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Due to the large number of vessels involved and the multitude of different
length scales required to accurately represent the flow in the various regions of
the cardiovascular system, simulations of the flow of blood in the entire system
based on full 3D models are beyond the capability of current computers and
they will be for years to come. Moreover, the huge amount of data that would
be generated by such simulations is costly to process and of difficult clinical
interpretation.

On the other hand, it is possible to devise simplified models exploiting
specific features of blood flow, such as the basically cylindrical morphology
of the vessels. Even though these models are highly simplified with respect
to the local dynamics, they can provide reliable numerical results at a low
computational cost. Interpretation is much straightforward, thus making them
ideal as an everyday tool for use in clinical practice.

Moreover, these models are well-suited for describing systemic dynamics
such as feedback mechanisms that play an important role in the the correct
working of the vascular system. These dynamics typically involve mechanical
and biochemical phenomena that can be hardly described in terms of complete
3D models.

In these notes, we address simplified models and in particular we consider:

1. one-dimensional (1D) models in which the space dependence is reduced
only to the axial coordinate;

2. lumped parameter (or 0D) models, where the space dependence is dis-
cretized, by splitting the cardiovascular system into a set of compart-
ments. The associated mathematical model is typically based on ordinary
differential and algebraic equations (DAE), often represented in terms of
hydraulic or electric networks.

It is worth mentioning that studies on one-dimensional models of blood
flow were first presented by Leonhard Euler in his seminal article entitled
Principa pro motu sanguinis determinando [14]. In spite of the simplifying
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assumptions behind these models, they are very useful and many of their
analytical and numerical aspects still deserve further investigation3.

1.1 One-dimensional (1D) models

There are several ways of deriving a 1D model of an incompressible fluid
flowing in a compliant pipe. One could start from the incompressible Navier-
Stokes equations and perform an asymptotic analysis by assuming that the
radius of the vessel, R0, is small compared to its length l, i.e. R0

L ≪ 1, that
will permit us to simplify the governing equations by discarding the higher
order terms in R0

L as proposed by [4]. Alternatively, the 1D model could be
derived by assuming cylindrical symmetry and integrating the Navier-Stokes
equations on a generic section as described in [57].

Here we will follow the approach advocated and described in [36, 37] and
derive the governing equations from conservation principles. This approach is
more general and it does not require any simplifying assumptions concerning
the geometry of the vessel section.

1.1.1 Derivation of the governing equations

We consider a simple compliant tube, illustrated in Figure 1.1, as a model of
the artery. We assume that the axis of the vessel is rectilinear and coincides
with the x axis. The starting point for the derivation of the one-dimensional
governing equations is Reynolds’ transport theorem for an arbitrary control
volume Vt with boundary ∂Vt and outer normal n. A formal derivation of
this formula can be found in [59]. It states that, for a continuous function
f = f(t,x), we have

d

dt

∫

Vt

f dV =

∫

Vt

∂f

∂t
dV +

∫

∂Vt

f ub · n dσ (1.1)

where x stands for (x, y, z) and ub is the velocity of the boundary of volume
Vt. This is composed of the arterial wall ∂Vt,w and the two end sections S1 and
S2, that are assumed normal to the axis. On S1 and S2 the normal component
of ub is 0, while on ∂Vt,w velocity ub does coincide with the velocity uw of
the arterial wall, so that

∫

∂Vt

f ub · n dσ =

∫

∂Vt,w

f uw · n dσ. (1.2)

3 “Thus in explaining the motion of the blood, we come up against the same insu-
perable difficulties which clearly prevent us from more accurately investigating all
the works of the Creator; wherein we ought constantly to admire and to venerate
much more the highest wisdom conjoined with omnipotence since truly not even
the greatest human ingenuity avails to understand and explain the true structure
of the slightest micro-organism”, L. Euler [9].



