
Abstract

The multiparticle Schrödinger equation is the basic governing

equation in Quantum Mechanics. Its solution, called a

wavefunction, is a function of many variables and is constrained

to be antisymmetric under exchange of these variables. I will

show how to use antisymmetric inner products to incorporate

the antisymmetry condition into a representation of the

wavefunction as a sum of separable functions. We will then

consider how to incorporate the potential operators into such

inner products, and finally construct a Green’s function

iteration to produce an approximate wavefunction.
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Goals

For people working in Quantum Mechanics:

Present a new strategy for approximating the wavefunction.

For others:

Give a case study on using sums of separable functions.



Outline

• The multiparticle Schrödinger equation

• An iteration based on the Green’s function.

• Sums of Slater determinants

– Unconstrained!!!

• Algorithm overview

• Selected algorithm details



What are we talking about?

The N-particle electronic Schrödinger equation is the basic

governing equation in Quantum Mechanics.

It serves as the foundation for chemistry, physics, and the

physical world as we understand it.

It misses some things, such as relativity, but we won’t worry

about those today.



Functions and Variables

The wavefunction for one electron has one 3D spatial variable

r = (x, y, z) and one discrete spin variable σ ∈ {−1
2,

1
2}.

We combine these into γ = (r, σ).

A system with N electrons does not correspond to a set of

functions {ψ1(γ), . . . , ψN(γ)} but rather a single function

ψ(γ1, γ2, . . . , γN).

Don’t even think about using a regular grid.

Orbitals are a (useful) myth.



The Kinetic Energy Operator

The kinetic energy operator is

T = −
1

2

N
∑

i=1

∆i

where the Laplacian in ri is

∆i =
∂2

∂x2i
+

∂2

∂y2i
+

∂2

∂z2i
.



The Nuclear Potential Operator

A nucleus at position Ra with charge za creates a potential

−za

‖r − Ra‖
,

which we add over all nuclei to give the potential V (r).

The nuclear potential operator is the multiplication operator

V =
N
∑

i=1

V (ri) .



The Electron-Electron Interaction Operator

Two electrons affect each other by the potential

1

‖r1 − r2‖
.

The electron-electron interaction operator is the multiplication

operator

W =
1

2

N
∑

i=1

∑

j 6=i

1

‖ri − rj‖



Find the Low(est) Eigenvalues to get Energies

The Hamiltonian is the sum of these three:

H = T + V + W .

The basic goal is to find the most negative (discrete)

eigenvalues

Hψ = λψ .

These eigenvalues are the possible energies of the system.

Other operators applied to the eigenfunctions give other

properties of the system.



. . . subject to an Antisymmetry Constraint

Electrons are (observed to be) fermions, which means physical

wavefunctions must be antisymmetric under exchange of

coordinates: e.g.

ψ(γ1, γ2, . . . , γN) = −ψ(γ2, γ1, . . . , γN).

We can (in theory) project a function onto its antisymmetric

part using the antisymmetrizer

A =
1

N !

∑

p∈SN

(−1)pP,

where SN is the permutation group on N elements.

Most eigenfunctions project to zero, and those eigenvalues

must be discarded.



A Green’s Function Iteration

(T + V + W)ψ = λψ ⇔ (T − λI)ψ = −(V + W)ψ

⇔ ψ = −(T − λI)−1(V + W)ψ

Define the Green’s function

Gµ = (T − µI)−1 ,

for µ < 0. The Green’s function iteration (a la Kalos) is

ψ̃n = −Gµn[(V + W)ψn]

µn+1 = µn − 〈(V + W)ψn, ψn − ψ̃n〉/‖ψ̃n‖
2

ψn+1 = ψ̃n/‖ψ̃n‖

and has

µn −→ λ .



An Unconstrained Sum of Slater Determinants

We consider approximations to the wavefunction of the form

ψ(r) = A
r
∑

l=1

sl

N
∏

i=1

φli(γi) =
1

N !

r
∑

l=1

sl

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φl1(γ1) φl1(γ2) · · · φl1(γN)

φl2(γ1) φl2(γ2) · · · φl2(γN)
... ... ...

φlN(γ1) φlN(γ2) · · · φlN(γN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We impose no constraints (such as orthogonality) on the

“orbitals” φli(γi), and thus seek the best approximation of this

form.



Do Constraints Really Hurt You?

Without constraints, we can have

ψ = A
N
∏

i=1

φi(γi) + A
N
∏

i=1

(φi(γi) + φi+N(γi))

where {φj}
2N
j=1 form an orthonormal set.

To represent the same function while constraining the factors

to come from on orthogonal set would force you to multiply

out the second term and thus obtain 2N terms.



A Modified Green’s Function Iteration

Since

ψ̃n = −Gµn[(V + W)ψn]

does not preserve the form ψ(r), we define ψ̃n to be the

function of the correct form that minimizes

‖ψ̃n − (−Gµn[(V + W)ψn])‖.

