Modeling Techniques and Numerical Solution Algorithms for Discrete Partial Differential Equations with Random Data

II. Solution Algorithms

Howard Elman University of Maryland

Diffusion Equation with Random Data

$$-\nabla \cdot (a\nabla u) = f \quad \text{in } \mathcal{D} \subset \mathbb{R}^d$$
$$u = g_D \text{ on } \partial \mathcal{D}_D, \quad (a\nabla u) \cdot n = 0 \text{ on } \partial \mathcal{D}_N = \partial \mathcal{D} \setminus \partial \mathcal{D}_D$$

Diffusion coefficient: truncated Karhunen-Loève expansion:

$$a(x,\omega) = a_0(x) + \sigma \sum_{r=1}^m \sqrt{\lambda_r} a_r(x)\xi_r(\omega)$$

$$a_0(x) = \mu(x) = E(a(x,\cdot)) \text{ mean}$$

$$\sigma(x) = E(a(x,\cdot)^2) - \mu^2 \text{ standard deviation}$$

$$a_n(x) \lambda = \text{eigenfunctions/eigenvalues of cover}$$

 $a_r(x), \lambda_r =$ eigenfunctions/eigenvalues of covariance operator $(Ca)(x) = \lambda a(x), \quad (Ca)(x) = \int_D c(x, y)a(y)dy$

Assumption: coercivity and boundedness $0 < \alpha_1 \le a \le \alpha_2 < \infty$

Stochastic Galerkin Method

Weak formulation

$$\iint_{\Gamma \mathcal{D}} a(x,\underline{\xi}) \nabla u \cdot \nabla v \, dx \, \rho(\underline{\xi}) d\underline{\xi} = \iint_{\Gamma \mathcal{D}} f \, v \, dx \, \rho(\underline{\xi}) d\underline{\xi}$$

Finite dimensional spaces:

- spatial discretization: $S_h \subset H_0^1(\mathcal{D})$, spanned by $\{\varphi_j\}_{j=1}^{N_x}$ for example: piecewise linear on triangles
- stochastic discretization: $T_p \subset L^2(\Gamma)$, spanned by $\{\psi_l\}_{l=1}^{N_{\xi}}$ determined by m-variate tensor product polynomials whose components are orthogonal wrt density measure

Discrete weak formulation: Find $u_{hp} \in S_h \otimes T_p$ such that (*) holds for all $v_{hp} \in S_h \otimes T_p$

$$u_{hp} = \sum_{j=1}^{N_x} \sum_{l=1}^{N_{\xi}} u_{jl} \varphi_j(x) \psi_l(\xi)$$

(*)

Matrix Equation Au = f $a(x,\xi(\omega)) = a_0(x) + \sigma \sum_{r=1}^m \sqrt{\lambda_r} a_r(x)\xi_r(\omega)$

$$A = G_0 \otimes A_0 + \sum_{r=1}^{m} G_r \otimes A_r$$

$$[A_0]_{jk} = \int_{\mathcal{D}} a_0(x) \nabla \varphi_j(x) \cdot \nabla \varphi_k(x) dx$$

$$[A_r]_{jk} = \sqrt{\lambda_r} \int_{\mathcal{D}} \sigma(x) a_r(x) \nabla \varphi_j(x) \cdot \nabla \varphi_k(x) dx$$

$$[G_0]_{lq} = \langle \psi_l, \psi_q \rangle, \quad [G_r]_{lq} = \langle \xi_r \psi_l, \psi_q \rangle$$

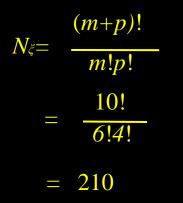
$$[f]_{kq} = \iint_{\Gamma \mathcal{D}} f(x,\xi) \varphi_k(x) \psi_q(\xi) dx \rho(\xi) d\xi$$