1 Reduced cardiovascular models 3

∂Vt,w

S Vt

x = x2

x = x1

S2

S1

Fig. 1.1. Notation used to describe a simple compliant tube

Here uw is taken to be different of the fluid velocity u = (u1, u2, u3) to
allow for the presence of a permeable lumen. The relative velocity between
the arterial wall and the fluid at the lumen is given by

w = uw − u

To obtain the one-dimensional form of the conservation laws, we consider
area-averaged values of the relevant variables. The area-averaged value of f
is denoted by f̄ and given by

f̄ =
1

A

∫

S

f dσ (1.3)

where A = A(x, t) =
∫
S
dσ is the area of the cross section S. Using this

notation, we write a volume integral as

∫

Vt

f dV =

∫ x2

x1

[∫

S

f dσ

]
dx =

∫ x2

x1

Af̄ dx (1.4)

where x1 and x2 (x2 > x1) are the x−coordinates of the cross sections S1 and
S2.

Given that x1 and x2 are independent of time, the left-hand side term of
equation (1.1) can be written as

d

dt

∫

Vt

f dV =

∫ x2

x1

∂

∂t

(
Af̄

)
dx (1.5)

The presence of a permeable wall makes the evaluation of the second term of
the right-hand side of equation (1.1) more involved. After (1.2), this term is
calculated as
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∫

∂Vt,w

fuw · n dσ =

∫

∂Vt,w

fw · n dσ +

∫

∂Vt,w

fu · n dσ.

Observe that∫

∂Vt,w

fu · n dσ =

∫

∂Vt

fu · n dσ −
∫

S1

fuw · n dσ −
∫

S2

fuw · n dσ =

∫

∂Vt

fu · n dσ +

∫

S1

fu1 dσ −
∫

S2

fu1 dσ

where u1 is the x-component of the velocity u. Thanks to the Gauss’ theorem,
we have∫

∂Vt,w

fu · n dσ =

∫

Vt

∇ · (fu) dV +

∫

S1

fu1 dσ −
∫

S2

fu1 dσ

so that using area-averaged quantities, we finally obtain
∫

∂Vt,w

fuw · ndσ =

∫

∂Vt,w

fw · n dσ −
∫ x2

x1

∂

∂x

[
A
(
fu1

)]
dx+

∫

Vt

∇ · (fu) dV (1.6)

Finally, including the expressions (1.5) and (1.6) into equation (1.1) leads to
∫ x2

x1

∂

∂t

(
Af̄

)
dx =

∫ x2

x1

(∫

S

∂f

∂t
dσ

)
dx+

∫ x2

x1

(∫

∂S

fw · n dγ
)
dx−

∫ x2

x1

∂

∂x

[
A
(
fu1

)]
dx +

∫ x2

x1

(∫

S

∇ · (fu) dσ

)
dx

and, given that this is true for any values of the coordinates of the end sections
x1 and x2, the final form of the one-dimensional transport theorem for a
generic variable f is

∂

∂t

(
Af̄

)
+

∂

∂x

[
A
(
fu1

)]
=

∫

S

[
∂f

∂t
+∇ · (fu)

]
dσ +

∫

∂S

fw · n dγ (1.7)

This formula is general and applicable to both compressible and incom-
pressible fluids. Now we will proceed to derive the governing equations by
invoking the principles of conservation of mass and balance of momentum.

Conservation of mass

The equation representing the conservation of mass in the flexible tube is
obtained by taking f = 1 in equation (1.7). If we further assume that the
fluid is incompressible, i.e. ∇ · u = 0, we get

∂A

∂t
+

∂

∂x
(Aū1) =

∫

∂S

w · n dγ (1.8)

where the term in the right-hand side could be interpreted as a volumetric
outflow per unit length and unit time.
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Balance of momentum

Here we take f = u1 in the area-averaged Reynolds’ transport expression
(1.7), and assume again that the fluid is incompressible, to obtain

∂

∂t
(Aū1) +

∂

∂x

(
Au2

1

)
=

∫

S

[
∂u1

∂t
+ u · ∇u1

]
dσ +

∫

∂S

u1w · n dσ (1.9)

which we now write as

∂

∂t
(Aū1) +

∂

∂x

(
Au2

1

)
=

∫

S

Du1

Dt
dσ +

∫

∂S

u1w · n dσ (1.10)

where D
Dt = ∂

∂t +u ·∇ denotes the so-called material or Lagrangian derivative.
To calculate the first term on the right-hand side of equation (1.10) we apply
the momentum conservation for the control volume Vt in the form

