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Diffusion Equation with Random Data

-V-(avu)=f inDcR"
Uu=g,0onod,, (avu)-n=00naoD, =oD\oD,

Diffusion coefficient: truncated Karhunen-Loeve expansion:

a(x,0)=a,()+0y. 4 & (X (o)
8, (x) = u(x) = E(a(x,)) mean
o(x)=E(a(x,)?)— x° standard deviation

a, (X), 4= eigenfunctions/eigenvalues of covariance operator

(Ca)(x) = Aa(x), (Ca)(x)= LC(X, y)a(y)dy

Assumption: coercivity and boundedness O< o, <a<a, <



Stochastic Galerkin Method

Weak formulation

j ja(x EVU-Wdxp(E)dE= [ [fvdxp(@ds ()

Finite dimensional spaces:
- spatial discretization: S, = Hg(D), spanned by{p}
for example: piecewise linear on triangles

- stochastic discretization: T C L*(I"), spanned by{gul}lN: ]

determined by m-variate tensor product polynomials
whose components are orthogonal wrt density measure

Discrete weak formulation: Findu,; € S, & T such that (*)
holds for all v, € 5, ® T

ZJ 1Z| 1uJI§DJ(X)W| (<)



Matrix Equation Au=f a(x,&(@) =a,(x)+oy. A a,(XE (@)

A=G,®A+Y G ®A
(Al = [a,(x) Vo, (x)- Voo, (%) dx

[Ali =2, [6(¥)a,(x) Vo,(x)- Vo, (x)dX

Goly =(w1v7): [y =(&wwy)
1 = | [ (90 (0 (&) dx p(£)dE

Properties of A:

 order = Nx X N¢ = (size of spatial basis) x (size of stochastic basis)
- sparsity: inherited from that of {G,} and {A }
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Example of Sparsity Pattern

Block sparsity structure, m=6, p=4

For m-variate
polynomials of
total degree p:

I
N
=
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Multigrid Solution of Matrix Equation | (E. & Furnival)

Solving Au=f

A=G, ®AJ+Y " G, ®A
[Alj =2, o [a.()Ve,(x)- Vo, (x)dx

(G, = [ (E)q(£)E, p(E)de

A =A"  A=AM  spatial discretization parameter h

A = Ar(Zh), A= A" spatial discretization parameter 2h

Develop MG algorithm for spatial component of the problem




Multigrid algorithm (two-grid)

Let AW =Q-N, Q = smoothing operator
fori=0,1, ...
for j=1:k k smoothing steps
u® (1@ tAMyM L o-tf®
end
r =R (f M _ Ay Restriction
Solve AN _ (2N) Coarse grid correction
uM « yM 4 pelzh Prolongation
end

Prolongation and restriction:

P =1&P, induced by natural inclusion in spatial domain
R=P"=1®R, R=P'
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Convergence analysis: use “standard” approach

Error propagation matrix:
e(|+1) _ [(A(h))—l _T(A(Zh))—lR)] [A(h) (I _Q—lA(h))k] e(I)

Establish approximation property
[[(AD) - P(ACY)IR]y]

w SCIYl, vy
and smoothing property T
IIAT (1 =Q A Ty <n(K)|y]w VY. n(k) — 0
Analysis Is:
1% {], i I (A™) T = P(A)TR)[AT (1 -QA™) T e ||
<CII[AV (1 -Q*A") e
<Cn(k)|le" |

AN AN

A



Convergence analysis: smoothing property

Assumption of boundedness O<a, <a<a, <o =>

(AMy, v) L[@ a(x,&)Vvy, - Vv, dx p(g)d S
v [V dxp()de
L[,@ WV, - WV, dx p(8)d &
| Vedxp(&)dé

<, < a,C

(h)

Thus, maximum eigenvalue of A" Is bounded

For smoothing property (Braess):
Q = A1 (Richardson iteration) works with 6> max(A(A™))

In experiments described below:
we use damped Jacobi, Q = diag(A)/w



Approximation property

“Standard” MG analysis for deterministic problem:

_ Hu(m _y@m

H [(A(h))—l _ T(A(Zh))_lR] y A Alh)
u, — uzhHa (=a(u, —u,,,u, — u2h)1/2)

U, — uHa T Hu - UZhHa
Approximability < \/OTZ(ChHDZU ey T CZhHDzu LZ(I)))

Regularity <Ch H f

Property of mass < C HyH
matrix ’

IA

L*(D)



For approximation property in stochastic case

Introduce semi-discrete space H_ (D) ®T, Discrete stochastic

u Space
Weak formulation

a(u,,v,)=/¢(v,) forallv,eH (D)®T,
Solution u

[L(A™) ™ —P(APY)*R]Y|

A Huhp — Uan,p

a

_|_

a

p_u2h

u

a

Approximation (in 2D):
”up Uy || < ChHDzuIO

Established using best approximation property of Uy,
and interpolant U (X;,&) =u (X;,&) V&

L2 (D)®L?(T)