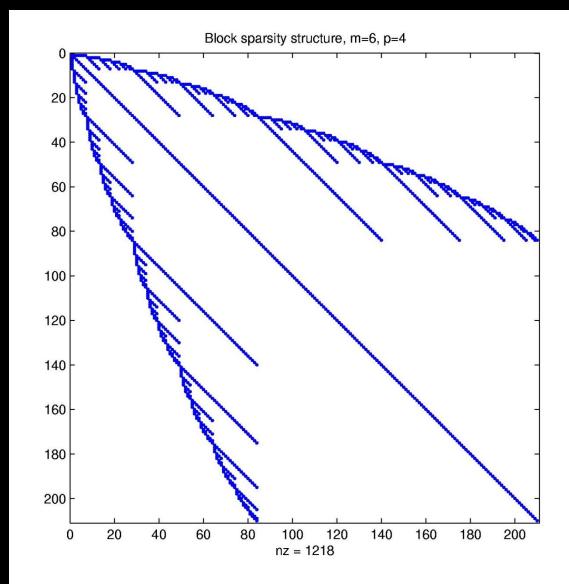
Properties of *A*:

- order = $N_x \times N_{\xi}$ = (size of spatial basis) \times (size of stochastic basis)
- sparsity: inherited from that of $\{G_r\}$ and $\{A_r\}$

Example of Sparsity Pattern

For *m*-variate polynomials of total degree *p*:





Multigrid Solution of Matrix Equation I (E. & Furnival)

Solving Au=f $A = G_0 \otimes A_0 + \sum_{r=1}^m G_r \otimes A_r$ $[A_r]_{jk} = \sqrt{\lambda_r} \sigma \int a_r(x) \nabla \varphi_j(x) \cdot \nabla \varphi_k(x) dx,$ $[G_r]_{lq} = \int \psi_l(\xi) \psi_q(\xi) \xi_r \rho(\xi) d\xi$ $A_r = A_r^{(h)}$, $A = A^{(h)}$, spatial discretization parameter h $A_r = A_r^{(2h)}$, $A = A^{(2h)}$, spatial discretization parameter 2h

Develop MG algorithm for spatial component of the problem

Multigrid algorithm (two-grid)

Let $A^{(h)} = Q - N$, Q =smoothing operator for *i*=0,1,... for j=1:kk smoothing steps $u^{(h)} \leftarrow (I - Q^{-1}A^{(h)})u^{(h)} + Q^{-1}f^{(h)}$ end $r^{(2h)} = \mathcal{R}(f^{(h)} - A^{(h)}u^{(h)})$ Restriction Solve $A^{(2h)}c^{(2h)} = r^{(2h)}$ Coarse grid correction $u^{(h)} \leftarrow u^{(h)} + \mathcal{P}c^{(2h)}$ Prolongation

end

Prolongation and restriction:

 $\mathcal{P} = I \otimes P$, induced by natural inclusion in spatial domain $\mathcal{R} = \mathcal{P}^T = I \otimes R$, $R = P^T$

Convergence analysis: use "standard" approach

Error propagation matrix:

 $e^{(i+1)} = [(A^{(h)})^{-1} - \mathcal{P}(A^{(2h)})^{-1}\mathcal{R})] [A^{(h)}(I - Q^{-1}A^{(h)})^{k}] e^{(i)}$

Establish approximation property $\left\| \left[(A^{(h)})^{-1} - \mathcal{P}(A^{(2h)})^{-1} \mathcal{R} \right] y \right\|_{A^{(h)}} \leq C \left\| y \right\|_{2} \quad \forall y$

and smoothing property $\left\| \left[A^{(h)} (I - Q^{-1} A^{(h)})^k \right] y \right\|_2 \leq \eta(k) \left\| y \right\|_{A^{(h)}} \quad \forall y, \ \eta(k) \stackrel{k \text{ increases}}{\longrightarrow} 0$

