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Forcing function  f

Boundary data

Viscosity ν in Navier-Stokes equations 

Stochastic Differential Equations with Random Data
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Example:  diffusion equation

a = a(x,ω) a random field

For each fixed x, a(x,ω) a random variable

Uncertainty / randomness:

Other possibly uncertain quantities :
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Depictions:  Random Data on Unit Square
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1.  Spatial correlation of random field:  For

Diffusion Equation with Random Diffusion Coefficient

Random field    a(x,ω)

Mean                 μ(x) = E(a(x,·))

Variance

Covariance function    

c(x,y) = E( (a(x,·)- μ(x)) (a(y,·)- μ(y)) )

is finite     

:, Dyx
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vs. white noise, where c is a δ-function
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210 a2.  Coercivity

Problem is well-posed

Assumptions:



Monte-Carlo Simulation

Sample a(x,ω) at all x          , solve in usual way

Standard weak formulation:  find                        such that
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for all 

Multiple realizations (samples) of a(x,·)

Multiple realizations of u 

Statistical properties of u

Problem:  convergence is slow, requires many solves
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= identically distributed uncorrelated random 

variables with mean 0 and variance 1

Another Point of View
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Covariance function is finite          

random field (diffusion coefficient) has Karhunen-Loève expansion:

)(r

 )(),()( )(     ),())((
D

CC dyyayxcxaxaxa

rr xa ),(

mean   )),(()()(0 xaExxa

= eigenfunctions/eigenvalues of covariance operator
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Requires: m large enough so that the fluctuation of a

is well-represented, i.e.                is small11 /m

Finite Noise Assumption

~ Principal components analysis

m
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Truncated Karhunen-Loève expansion:
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More precisely:  error from truncation is
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Choose m to make this small



1.  Stochastic Finite Element (Galerkin) Method:

Introduce a weak formulation analogous to finite elements 

in space that handles the “stochastic” component of the problem

2.  Stochastic Collocation Method:

Devise a special strategy for sampling ξ that converges more 

quickly than Monte Carlo simulation ; derived from interpolation 
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Two Ways to Use This
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Ghanem, Spanos, Babuška, Deb, Oden, Matthies, Keese, Karniadakis, 

Xiu, Hesthaven, Tempone, Nobile, Webster, Schwab, Todor, Ernst, 

Powell, Furnival, E., Ullmann, Rosseel, Vandewalle



Stochastic Finite Element (Stochastic Galerkin) Method

Probability space (Ω,F, P)
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PL {square integrable functions wrt dP(ω)}

Inner product on              : )(2

PL

Use to concoct weak formulation on product space )()( 21

PE LH D

Find                                       such that
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Solution u=u(x,ω) is itself a random field
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For Computation:  Return to Finite Noise Assumption 

Truncated Karhunen-Loève expansion
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Stochastic weak formulation uses 
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ξ plays the role of a 

Cartesian coordinate

Bilinear form entails 

integral over image of

random variables ξ Require joint

density function

associated with ξ
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Statement of Problem Becomes

DD

ddxfvddxvuxa )()(),(

Find                                       such that
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Like an ordinary Galerkin (or Petrov-Galerkin) problem on a

(d+m)-dimensional “continuous” space

d  = dimension of spatial domain

m = dimension of stochastic space
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Discretization
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ddxvfddxvuxa )()(),(

Finite dimensional spaces:

• spatial discretization:

for example:  piecewise linear on triangles  

• stochastic discretization:

for example: polynomial chaos = m-variate Hermite

polynomials (orthogonal wrt Gaussian measure)
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Discrete weak formulation:
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Basis Functions for Stochastic Space
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Underlying space:
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Let                     polynomial of degree j orthogonal wrt)()(

k
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Examples:  if ρk ~ Gaussian measure            Hermite polynomials

ρk ~ uniform distribution          Legendre polynomials

Any ρk can be handled computationally (Gautschi)

Rys polynomials
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Orthogonality of basis functions          sparsity of coefficient matrix



Matrix Equation Au=f
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Properties of A:

• order = Nx x Nξ = (size of spatial basis) x (size of stochastic basis)

• sparsity:  inherited from that of { } and {  }rG rA
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Dimensions of Discrete Stochastic Space
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Full tensor product basis:  ,m, ipji 1    ,0

Dimension:  mp )1(

“Complete” polynomial basis:  pjjj m21

Dimension:  (   )m+p

p
=

(m+p)!

m! p!

Too large
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More 

manageable

Order these in a systematic way 
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Example
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Orthogonal (Hermite) polynomials in 1D:

“Complete” polynomial basis:  pjjj m21
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Gives basis set:



16

Example of Sparsity Pattern

Nξ=
(m+p)!

m!p!