Similarly for other steps used for deterministic analysis 10



Comments

Establishes convergence of multigrid with rate independent of
spatial discretization size h

*No dependence on stochastic parameters m, p

*Applies to any basis of stochastic space

. (m+ p)!
For polynomial chaos N : = D degrees of freedom

*N.B. Coarse grid solve is with matrix (at least) this large

This Is a topic of ongoing study
(E. & Ullmann)
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Experimental results

Problem:
-V-(avu)=f inDxQ, D =(-11)°
u=0 on oD x Q)

a derived from an exponential covariance function

Tested both uniform and normal distributions with
orthogonal basis (multidimensional Legendre / Hermite
polynomials)

Multigrid scheme:
V-cycle
Damped Jacobi smoother, damping parameter 2/3
2 times 2 coarsest grid
3 presmoothing, 3 postsmoothing steps
Stop when relative residual < 1.d-6
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Iteration counts / normal distribution

h=1/16

Polynomial
degree

h=1/32

Polynomial
degree

# terms (m) in KL-expansion

m=1 m=2 m=3 m=4
p=1 8 8 8 8
p=2 8 8 8 8
p=3 9 9 9 9
p=4 9 10 10 10

m=1 m=2 m=3 m=4
p=1 7 7 8 8
p=2 8 8 8 8
p=3 8 8 9 9
p=4 9 9 9 9
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Multigrid Solution of Matrix Equation |l
Solving Au=f

A=G ®AO+Z_1 QA
[Ali =%, o [a,() Ve, (x)- Ve, (x)dx

[G, 1 = [w1 (O (O p(£)dE

Preconditioner for use with CG: Q =G, ® A, (Kruger, Pellissetti,
Ghanem)

A ~ ja (X) Ve, (X)- Ve, (X)dX  Deterministic diffusion,

from mean
G, = I
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Analysis (Powell & E.)

Recall a(X, ) =a,(X)+0 Y. 2, a,(X)& (o)
— A=G,®A +Y G ®A

Q= Go ® Ao
Theorem : For u constant, the Rayleigh quotient satisfies
w, Aw
1—r£(’ )£1+r
(w, Qw)

r=(a/we(p)Y" 2 NIl

Consequence: K < ﬁ—; dictates convergence of PCG
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Sketch of proof 7= (a/u)e(p) Y % lla, |l

A=G,®A+Y" G ®A

In spatial domain:

(9. A9) ~ 52 | 2 ()Ve(x)-Ve(x)dx
<o’ lla Il | Vo) Ve(x)dx
= (ol 4 a1, (9, A)
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Sketch of proof 7= (a/u)c(p) Y J2 lla, Il

A=G,®A+Y G ®A

In stochastic space:

(v,.G )~ [ &y (&) p(£)dé

G, derives from basis of multivariate polynomials of total
degree p, orthogonal wrt probability measure p(&)d&

Conseguence:

« three-term recurrence handles & (&)

« maximum eigenvalue is largest root of scalar orthogonal
polynomial

. ~ﬁ for Gaussian measure (Hermite polynomials)
 ~ 1/( for uniform measure (Legendre polynomials)
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Example of Eigenvalues &Bounds of Preconditioned

Operator

h=1/8
0=.01

m P min min max max
(#KL) A bound A bound
1 1 92 .92 1.08 1.08
2 .85 .85 1.15 1.15

3 .80 .80 1.20 1.20

4 76 .76 1.24 1.24

2 1 91 90 1.09 1.10
2 .85 17 1.15 1.23

3 .80 .70 1.20 1.30

4 15 .63 1.25 1.37

3 1 91 .89 1.09 1.11
2 .85 .70 1.15 1.30

3 79 59 1.21 1.41

4 74 50 1.26 1.50
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Multigrid Variant of this Idea

Replace action of A" with multigrid —  preconditioner
Que =Gy ® A i (Le Maitre, et al.)

(w, Aw)  (w, Aw) (w,Qw)

(w,Q,cW)  (w,Qw) (W QMGW) Spectral equivalence
/" of MG approximation
S [ﬂl, B,] todiffusion operator

Analysis:

& (1‘”') P,
- (d-7) B
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Crimes and misdemeanors

For coercivity in -V-(aVu) = f require 0<a, <a<a, <w

For either problem definition:
If distribution of a Is Gaussian, then a Is unbounded

Example: eigenvalues of A and QA (method II)

h=1/8 P min max min max

MA) | MA) | MAQ) | MAQ)
11 6.51 25 1.75
.07 6.95 13 1.87
.03 7.35 .02 1.98

=221 7.71 -.09 2.09
-.60 8.06 -.18 2.18

m=2
c=.3

cO N|Oo O1 &~




Experiment

Starting with a with specified covariance and small o (=.01):

Compare Monte-Carlo simulation with SFEM, for
-V-(aVu) = f
N.B.: No negative samples of diffusion obtained in MC