Analysis is:

$$\begin{split} \|e^{(i+1)}\|_{A^{(h)}} \leq \|(A^{(h)})^{-1} - \mathcal{P}(A^{(2h)})^{-1}\mathcal{R})][A^{(h)}(I - Q^{-1}A^{(h)})^{k}] e^{(i)}\|_{A^{(h)}} \\ \leq C \|[A^{(h)}(I - Q^{-1}A^{(h)})^{k}] e^{(i)}\|_{2} \\ \leq C\eta(k) \|e^{(i)}\|_{A^{(h)}} \end{split}$$

Convergence analysis: smoothing property

Assumption of boundedness $0 < \alpha_1 \le a \le \alpha_2 < \infty \implies$

$$\frac{(A^{(h)}\underline{v},\underline{v})}{(\underline{v},\underline{v})} = \frac{\iint_{\mathcal{D}} a(x,\underline{\xi}) \nabla v_{hp} \cdot \nabla v_{hp} \, dx \, \rho(\underline{\xi}) d\underline{\xi}}{\iint_{\mathcal{D}} v_{hp}^2 \, dx \, \rho(\underline{\xi}) d\underline{\xi}}$$
$$\leq \alpha_2 \frac{\iint_{\mathcal{D}} \nabla v_{hp} \cdot \nabla v_{hp} \, dx \, \rho(\underline{\xi}) d\underline{\xi}}{\iint_{\mathcal{D}} v_{hp}^2 \, dx \, \rho(\underline{\xi}) d\underline{\xi}} \leq \alpha_2 c$$

Thus, maximum eigenvalue of $A^{(h)}$ is bounded

For smoothing property (Braess): $Q = \theta I$ (Richardson iteration) works with $\theta \ge \max(\lambda(A^{(h)}))$

In experiments described below:

we use *damped Jacobi*, $Q = diag(A)/\omega$

Approximation property

P

"Standard" MG analysis for deterministic problem:

$$\begin{aligned} \left\| [(A^{(h)})^{-1} - \mathcal{P}(A^{(2h)})^{-1}\mathcal{R}] y \right\|_{A^{(h)}} &= \left\| u^{(h)} - u^{(2h)} \right\|_{A^{(h)}} \\ &= \left\| u_h - u_{2h} \right\|_a \ (= a(u_h - u_{2h}, u_h - u_{2h})^{1/2}) \\ &\leq \left\| u_h - u \right\|_a + \left\| u - u_{2h} \right\|_a \end{aligned}$$
Approximability
$$\leq \sqrt{\alpha_2} \left(Ch \left\| D^2 u \right\|_{L^2(\mathcal{D})} + C2h \left\| D^2 u \right\|_{L^2(\mathcal{D})} \right)$$
Regularity
$$\leq Ch \left\| f \right\|_{L^2(\mathcal{D})}$$
Property of mass
$$\leq C \left\| y \right\|_2$$

For approximation property in stochastic case

Introduce *semi-discrete* space $H_0^1(\mathcal{D}) \otimes T_p$ Discrete stochastic Space Weak formulation

$$a(u_{p}, v_{p}) = \ell(v_{p}) \quad \text{for all } v_{p} \in H_{0}^{1}(\mathcal{D}) \otimes T_{p}$$

Solution u_{p}
$$\left\| \left[(A^{(h)})^{-1} - \mathcal{P}(A^{(2h)})^{-1}\mathcal{R} \right] y \right\|_{A^{(h)}} = \left\| u_{hp} - u_{2h,p} \right\|_{a}$$
$$\leq \left\| u_{h} - u_{p} \right\|_{a} + \left\| u_{p} - u_{2h} \right\|_{a}$$

Approximation (in 2D):

$$\left\| u_p - u_{hp} \right\|_a \le Ch \left\| D^2 u_p \right\|_{L^2(\mathcal{D}) \otimes L^2(\Gamma)}$$

Established using best approximation property of u_{hp} and interpolant $\tilde{u}_p(x_j,\xi) = u_p(x_j,\xi) \ \forall \xi$