10!

6!4!
=

=   210

For m-variate

polynomials of

total degree p:



using orthogonality of stochastic basis functions
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Uses of the Computed Solution:
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First moment of u (expected value):  

Free!

Similarly for second moment / covariance

1.  Moments:
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Uses of the Computed Solution:
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2.  Cumulative distribution functions

at some point x

Sample ξ
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PrecomputedRepeat

Not free, but no solves required



Given                                                                  as above
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Stochastic Collocation Method
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Let ξ be a specified realization (~ Monte Carlo)

Weak formulation:

DD

dxvfdxvuxaxa r
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Discretize in space in usual way.

Stochastic collocation:  choose special set

from considerations of interpolation 
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Advantage:  Spatial systems are decoupled



Given                                       and v(ξ), consider an interpolant
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Multi-Dimensional Interpolation
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To Compute Statistical Quantities
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1.  Moments

Not free but can be precomputed

2. Distribution functions

Obtained by sampling, cheap
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1D interpolating polynomial
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Strategy for Interpolation
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Advantage:  easy to construct

Disadvantage:  “curse of dimensionality,”  

dimension = (p+1)
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Detour: Sparse Grids

Given:  1D interpolation rule )()())(( )(
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Multidimensional rule above is induced by fully populated

multidimensional grid                                       .
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Alternative:  multidimensional sparse grid (Smolyak)
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Sparse Grid Interpolation

Sparse grid Full grid

From Xiu & 

Hesthaven

d=2, p=5

For v of the form                                                       interpolating 

function takes the form
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Sparse Grid Interpolation

For        sparse grid and           a tensor product polynomial of

total degree at most p,   
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Theorem (Novak, Ritter, Wasilkowski, Wozniakowski)

That is:  sparse grid interpolation evaluates the set of complete

m-variate polynomials exactly 

Overhead:  number of sparse grid points to achieve this

(= # stochastic dof)  is larger than for Galerkin
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Sparse Grid Interpolation

Choice of (1D) points to define sparse grids dictated by 

interpolation error 

Choices studied:  

Clenshaw-Curtis

Gaussian nodes
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Analysis 

Monte-Carlo:

 ))()((  ))()(()()( hphhhp uEuEuEuEuEuE

  ,  rrc p 12  uEhc )|(| 21
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(Babuška, Tempone, Zouraris, Nobile, Webster)

Convergence is slow wrt number of samples but

independent of number of random variables m

Stochastic Galerkin and Collocation:

Rule of thumb:  the same p gives the same error

(for all versions of SG and collocation) 

More dof for collocation than SG

Exponential in polynomial degree p

Constants (c2 , r) depend on m
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Recapitulating

Monte-Carlo methods:

Many samples needed for statistical quantities

Many systems to solve

Systems are independent

Statistical quantities are free (once data is accumulated)

Stochastic Galerkin methods:

One large system to solve

Statistical quantities are free or (relatively) cheap

Stochastic collocation methods:

Systems are independent

Fewer systems than Monte Carlo

More degrees of freedom than Galerkin

Statistical quantities are (relatively) cheap
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)( )(1)(With s realizations:

Convergence is slow but independent of m

Similar convergence

behavior

Faster than MC

Depends on m
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Computing with the Stochastic Galerkin and 

Collocation Methods 

For both: compute a discrete solution, a random field
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Stochastic Collocation:

Postprocess to get statistics
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Computational Issues 

Stochastic Galerkin:  Solve one large system of order Nx x Nξ

m+p

pNξ=(    )

Frequently cited as a problem for 

this methodology

Stochastic Collocation:  Solve Nξ “ordinary” algebraic systems 

(of order Nx), one for each sparse grid point

Here:  )()( 2~ Galerkinpncollocatio NN

Some savings possible 30



What is Involved?
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Assembly of m+1 matrices Ar of ordinary finite element structure

Construction of m matrices Gr with at most two nonzeros per row

For Krylov subspace iteration:  matrix-vector product can be

done implicitly 31

Stochastic Galerkin:



What is Involved?
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Stochastic Collocation: solve discrete version of
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One system for each (sparse) grid point
)(k

Now there is a choice:

1. Assembly of Nξ coefficient matrices of ordinary finite element

structure, one for each grid point, or

2.   Assembly of m+1 matrices Ar

For (1):  mvp is cheaper, preprocessing is more expensive

For (2):  cumulative cost of mvp ~ 2  (cost for SG)
p



Comparison:  Depends on Solution Algorithms
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