In order to assure convergence to an antisymmetric solution,

we use the pseudo-norm induced by the pseudo inner product

〈·, ·〉A = 〈A(·),A(·)〉.

This makes non-antisymmetric subspaces “invisible”.



Alternating Least Squares Fitting

To find ψ̃n we loop through the directions, optimizing the

functions in that coordinate while fixing the functions in other

coordinates.

For each direction the minimization is a linear problem, solving

the normal equations

Ax = b .

Rather than optimize the coefficients in some basis, we

optimize the point values, resulting in a linear system of

integral equations, which we solve with the Conjugate Gradient

iterative method.



Refresher on the Usual Linear Least Squares Fitting

To find the coefficients {ci} to minimize

∥

∥

∥

∥

∥

∥

f −
∑

i

cigi

∥

∥

∥

∥

∥

∥

2

=

〈

f −
∑

i

cigi, f −
∑

i

cigi

〉

,

take the gradient with respect to {ci} and set it equal to 0 to

obtain the normal equations

Ax = b ,

with

A(k, i) = 〈gk, gi〉 and b(k) = 〈gk, f〉 .

As long as {gi} is linearly independent, the system has a unique

solution x, and one has ci = x(i).



Construction of the Integral System

For direction i = 1, the kernels in A are defined by

A(l, l′)(γ, γ′) =

〈

δ(γ′ − γ1)sl′
N
∏

i=2

φ̃l
′

i (γi), δ(γ − γ1)sl

N
∏

i=2

φ̃li(γi)

〉

A

,

where δ(·) is the delta function.

The functions in b are defined by

b(l)(γ) =

〈

δ(γ − γ1)sl

N
∏

i=2

φ̃li(γi),−Gµ[V + W]
r
∑

m=1

sm
N
∏

i=1

φmi (γi)

〉

A

.

The work is in actually constructing these objects.



Antisymmetric Inner Products

Define the matrix L = L(
∏

φ̃i,
∏

φi) with entries

L(i, j) = 〈φ̃i, φj〉

A simple derivation gives us Löwdin’s rule, that

〈

∏

φ̃i,
∏

φi
〉

A
=

|L|

N !
.

Entries in A are computed via Löwdin’s rule and some trickery

with the delta functions. Entries in b will also use this, but

need additional formulae.



Handling the Green’s function in b

Ignoring some trickery with the delta functions, to compute

entries in b we need need to compute things of the form
〈

∏

φ̃i,Gµ [V + W]
∏

φi
〉

A
.

Gµ is self-adjoint, so we can convert to
〈

Gµ
∏

φ̃i, [V + W]
∏

φi
〉

A
.

It appears that the Green’s function couples all directions, and

so does not allow separation of variables to be used.



Expansion of the Green’s Function

We will approximate

Gµ = (T − µI)−1 ≈
L
∑

p=1

N
⊗

i=1

F
µ,p
ri

,

where F
µ,p
ri

are a set of convolution operators, so that

〈

Gµ
∏

φ̃i, [V + W]
∏

φi
〉

A
≈

〈 L
∑

p=1

N
⊗

i=1

F
µ,p
ri

∏

φ̃i, [V + W]
∏

φi

〉

A

=
L
∑

p=1

〈

∏

(Fµ,pφ̃i), [V + W]
∏

φi
〉

A
.

Since Fµ,pφ̃i is just some other function, we have handled the

Green’s function, with a multiplicative cost L.



How Good is this Approximation?

Theorem: For any ǫ > 0, µ < 0, and N , the N-particle Green’s

function Gµ has a separated representation with relative error in

L2 → L2 operator norm bounded by ǫ using L = O((ln ǫ)2)

terms, with L independent of µ and N .

Thus this representation can be used for large N .



The Construction of the Expansion of the Green’s Function

Step 1: approximate 1/t: Given the desired ǫ, find positive wp
and τp such that

∣

∣

∣

∣

∣

∣

1

t
−

L
∑

p=1

wp exp(−τpt)

∣

∣

∣

∣

∣

∣

< ǫ ,

on the interval t ∈ [1,∞). Translating results of Braess and

Hackbusch (2005), we can use L = O((ln ǫ)2).

Step 2: stretch the interval: Substituting t = s/(−µ) for

µ < 0, and then dividing by −µ, on [−µ,∞) we get
∣

∣

∣

∣

∣

∣

1

s
−

L
∑

p=1

wp

−µ
exp

(

−
τp

−µ
s

)

∣

∣

∣

∣

∣

∣

<
ǫ

−µ
.



Step 3: approximate Gµ in Fourier:

Gµ = (T − µ)−1 =
1

2π2∑
i ξ

2
i − µ

,

so we can substitute into the 1/s approximation and obtain
∣

∣

∣

∣

∣

∣

Gµ −
L
∑

p=1

wp

−µ
e−τp

N
∏

i=1

exp

(

−
2π2τp

−µ
ξ2i

)

∣

∣

∣

∣

∣

∣

<
ǫ

−µ
= ǫ‖Gµ‖ .