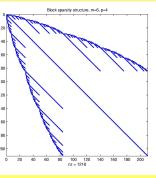
Similarly for other steps used for deterministic analysis ¹⁰

Comments

•Establishes convergence of multigrid with rate independent of spatial discretization size *h*

•No dependence on stochastic parameters m, p

- •Applies to any basis of stochastic space For polynomial chaos $N_{\xi} = \frac{(m+p)!}{m! \, p!}$ degrees of freedom
- •N.B. Coarse grid solve is with matrix (at least) this large This is a topic of ongoing study (E. & Ullmann)



Experimental results

Problem:

$$-\nabla \cdot (a\nabla u) = f \text{ in } D \times \Omega, \qquad D = (-1,1)^2$$

$$u = 0 \qquad \text{on } \partial D \times \Omega$$

a derived from an exponential covariance function

Tested both uniform and normal distributions with orthogonal basis (multidimensional Legendre / Hermite polynomials)

Multigrid scheme:

V-cycle Damped Jacobi smoother, damping parameter 2/32 times 2 coarsest grid 3 presmoothing, 3 postsmoothing steps Stop when relative residual $\leq 1.d-6$

Iteration counts / normal distribution

terms (m) in KL-expansion

h=1/16		m=1	m=2	m=3	m=4
Polynomial	p=1	8	8	8	8
Polynomial degree	p=2	8	8	8	8
	p=3	9	9	9	9
	p=4	9	10	10	10

h=1/32

		m=1	m=2	m=3	m=4
Polynomial	p=1	7	7	8	8
Polynomial degree	p=2	8	8	8	8
	p=3	8	8	9	9
	p=4	9	9	9	9

Multigrid Solution of Matrix Equation II

Solving Au=f $A = G_0 \otimes A_0 + \sum_{r=1}^m G_r \otimes A_r$ $[A_r]_{jk} = \sqrt{\lambda_r} \sigma \int_{\mathcal{D}} a_r(x) \nabla \varphi_j(x) \cdot \nabla \varphi_k(x) dx,$ $[G_r]_{lq} = \int_{\Omega} \psi_l(\xi) \psi_q(\xi) \xi_r \rho(\xi) d\xi$

Preconditioner for use with CG: $Q = G_0 \otimes A_0$ (Kruger, Pellissetti, Ghanem)

$$\begin{array}{ll} A_0 \sim \int_{\mathcal{D}} a_0(x) \nabla \varphi_j(x) \cdot \nabla \varphi_k(x) \, dx & \text{Deterministic diffusion,} \\ G_0 = I & \end{array}$$

Analysis (Powell & E.)

Recall
$$a(x, \omega) = a_0(x) + \sigma \sum_{r=1}^m \sqrt{\lambda_r} a_r(x) \xi_r(\omega)$$

 $\longrightarrow \qquad A = G_0 \otimes A_0 + \sum_{r=1}^m G_r \otimes A_r$
 $Q = G_0 \otimes A_0$

Theorem : For μ constant, the Rayleigh quotient satisfies

$$1 - \tau \leq \frac{(w, Aw)}{(w, Qw)} \leq 1 + \tau$$

$$\tau = (\sigma/\mu) c(p) \sum_{r=1}^{m} \sqrt{\lambda_r} ||a_r||_{\infty}$$

Consequence: $\kappa \leq \frac{1 + \tau}{1 - \tau}$ dictates convergence of PCG

Sketch of proof

$$\tau = (\sigma/\mu) c(p) \sum_{r=1}^{m} \sqrt{\lambda_r} \|a_r\|_{\infty}$$

$$A = G_0 \otimes A_0 + \sum_{r=1}^{m} G_r \otimes A_r$$

In spatial domain:

$$(\varphi, A_r \varphi) \sim \sigma \sqrt{\lambda_r} \int_{\mathcal{D}} a_r(x) \nabla \varphi(x) \cdot \nabla \varphi(x) \, dx$$
$$\leq \sigma \sqrt{\lambda_r} \| a_r \|_{\infty} \int_{\mathcal{D}} \nabla \varphi(x) \cdot \nabla \varphi(x) \, dx$$
$$= (\sigma / \mu) \sqrt{\lambda_r} \| a_r \|_{\infty} (\varphi, A_0 \varphi)$$

