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Stochastic Differential Equations with Random Data

Example: diffusion equation

-V-(avu)=f inDcR"
Uu=gy,onod,, (avu)-n=00noD, =oD\oD,

Uncertainty / randomness:
a = a(x,w) a random field
For each fixed x, a(X,w) a random variable

Other possibly uncertain quantities :
Forcing function f
Boundary data g,

Viscosity v in Navier-Stokes equations
—v VU +(u-grad)u+grad p = f
—divu=0



Depictions: Random Data on Unit Square




Diffusion Equation with Random Diffusion Coefficient

-V-(avu)=1f inD
Assumptions:
1. Spatial correlation of random field: For X,yeD:

Random field a(x,w)
Mean w(x) = E(a(x,))
Variance o(X) = E(a(x,)?) - i

Covariance function
c(xy) = E( (a(x,")- u(x)) (@fy,-)- u(y)) )
IS finite
vs. white noise, where c is a o-function
2. Coercivity O<g £a<a, <o
= Problem is well-posed 3



Monte-Carlo Simulation

Sample a(x,w) at all x € D), solve in usual way

Standard weak formulation: find u e Hg (D) such that
a(u,v) =/4(v)

forall v e Hg (D),

a(u,v) = jaVu-Vvdx, (V) = jfvdx
D D

Multiple realizations (samples) of a(x,:) —>
Multiple realizations of u —
Statistical properties of u

Problem: convergence is slow, requires many solves




Another Point of View
-V-(avu)=1f InD

Covariance function is finite =>
random field (diffusion coefficient) has Karhunen-Loeve expansion:

a(x,0)=a,(\)+0Y. A a.(XE ()
a,(x) = (x) = E(a(x,)) mean

a. (X), 4. = eigenfunctions/eigenvalues of covariance operator

(Ca)(x) =4a(x), (Ca)(x)= IDC(X, y)a(y)dy

5 r (a)) = 1dentically distributed uncorrelated random
variables with mean 0 and variance 1



Finite Noise Assumption
-V-(avu)=f inD

Truncated Karhunen-Loeve expansion:
m
a(x,0)=a,(x)+0 Y. 4 a.(XE ()

~ Principal components analysis
Requires: m large enough so that the fluctuation of a
is well-represented, i.e. A1/ 4 issmall

, . |D|02—ZT A,
More precisely: error from truncation is D S
(02

Choose m to make this small



Two Ways to Use This

a(x,0)=8,(X\)+aY, " 4 a (X ()

1. Stochastic Finite Element (Galerkin) Method:
Introduce a weak formulation analogous to finite elements
in space that handles the “stochastic”” component of the problem

2. Stochastic Collocation Method:
Devise a special strategy for sampling & that converges more
quickly than Monte Carlo simulation ; derived from interpolation

Ghanem, Spanos, Babuska, Deb, Oden, Matthies, Keese, Karniadakis,
Xiu, Hesthaven, Tempone, Nobile, Webster, Schwab, Todor, Ernst,

Powell, Furnival, E., Ullmann, Rosseel, Vandewalle
,



Stochastic Finite Element (Stochastic Galerkin) Method

Probability space (Q2, 7/ P)
L2 () = {square integrable functions wrt dP(w)}

Inner producton L% (Q): (V,W) =E(vw) = jv(a))w(a))dP(a))

Use to concoct weak formulation on product space Hy (D) ® Lz (Q)

Find U € H: (D) ® L5 (Q) such that

—

(@wv)={1) [ favu-vvdxdP(o)
forall veHg (D)®L;(Q) QD

Solution u=u(X,m) is itself a random field



For Computation: Return to Finite Noise Assumption

Truncated Karhunen-Loeve expansion

a(x, () =a,(X)+a Y 2 a(X)& (o)

Stochastic weak formulation uses

(a(u,v)) = j jaVu Vv dxdP(w) = j ja(x,@Vu-deXp(g)dg

— 5(Q)D

—

Bilinear form entails

Integral over image of & plays the role of a
random variables & Require joint Cartesian coordinate

density function
assoclated with &




Statement of Problem Becomes

Find U e H:

J

D

forall Ve

(D)® L5 (T) such that

a(x, &)Vu-Wdx p(£)dé = [ [fvdxp(&)d&

He, (D)@ L (I (F=£(Q)

Like an ordinary Galerkin (or Petrov-Galerkin) problem on a
(d+m)-dimensional “continuous’ space

d = dimension of spatial domain
m = dimension of stochastic space
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Discretization

j ja(x E)Vu- W dx p(£)d & j [fvdxp(&)ds

Finite dimensional spaces:
- spatial discretization: S, < Hy(D), spanned by{p,}
for example: piecewise linear on triangles

ST g 2 N
» stochastic discretization: T, cl (1), Spanned by{fy,},jL
for example: polynomial chaos = m-variate Hermite
polynomials (orthogonal wrt Gaussian measure)

Discrete weak formulation:
a(uhIO Vpp) = (V)  Torallvy, € S, ®T,

= S e, (v (€) .