Step 4: convert to space: Gµ ≈
L
∑

p=1

N
⊗

i=1

F
µ,p
ri

with

F
µ,p
ri
f(γ1, . . . , γN) =

(

wp

−µeτp

)1/N (
−µ

2πτp

)3/2

×

∫

exp

(

−
−µ

2τp
‖ri − r‖2

)

f(γ1, . . . , γi−1, (r, σi), γi+1, . . . , γN)dr .



Antisymmetric Inner Products with Operators

To compute entries in b, we still need formulae to compute
〈

∏

φ̃i,W
∏

φi
〉

A
and

〈

∏

φ̃i,V
∏

φi
〉

A
.

Define

W [f ](r) =
∫

1

‖r − r′‖
f(γ′)dγ′

and let

Φ = [φ1, φ2, . . . , φd]
∗

denote the column vector containing the functions in the

product
∏N
i=1 φi(γi).

(Sometimes Φ is just shorthand for the product.)



Maximum Coincidence

Using the matrix L = L(Φ̃,Φ), define

Θ = L
−1

Φ̃ .

The antisymmetrization only differs by a constant:

|L|AΘ = AΦ̃ ,

but the functions in Θ are aligned with those in Φ, in the sense

that

L(Θ,Φ) = I ,

or equivalently

〈θi, φj〉 = δij .



Determinant of a Low-Rank Perturbation of the Identity

Let {uq}
Q
q=1 and {vq}

Q
q=1 be two sets of vectors. Then

∣

∣

∣

∣

∣

∣

I +
Q
∑

q=1

uqv
∗
q

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 + v∗
1u1 v∗

1u2 · · · v∗
1uQ

v∗
2u1 1 + v∗

2u2 · · · v∗
2uQ

... ... . . . ...

v∗
Qu1 v∗

Qu2 · · · 1 + v∗
QuQ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This lemma can be proven using Schur complements.



Inner Product with W: 2
N !

|L|

〈

Φ̃,WΦ

〉

A
= 2N ! 〈Θ,WΦ〉A =

∫





∑

i6=j

1

‖ri − rj‖





N
∏

j=1

φj(γj)

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ1(γ1) · · · θ1(γN)
... . . . ...

θN(γ1) · · · θN(γN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

dγ1 · · · dγN =

∑

i6=j

∫

1

‖r − r′‖

∣

∣

∣I +
(

φi(γ)Θ(γ) − ei

)

e
∗
i +

(

φj(γ
′)Θ(γ′) − ej

)

e
∗
j

∣

∣

∣ dγdγ′

=
∑

i6=j

∫

1

‖r − r′‖
φi(γ)φj(γ

′)

∣

∣

∣

∣

∣

∣

θi(γ) θi(γ
′)

θj(γ) θj(γ
′)

∣

∣

∣

∣

∣

∣

dγdγ′ =

∫





∑

i

φi(γ)θi(γ)









∫

1

‖r − r′‖





∑

j

φj(γ
′)θj(γ

′)



 dγ′



 dγ

−
∫

∑

i

∑

j

φi(γ)θj(γ)

[

∫

1

‖r − r′‖
φj(γ

′)θi(γ
′)dγ′

]

dγ

=
∫

Φ
∗
ΘW

[

Φ
∗
Θ
]

− Φ
∗W

[

ΘΦ
∗]

Θdγ .



Inner Product with V

〈

Φ̃,VΦ

〉

A
=

|L|

N !

∫

V (r)Φ∗
Θdγ .

(left as an exercise)



Recap: Sketch of the Method

Within the Green’s function iteration:

1. Modify the iteration to a least-squares fitting problem.

2. Collapse that to a set of one-electron least-squares fitting

problems.

3. Update the one-electron functions using:

• a numerical method for operating on one-electron

functions,

• formulas involving the nuclear potential and the Poisson

kernel, and

• an expansion of the Green’s function into Gaussian

convolutions.



Features of the Algorithm

The integral equations formulation means we do not have to

work in a fixed basis, but can adapt as necessary. We use

adaptive polynomial multiwavelets, which also allow us to

compute W [·] efficiently.

With respect to the number of terms r, the number of

electrons N , and the cost M to represent a function of γ, the

computational cost is

O(r2N2(N +M logM)).

For comparison, the cost to evaluate a single instance of

Löwdin’s rules is

O(N2(N +M)).



Status

• The multiparticle method that I presented here is fully

developed and clean.

• The numerical method for the single-electron functions is

giving us a lot of trouble.

• Work is in progress to develop extensions that would be

size-consistent and capture the inter-electron cusp.

• We have no idea how to prove that small r is is sufficient to

give good approximations.