Sketch of proof $\tau = (\sigma/\mu) c(p) \sum_{r=1}^{m} \sqrt{\lambda_r} \|a_r\|_{\infty}$

$$A = G_0 \otimes A_0 + \sum_{r=1}^m G_r \otimes A_r$$

In stochastic space:

$$(\psi,G_r\psi)\sim\int\xi_r\psi(\xi)\psi(\xi)\,\rho(\xi)d\xi$$

 G_r derives from basis of multivariate polynomials of total degree p, orthogonal wrt probability measure $\rho(\xi)d\xi$

Consequence:

- three-term recurrence handles $\xi_r \psi(\xi)$
- maximum eigenvalue is largest root of scalar orthogonal polynomial
- ~√p for Gaussian measure (Hermite polynomials)
 ~ 1 for uniform measure (Legendre polynomials)

Example of Eigenvalues & Bounds of Preconditioned Operator

h=1/8 σ=.01

m	р	min	min	max	max
(#KL)		λ	bound	λ	bound
1	1	.92	.92	1.08	1.08
	2	.85	.85	1.15	1.15
	3	.80	.80	1.20	1.20
	4	.76	.76	1.24	1.24
2	1	.91	.90	1.09	1.10
	2	.85	.77	1.15	1.23
	3	.80	.70	1.20	1.30
	4	.75	.63	1.25	1.37
3	1	.91	.89	1.09	1.11
	2	.85	.70	1.15	1.30
	3	.79	.59	1.21	1.41
	4	.74	.50	1.26	1.50

Multigrid Variant of this Idea

Replace action of A_0^{-1} with multigrid \longrightarrow preconditioner $Q_{MG} = G_0 \otimes A_{0,MG}$ (Le Maitre, et al.)

Analysis:
$$\frac{(w, Aw)}{(w, Q_{MG}w)} = \frac{(w, Aw)}{(w, Qw)} \underbrace{(w, Qw)}_{(w, Q_{MG}w)} \underbrace{(w, Qw)}_{of MG approximation}$$

 $\in [\beta_1, \beta_2]$ Spectral equivalence of MG approximation to diffusion operator

$$\implies \kappa \leq \frac{(1+\tau)}{(1-\tau)} \frac{\beta_2}{\beta_1}$$

19

Crimes and misdemeanors

For coercivity in $-\nabla \cdot (a\nabla u) = f$ require $0 < a_1 \le a \le a_2 < \infty$

For either problem definition: if distribution of a is Gaussian, then a is unbounded

Example: eigenvalues of A and $Q^{-1}A$ (method II)

h=1/8	р	$\min_{\lambda(A)}$	max λ(A)	min $\lambda(A/Q)$	max λ(A/Q)
m=2	Λ	× /	, ,	× • • •	
σ=.3	4	.11	6.51	.25	1.75
	5	.07	6.95	.13	1.87
	6	.03	7.35	.02	1.98
	7	27	7.71	09	2.09
	8	60	8.06	18	2.18

Experiment

Starting with *a* with specified covariance and small σ (=.01):

Compare Monte-Carlo simulation with SFEM, for

$$-\nabla \cdot (a\nabla u) = f$$

N.B.: No negative samples of diffusion obtained in MC

				# Samples s				
Max SFE		SFEM	100	1000	10,000	40,000		
	Mean .0631		.06361	.06330	.06313	.06313		
	Variance	2.360(-5)	2.161(-5)	2.407(-5)	2.258(-5)	2.316(-5)		
		~			\uparrow			
Solve one system								
of order 210x225			Solve <i>s</i> systems of size 225					

Return to crimes and misdemeanors

For coercivity in $-\nabla \cdot (a\nabla u) = f$ require $0 < \alpha_1 \le a \le \alpha_2 < \infty$