# Samples s

Max SFEM 100 1000 10,000 40,000

Mean 06311 | .06361 06330 06313 06313

Variance |2.360(-5) | 2.161(-5) | 2.407(-5) | 2.258(-5) | 2.316(-5)

/ \
Solve one system

of order 210x225 Solve s systems of size 225




Return to crimes and misdemeanors

For coercivityin -V-(aVu)=f require O<o, <a<a, <o

Fix: use a different distribution, e.g. uniform

Difficulty: recall

a(x,o)=a,(\)+0> . A a.(XE (@)

Require joint
density function
associated with_ &

N\

(a(u,v)) = j jaVu Vv dxdP(w) = j ja(x £)Vu-Wv dx p(£)d &

Except for Gaussian distribution {¢ } are not independent

p(é) 7&‘[)1(51) " P (fm)'

In common use
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Alternative Fixes

Enforce coercivity by requiring a(x,w) to come from
a truncated Gaussian distribution: omit tails so that

O<g,fa<ga, <o

(a(u,v)) = j jaVu Vv dxdP(w) = j ja(x £)Vu- Vv dx p(£)d &

Still have p(é) % P (&) pn(Sn)

but (perhaps) less of a crime

Note: can work with such a distribution even though orthogonal
polynomials are not known (Gautschi code); Rys polynomials
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Comparison of Galerkin and Collocation

Recall from last talk:
Stochastic Collocation, alternative to method discussed so far

Mg
Discrete solution Uy, (X,&) = Zu,ﬁk)(x) L (S)
k=1

Obtained by solving
j(ao(x) + aZTzl\/Zar(x)g“r)Vu -Vvdx = jf v dx
D D

For set of samples {f(k)} situated in a sparse grid

Advantage of this approach: simpler (decoupled) systems
Disadvantage: larger stochastic space for comparable accuracy

larger by factor approximately 2°
24



Dimensions of Stochastic Space

m p Galerkin | Collocation | Collocation
(#KL) Sparse Tensor
4 1 5 9 16
2 15 41 81
3 35 137 256
4 70 401 625
10 1 11 21 1024
2 66 221 59,049
3 286 1582 1,048,576
4 1001 8,801 9,765,625
30 1 31 61 1.07(9)
2 496 1861 2.06(14)
3 5456 37,941 1.15(18)
4 46,376 582,801 9.31(20)

~ size of coarse grid space
for MG / Version 1

AN

# systems for collocation
MG / Version I




Experiment

(E., Miller, Phipps, Tuminaro)

* Solve the stochastic diffusion equation by both methods

« Compare the accuracy achieved for different parameter sets?

* For parameter choices giving comparable accuracy, compare
solution costs

» Spatial discretization fixed (32x32 finite difference grid)

Solution algorithm for both discretizations:
Preconditioned conjugate gradient with
mean-based preconditioning, using AMG for the
approximate diffusion solve

'Estimated using a high-degree (p=10) Galerkin solution.



Experimental results: accuracy

For fixed m=4:

polynomial degree for SG

Similarp = “level” for collocation

produces comparable errors



Experimental results: performance

—&— Galerkin ] A —&— Galerkin
—&— Collocation I = —&— Collocation
G ) Q. N )
— &= = Galerkin: Model i R T — &= = Galerkin: Model
- NN
5 & - - A 6 3 2 o :
10 F O Y —@©= ~ Collocation: Model | 10 F & ©- =~ Collocation: Model |
i e 9 ; B ;
— 0. — RN
] ] N
o o
(=] (=]
=) =)
& &
= + = 5
= 10 = 10
= =
o o
= =
[+4] [+4]
£ £

Performed on a serial machine with C-code and
CG/AMG code from Trilinos

Observation: Galerkin faster, more so as number of
stochastic variables (KL terms) grows



More General Problems

For the problem discussed, based on a KL expansion, has
a linear dependence on the stochastic variable &

Other models have nonlinear dependence. For example

A%, &) = 8, +e - CKS) =)+
m
Nonlinear GZrzl\/Irar(X)gr

For Gaussian c, called a log-normal distribution

In particular: coercivity Is guaranteed with this choice
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More General Problems

For stochastic Galerkin, need a finite term expansion for a

a(x,&) =a,()+a>. 4 a. (), (&)

Note: not &r
—— matrix
A=G,®A+3" G, ®A
[G.]; = <I,urwiguj> Less sparse

More importantly: # terms M will be larger
perhaps as large as 2N¢

=> mvp will be more expensive

30



In contrast

Collocation is less dependent on this expansion

A% comes from ja(x,f(k))Vu-Vvdx for each
D

sparse grid point é‘f(k)

Many matrices to assemble, but mvp is not a difficulty

31



Concluding remarks

« Exciting new developments models of PDEs with uncertain
coefficients

 Replace pure simulation (Monte Carlo) with finite-dimensional
models that simulate sampling at potentially lower cost

 Two techniques, the stochastic Galerkin method and the

stochastic collacation method, were presented, each with some
advantages

« Solution algorithms are available for both methods, and work
continues In this direction
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