Basis Functions for Stochastic Space
Underlying space: L2(T") ={v(&)| V(&) p(£)d & < oo}
p(ﬁ): P1(5)0:(52) v (Su)

Let q}k) (&) = polynomial of degree j orthogonal wrt p,

Examples: If p« ~ Gaussian measure —s Hermite polynomials
p« ~ uniform distribution—> Legendre polynomials

Any p« can be handled computationally (Gautschti)
—> Rys polynomials

T, < LX) spanned by {0}’ (£)dj; (&) ;" (5,)}

Orthogonality of basis functions —s sparsity of coefficient matrix

12



Matrix Equation Au=f a(x,&(@) =a,(x)+oy. A a,(XE (@)
A=G,®A+Y G ®A
(A5 = [3,(0) Ve, (x)- Voo, (x)dx
D

[Ali =%, [e(X)a (X) Vo,(x): Vo, (x)dx

:GO]Iq = <WI ’Wq>1 [Gr]lq = <é:rWI ’l//q>
1 = [ [ ()0 (0w, (£) dx p(£)dé

Properties of A:

 order = Nx X N¢ = (size of spatial basis) x (size of stochastic basis)
» sparsity: inherited from that of {G,} and {A }
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Dimensions of Discrete Stochastic Space
T, c L*(T") spanned by {q;’(&)a;”(&)--a)" (£,)}

Full tensor product basis: 0< j. <p, i=1...,m
Dimension: (p+1D)" Too large

“Complete” polynomial basis:  J; +J,++-+ J, < P More

Dimension: (m+p) (m+p) manageable

Order these in a systematic way —»

l//l(é)’l//z (é)i .. '1WN§ (é)

14



Example
T, < LA(T) spanned by {q;” (&)} (&;)--d; (&)}

“Complete” polynomial basis: |, +],+:-+ ], <P

5 e m+py _ _
m=2, p=3 —> ( 0 ) _(;) =10

Orthogonal (Hermite) polynomials in 1D:

Ho(8) =1 H,(§) =&, H,(8) =& -1 Hy(§) =& -3¢

Gives basis set: ~ ¥;(5) =1 Ws(S) = 215
VJZ(§)=§1 W7(§):(9612_1)§2
wa(§) =& -1 ws(§) = (& - 1)
W4(§):§13_3§1 W9(§)=(522—1)§1
W5(§):§2 Wlo(§)=§§—3§z



Example of Sparsity Pattern

Block sparsity structure, m=6, p=4

For m-variate
polynomials of
total degree p:

1
N
=
o

0 20 40 60 80 100 120 140 160 180 200
nz =1218




Uses of the Computed Solution:
N N, N
Un, = Z,:;Zj:luﬂ@j (X)y, (§) = Z,iul (X)y, (§)

U, (x)

1. Moments: First moment of u (expected value):

E(Uy) =D u(¥) [ (&) p(E)dé
= U, (X) = le\l:lujlqoj (X)

using orthogonality of stochastic basis functions
Similarly for second moment / covariance

Free!
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Uses of the Computed Solution:

Urp = Dy 2 U (O () = D U (X (€)

u, (X)
2. Cumulative distribution functions

E.g.: P(up, (X,&) > ) at some point x

Sample &

Repeat

Evaluate Uy, (X, &) = ZEU' (X) 1 (S)

> Precomputed

Not free, but no solves required

18



Stochastic Collocation Method
Given a(x,&)=ay(X)+o Y. 2 a,(X)& asabove
Let & be a specified realization (~ Monte Carlo) —>

Weak formulation:

j(ao(x) +GZL\/Z a (x)&)Vu-Vvdx = jf Vv adx

Discretize in space in usual way.

N
Stochastic collocation: choose special set f(l),f(z),...,f( 2

from considerations of interpolation

Advantage: Spatial systems are decoupled
19



Multi-Dimensional Interpolation

; 1 2 N ; :
Given f(),f(),...,f( 9 and v(&), consider an interpolant

(M) = Y V(L () ~v(&)
where L, (ﬁ(")) = 5J.k, Lagrange interpolating polynomial

If ul) solves the discrete (in space) version of

j(ao(x) +0211\/Zar(x)§r)Vu-Vvdx = jf Vv dx
D D
with & = f(k), then the collocated solution is

Uy (%€) = S UP (0L, (&)

20



To Compute Statistical Quantities

Solution Uy, (X&) = iu,ﬁk)(x) L, ($)

1. Moments

E ()0 = U0 [L D@

Not free but can be precomputed

2. Distribution functions
Obtained by sampling, cheap

21



Strategy for Interpolation
(M) = Y V)L () =v(&)
One choiceof {L }: L (§) =Ly, (étl)gk2 (S,)- Ly (Sn)