Fix: use a different distribution, e.g. uniform

Difficulty: recall

$$a(x,\omega) = a_0(x) + \sigma \sum_{r=1}^m \sqrt{\lambda_r} a_r(x)\xi_r(\omega)$$

$$a(u,v) = \iint_{\Omega D} a \nabla u \cdot \nabla v \, dx \, dP(\omega) = \iint_{\Gamma D} a(x,\xi) \nabla u \cdot \nabla v \, dx \, \rho(\xi) d\xi$$

Except for Gaussian distribution $\{\xi_r\}$ are not independent $\rho(\underline{\xi}) \neq \rho_1(\xi_1) \cdots \rho_m(\xi_m)$

In common use

Require joint

Alternative Fixes

Enforce coercivity by requiring $a(x,\omega)$ to come from a *truncated Gaussian* distribution: omit tails so that

 $0 < \alpha_1 \le a \le \alpha_2 < \infty$

$$\left\langle a(u,v)\right\rangle = \iint_{\Omega \mathcal{D}} a \,\nabla u \cdot \nabla v \, dx \, dP(\omega) = \iint_{\Gamma \mathcal{D}} a(x,\underline{\xi}) \nabla u \cdot \nabla v \, dx \, \rho(\underline{\xi}) d\underline{\xi}$$

Still have $\rho(\underline{\xi}) \neq \rho_1(\xi_1) \cdots \rho_m(\xi_m)$

but (perhaps) less of a crime

Note: can work with such a distribution even though orthogonal polynomials are not known (Gautschi code); Rys polynomials

Comparison of Galerkin and Collocation

Recall from last talk:

Stochastic Collocation, alternative to method discussed so far

Discrete solution
$$u_{hp}(x,\underline{\xi}) = \sum_{k=1}^{N_{\xi}} u_h^{(k)}(x) L_k(\underline{\xi})$$

Obtained by solving $\int_{\mathcal{D}} (a_0(x) + \sigma \sum_{r=1}^m \sqrt{\lambda_r} a_r(x)\xi_r) \nabla u \cdot \nabla v \, dx = \int_{\mathcal{D}} f \, v \, dx$

For set of samples $\{\xi^{(k)}\}\$ situated in a sparse grid

Advantage of this approach: simpler (decoupled) systems Disadvantage: larger stochastic space for comparable accuracy larger by factor approximately 2^p

Dimensions of Stochastic Space

					l	
m	р	Galerkin	Collocation	Collocation		
(#KL)			Sparse	Tensor		
4	1	5	9	16		
	2	15	41	81		
	3	35	137	256		
	4	70	401	625		
10	1	11	21	1024		
	2	66	221	59,049		
	3	286	1582	1,048,576		
	4	1001	8,801	9,765,625	5	
30	1	31	61	1.07(9)		
	2	496	1861	2.06(14)		
	3	5456	37,941	1.15(18)		
	4	46,376	582,801	9.31(20)		
 size of coarse grid space for MG / Version 1 						

Experiment

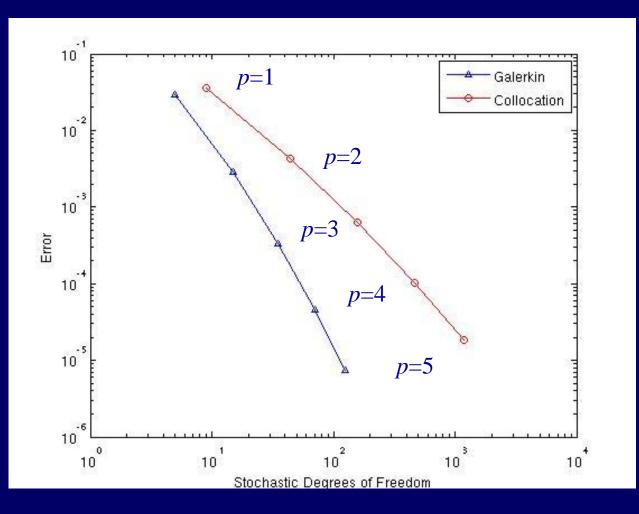
(E., Miller, Phipps, Tuminaro)