∫

Vt

D

Dt
(ρu) dV =

∫

Vt

ρf b dV +

∫

∂Vt

Tn dσ (1.11)

where f b represents the body force per unit volume and T is the Cauchy
stress tensor (see e.g. [59]). Assuming that the density ρ is constant and using
the divergence theorem, the balance of momentum equation (1.11) is written
as ∫

Vt

Du

Dt
dV =

∫

Vt

f b dV +
1

ρ

∫

Vt

∇ · T dV (1.12)

Now, invoking the constitutive equation for the fluid, we could write the stress
tensor T as

T = −pI +D (1.13)

where p denotes the pressure, I is the identity tensor, and D represents the
tensor of deviatoric stresses due to the viscosity of the fluid. Setting ∇·D = d

we also write
∇ · T = −∇p+∇ ·D = −∇p+ d

and, therefore, equation (1.12) as

∫ x2

x1

(∫

S

Du

Dt
dσ

)
dx =

∫ x2

x1

(∫

S

[
f b +

1

ρ
(−∇p+ d)

]
dσ

)
dx (1.14)

Since x1 and x2 can be arbitrarily chosen, the integrands in the left and right-
hand sides of equation (1.14) must be equal, therefore we could write the
x-component of this equation as

∫

S

Du1

Dt
dσ =

∫

S

[
f b1 +

1

ρ
(− ∂p
∂x

+ d1)

]
dσ, (1.15)

where d1 is the x-component of d. Substituting this expression in equation
(1.10) gives
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∂

∂t
(Aū1)+

∂

∂x

(
Au2

1

)
=

∫

S

[
f b1 +

1

ρ
(− ∂p
∂x

+ d1)

]
dσ+

∫

∂S

u1w ·n dσ, (1.16)

which can be expressed using area-averaged values as

∂

∂t
(Aū1) +

∂

∂x

(
Au2

1

)
=
A

ρ

(
ρf̄ b1 −

∂p̄

∂x
+ d̄1)

)
+

∫

∂S

u1w · n dσ. (1.17)

The term u2
1 in this equation is handled by defining a momentum-flux correc-

tion coefficient α, which is a function of the velocity profile, as

u2
1 =

1

A

∫

S

u2
1 dσ = αū2

1, (1.18)

where α is also called the Coriolis coefficient. For a flat profile we have α = 1
and for a parabolic flow α = 4/3.

The term representing the viscous forces d̄1 is taken to be a linear function
of the area-averaged velocity ū1 of the form

A

ρ
d̄1 = −KRū1, (1.19)

whereKR is a strictly positive quantity which represents the viscous resistance
of the flow per unit length of tube. It is worth observing that for a proper
definition of the coefficient, (1.19) is fulfilled by the well known Poiseuille flow.
The final form of the balance of momentum equation is

∂

∂t
(Aū1) +

∂

∂x

(
αū2

1

)
= Af̄ b1 −

A

ρ

(
∂p̄

∂x

)
−KRū1 +

∫

∂S

u1w · n dσ. (1.20)

The unknowns in the system given by (1.8) and (1.20) are p, A and ū1.
Their number exceeds the number of equations and a common way to close
the system is to explicitly provide an relationship between the pressure of
the vessel p and the vessel area A. This relation will be derived from an
appropriate simplification of models of wall mechanics.

Simplified models of wall mechanics

By assuming static equilibrium in the radial direction of a cylindrical tube,
from one-dimensional models of wall mechanics (see e.g. [63]) one can derive
a pressure relationship of the form

p = Pext + β(
√
A−

√
A0), (1.21)

where

β =

√
πh0E

(1− ν2)A0
. (1.22)
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Here h0 and A0 = A0(x) denote the vessel thickness and sectional area, re-
spectively, at the equilibrium state (p,Q) = (Pext, 0), E = E(x) is the Young
modulus, Pext is the external pressure, assumed constant, and ν is the Pois-
son ratio. This ratio is typically taken to be ν = 1/2 since biological tissue is
practically incompressible.

The algebraic relation (1.21) assumes that the wall is instantaneously in
equilibrium with the pressure forces acting on it. This approach corresponds
to the so-called independent ring model (see [63]).