¢, = 1D interpolating polynomial

j

0<k;<p

Advantage: easy to construct

Disadvantage: ‘“‘curse of dimensionality,”
dimension = (p+1jn

22



Detour: Sparse Grids

Given: 1D interpolation rule (U ®yv)(y™®)) = Zk:\/(yﬁk))gj(y(k))

j=1

Derived from (1D) grid Y = {y‘k) ymk}

Multidimensional rule above is induced by fully populated
multidimensional grid Y ® «Y @) x...xY M
Y®l=m =p+1

Alternative: multidimensional sparse grid (Smolyak)

Hm+pm= [ JY®xy® x...xy)

pP—M+1<ip+ -+, <Pp

23



Sparse Grid Interpolation

From Xiu &
Hesthaven
d=2, p=5

Sparse grid Full grid

For v of the form V(&) = v, (&)V,(E,) -V (&), interpolating
function takes the form

()&= FUY-UW(E)OUY U, (£)®
h+ -+, <p ®(U (i) —U(im_l))Vm(fm)

24



Sparse Grid Interpolation

Theorem (Novak, Ritter, Wasilkowski, Wozniakowski)

For & € sparse grid and V(&) a tensor product polynomial of
total degree at most p,

V(§)=0;(5)0; (&) A (&) Jutiptt Jy <P
(v)($) =V(S).

That is: sparse grid interpolation evaluates the set of complete
m-variate polynomials exactly

Overhead: number of sparse grid points to achieve this
(= # stochastic dof) is larger than for Galerkin

(") = (%)
p p

25



Sparse Grid Interpolation

Choice of (1D) points to define sparse grids dictated by
Interpolation error

Choices studied:

Clenshaw-Curtis & = Cos(ﬂi(kj_—ll))

Gaussian nodes

26



Analysis (Babuska, Tempone, Zouraris, Nobile, Webster)

—————————————————————————————————

Convergence Is slow wrt number of samples but
Independent of number of random variables m

Stochastic Galerkin and Collocation:

—————————————————————————————————

E(u)- E(Uhp)_'(E(U) E(uh))'+'(E(uh) E(u,))

.<ChE(|u|2) - <C,rf, r<l

Exponential in polynomial degree p
Constants (c:, r) depend on m

Rule of thumb: the same p gives the same error
(for all versions of SG and collocation)
More dof for collocation than SG 27



Recapitulating

Monte-Carlo methods:
Many samples needed for statistical quantities
Many systems to solve
Systems are independent
Statistical quantities are free (once data is accumulated)

With s realizations: E_(u,) = %Z;u,ﬁ” (x)

Convergence is slow but independent of m

Stochastic Galerkin methods:
One large system to solve

Statistical quantities are free or (relatively) cheap Similar convergence

_ _ behavior
Stochastic collocation methods: Faster than MC
Systems are independent Depends on m

Fewer systems than Monte Carlo
More degrees of freedom than Galerkin
Statistical quantities are (relatively) cheap

28



Computing with the Stochastic Galerkin and
Collocation Methods

For both: compute a discrete solution, a random field u (X, $)

Stochastic Galerkin:
N N, N
uhp(X1§) = Z,jl i1 Uil ?; (X)y, (§) = Z|jlul (X)y, (@
Stochastic Collocation:

U (6, €)= 3 > U (L (€) = 3 u (XL, (€)

Postprocess to get statistics
29



Computational Issues

Stochastic Galerkin: Solve one large system of order Nx X N¢

v=("")

Frequently cited as a problem for
this methodology

||||||||||

||||||||||

Stochastic Collocation: Solve N¢ “ordinary” algebraic systems
(of order Nx), one for each sparse grid point

. (collocation) __ ~p p| (Galerkin)
Here: N : 2" N :

Some savings possible 30



What is Involved?

Stochastic Galerkin:

A=G,®A+Y G ®A
[Ad5 = [3,(0) Ve, (x)- Vo, () dx

[Ali =2, [a(x)a,(x) Vo, (X)- Ve, (x) dx

[Go ] :<WI’Wq>’ G, ]y = <§ WI’WQ>

Assembly of m+1 matrices Ar of ordinary finite element structure
Construction of m matrices Grwith at most two nonzeros per row

For Krylov subspace iteration: matrix-vector product can be
done implicitly 31



What is Involved?

Stochastic Collocation: solve discrete version of

j(ao(x) + o-ZTzl\/Zar(x)fr("))Vu . Vvdx = jf v dx

D
One system for each (sparse) grid point g(k)

Coefficient matrix: A=A +3" AEY

Now there is a choice:
1. Assembly of Ne coefficient matrices of ordinary finite element
structure, one for each grid point, or

2. Assembly of m+1 matrices Ar

For (1): mvp Is cheaper, preprocessing is more expensive
For (2): cumulative cost of mvp ~ 2° (cost for SG)
32



Comparison: Depends on Solution Algorithms

Next Topic

33