- Solve the stochastic diffusion equation by both methods
- Compare the accuracy achieved for different parameter sets¹
- For parameter choices giving comparable accuracy, compare solution costs
- Spatial discretization fixed (32x32 finite difference grid)

Solution algorithm for both discretizations: Preconditioned conjugate gradient with mean-based preconditioning, using AMG for the approximate diffusion solve

¹Estimated using a high-degree (p=10) Galerkin solution.

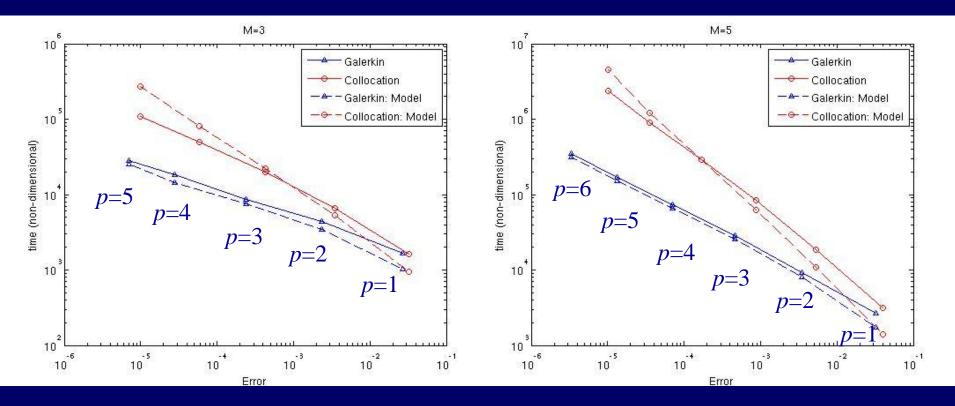
Experimental results: accuracy



For fixed m=4: Similar $p = \begin{cases} polynomial degree for SG \\ "level" for collocation \end{cases}$

produces comparable errors

Experimental results: performance



Performed on a serial machine with C-code and CG/AMG code from Trilinos Observation: Galerkin faster, more so as number of stochastic variables (KL terms) grows

More General Problems

For the problem discussed, based on a KL expansion, has a *linear* dependence on the stochastic variable $\underline{\xi}$

Other models have nonlinear dependence. For example



For Gaussian c, called a *log-normal* distribution

In particular: coercivity is guaranteed with this choice

More General Problems

For stochastic Galerkin, need a finite term *expansion* for a

$$a(x,\underline{\xi}) = a_0(x) + \sigma \sum_{r=1}^{M} \sqrt{\lambda_r} a_r(x) \psi_r(\underline{\xi})$$
Note: not ξ_r

$$\rightarrow \text{ matrix} A = G_0 \otimes A_0 + \sum_{r=1}^{M} G_r \otimes A_r [G_r]_{ij} = \langle \psi_r \psi_i \psi_j \rangle$$
 Less sparse

More importantly: # terms M will be larger perhaps as large as $2N\xi$

mvp will be more expensive

In contrast

Collocation is less dependent on this expansion $A^{(k)}$ comes from $\int_{\mathcal{D}} a(x, \underline{\xi}^{(k)}) \nabla u \cdot \nabla v \, dx$ for each sparse grid point $\underline{\xi}^{(k)}$

Many matrices to assemble, but mvp is not a difficulty

Concluding remarks

- Exciting new developments models of PDEs with uncertain coefficients
- Replace pure simulation (Monte Carlo) with finite-dimensional models that simulate sampling at potentially lower cost
- Two techniques, the *stochastic Galerkin* method and the *stochastic collacation* method, were presented, each with some advantages
- Solution algorithms are available for both methods, and work continues in this direction