabla \cdot(a \nabla u)=f
$$

N.B.: No negative samples of diffusion obtained in MC

		\# Samples \boldsymbol{s}			
Max	SFEM	100	1000	10,000	40,000
Mean	. 06311	. 06361	. 06330	. 06313	. 06313
Variance	2.360(-5)	2.161(-5)	$2.407(-5)$	2.258(-5)	2.316(-5)

Return to crimes and misdemeanors

For coercivity in $-\nabla \cdot(a \nabla u)=f$ require $0<\alpha_{1} \leq a \leq \alpha_{2}<\infty$
Fix: use a different distribution, e.g. uniform
Difficulty: recall

$$
\begin{aligned}
& a(x, \omega)=a_{0}(x)+\sigma \sum_{r=1}^{m} \sqrt{\lambda_{r}} a_{r}(x) \xi_{r}(\omega) \\
& \langle a(u, v)\rangle=\int_{\Omega \mathcal{D}} \int_{\mathcal{D}} \nabla u \cdot \nabla v d x d P(\omega)=\int_{\Gamma \mathcal{D}} \int_{\mathcal{D}} a(x, \underline{\xi}) \nabla u \cdot \nabla v d x \rho(\underline{\xi}) d \underline{\xi}
\end{aligned}
$$

Except for Gaussian distribution $\left\{\xi_{r}\right\}$ are not independent

$$
\rho(\underline{\xi}) \neq \underbrace{\rho_{1}\left(\xi_{1}\right) \cdots \rho_{m}\left(\xi_{m}\right)}_{1}
$$

In common use

Alternative Fixes

Enforce coercivity by requiring $a(x, \omega)$ to come from a truncated Gaussian distribution: omit tails so that

$$
\begin{gathered}
0<\alpha_{1} \leq a \leq \alpha_{2}<\infty \\
\langle a(u, v)\rangle=\int_{\Omega \mathcal{D}} a \nabla u \cdot \nabla v d x d P(\omega)=\int_{\Gamma \mathcal{D}} \int_{\mathcal{D}} a(x, \underline{\xi}) \nabla u \cdot \nabla v d x \rho(\underline{\xi}) d \underline{\xi}
\end{gathered}
$$

Still have $\rho(\underline{\xi}) \neq \rho_{1}\left(\xi_{1}\right) \cdots \rho_{m}\left(\xi_{m}\right)$
but (perhaps) less of a crime

Note: can work with such a distribution even though orthogonal polynomials are not known (Gautschi code); Rys polynomials

Comparison of Galerkin and Collocation

Recall from last talk:
Stochastic Collocation, alternative to method discussed so far
Discrete solution $u_{h p}(x, \underline{\xi})=\sum_{k=1}^{N_{\xi}} u_{h}^{(k)}(x) L_{k}(\underline{\xi})$
Obtained by solving

$$
\int_{\mathcal{D}}\left(a_{0}(x)+\sigma \sum_{r=1}^{m} \sqrt{\lambda_{r}} a_{r}(x) \xi_{r}\right) \nabla u \cdot \nabla v d x=\int_{\mathcal{D}} f v d x
$$

For set of samples $\left\{\underline{\xi}^{(k)}\right\}$ situated in a sparse grid

Advantage of this approach: simpler (decoupled) systems
Disadvantage: larger stochastic space for comparable accuracy larger by factor approximately 2^{p}

Dimensions of Stochastic Space

m $(\# \mathrm{KL})$ p Galerkin Collocation Sparse Collocation Tensor 4 1 5 9 16 2 15 41 81 3 35 137 256 4 70 401 625 10 1 11 21 1024 2 66 221 59,049 3 286 1582 $1,048,576$ 4 1001 8,801 $9,765,625$ 30 1 31 61 $1.07(9)$ 2 496 1861 $2.06(14)$ 3 5456 37,941 $1.15(18)$ 4 46,376 582,801 $9.31(20)$
\sim \sim
size of coarse grid space
for MG / Version 1

Experiment

(E., Miller, Phipps, Tuminaro)

- Solve the stochastic diffusion equation by both methods
- Compare the accuracy achieved for different parameter sets ${ }^{1}$
- For parameter choices giving comparable accuracy, compare solution costs
- Spatial discretization fixed (32×32 finite difference grid)

Solution algorithm for both discretizations: Preconditioned conjugate gradient with mean-based preconditioning, using AMG for the approximate diffusion solve
${ }^{\mathbf{1}}$ Estimated using a high-degree $(\mathrm{p}=10)$ Galerkin solution.

Experimental results: accuracy

For fixed $m=4$:
Similar $p=\left\{\begin{array}{l}\text { polynomial degree for } \mathrm{SG} \\ \text { "level" for collocation }\end{array}\right\}$ produces comparable errors

Experimental results: performance

Performed on a serial machine with C-code and CG/AMG code from Trilinos
Observation: Galerkin faster, more so as number of stochastic variables (KL terms) grows

More General Problems

For the problem discussed, based on a KL expansion, has a linear dependence on the stochastic variable $\boldsymbol{\xi}$

Other models have nonlinear dependence. For example

$$
\begin{aligned}
& a(x, \xi)=a_{\min }+\underbrace{e^{c(x, \xi)}}_{\text {Nonlinear }} c(x, \xi)= \\
& \sigma a_{0}(x)+ \\
& r=1 \\
& \lambda_{r} a_{r}(x) \xi_{r}
\end{aligned}
$$

For Gaussian c, called a log-normal distribution
In particular: coercivity is guaranteed with this choice

More General Problems

For stochastic Galerkin, need a finite term expansion for a

$$
a(x, \underline{\xi})=a_{0}(x)+\sigma \sum_{r=1}^{M} \sqrt{\lambda_{r}} a_{r}(x) \psi_{r} \underbrace{\text {. }}_{\text {Note: not } \xi_{r}(\underbrace{\xi})}
$$

\longrightarrow matrix

$$
\begin{aligned}
& A=G_{0} \otimes A_{0}+\sum_{\mathrm{r}=1}^{\mathrm{M}} G_{r} \otimes A_{r} \\
& {\left[G_{r}\right]_{i j}=\left\langle\psi_{r} \psi_{i} \psi_{j}\right\rangle \quad \text { Less sparse }}
\end{aligned}
$$

More importantly: \# terms M will be larger perhaps as large as $2 N \xi$
$\Longrightarrow \quad$ mvp will be more expensive

In contrast

Collocation is less dependent on this expansion
$A^{(k)}$ comes from $\int_{\mathcal{D}} a\left(x, \underline{\xi}^{(k)}\right) \nabla u \cdot \nabla v d x$ for each
sparse grid point $\underline{\xi}^{(k)}$

Many matrices to assemble, but mvp is not a difficulty

Concluding remarks

- Exciting new developments models of PDEs with uncertain coefficients
- Replace pure simulation (Monte Carlo) with finite-dimensional models that simulate sampling at potentially lower cost
- Two techniques, the stochastic Galerkin method and the stochastic collacation method, were presented, each with some advantages
- Solution algorithms are available for both methods, and work continues in this direction