Wall inertia and viscoelasticity can be included, yielding a differential pres-
sure law. For instance (see [63]) we may write

p− Pext =
γ0

2
√
πA0

Ä+
γ1

2
√
πA0

Ȧ+ Φ(A;A0,β), (1.23)

where γ0 = ρwh0, γ1 = γ
r20

and the last term is the elastic response, modelled

through equation (1.21). Here γ is the viscoelasticity coefficient. For more
details, see [60].

1.1.2 Different formulations of the governing equations

In what follows, we will assume that the lumen is impermeable (w · n = 0),
that body forces are neglegible (f̄ b1 = 0), and we will also simplify the notation
by denoting the area-averaged axial velocity by u instead of ū1 and using p
instead of p̄. Defining the mass flux across a section as Q = Au =

∫
S
u1dσ,

the equations (1.8) and (1.20) now read





∂A

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

∂

∂x

(
α
Q2

A

)
+
A

ρ

(
∂p

∂x

)
+KR

Q

A
= 0

(1.24)

These equations will be referred to as the conservation form of the govern-
ing equations since they have been derived directly from conservation princi-
ples.

The system of equations (1.24) can be expressed alternatively in terms of
the variables (A, u). By simple manipulations one gets





∂A

∂t
+
∂Au

∂x
= 0

∂u

∂t
+ (2α− 1)u

∂u

∂x
+ (α− 1)u2 ∂A

∂x
+

1

ρ

∂p

∂x
+KR

u

A
= 0

(1.25)

Both systems (1.24) and (1.25) may be written in conservation form. Let us
assume that the wall mechanics is described by the algebraic pressure-wall
relationship (1.21).

For the system (A,Q) we will write
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∂Q

∂t
+
∂G

∂x
(Q) = B(Q) (1.26)

with

Q =

[
A
Q

]
, G =

[
Q

Q2

A + β
3ρA

3
2

]
and B =




0

−KR
Q
A + A

ρ
dβ
dx

(
A

1
2
0 − 2A

1
2

3

)

 .

(1.27)
For the (A, u) system, if for the sake of simplicity we assume α = 1, we have

∂U

∂t
+
∂F

∂x
(U) = S(U) (1.28)

with

U =

[
A
u

]
, F =

[
Au
pt

]
and S =

[
0

−KR
u
A

]
. (1.29)

Here

pt =
u2

2
+
p

ρ
(1.30)

denotes the total pressure (scaled by the constant density).
In the case α = 1 the two weak forms are equivalent for smooth solutions,

in particular when A and Q are C1 continuous functions with respect to both
arguments and A is strictly positive. Nevertheless, the assumption α = 1
is quite realistic in the problems at hand since the velocity profile is in fact
almost flat (see [45]) and the solutions within each of the approaches presented
in these notes will be sufficiently smooth to favour the use of the (A, u) system
which has a simpler structure.

The (A, u) and the (A,Q) systems given respectively by equations (1.25)
and (1.24), together with the algebraic pressure-area relationship (1.21), will
be starting points of the numerical schemes discussed in the sequel.

Remark 1.1.1 Even though the values of the coefficients α, KR and β are
fixed a priori once we make assumptions on the velocity profile and on the wall
mechanics, it is also possible to interpret them as parameters of the model that
can be obtained by fitting the results of the 1D model to available in vivo or
3D computational data as proposed in [44].

1.1.3 Characteristic variables

Considering the pressure-area relationship (1.21) and assuming that β = β(x)
and A0 = A0(x) we recall that applying the chain rule we obtain

∂p

∂x
=
∂p

∂A

∂A

∂x
+
∂p

∂β

∂β

∂x
+

∂p

∂A0

∂A0

∂x

where
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∂p

∂A
=

β

2
√
A
.

System (1.25) can therefore be written in quasi-linear form as

∂U

∂t
+H

∂U

∂x
=

[
A
u

]

t

+

[
u A

c2/A u

] [
A
u

]

x

=

[
0
f

]
(1.31)

where

c2 =
A

ρ

∂p

∂A
=
β
√
A

2ρ
and f =

1

ρ

[
KRu−

∂p

∂β

∂β

∂x
+

∂p

∂A0

∂A0

∂x

]
.

Under the assumption that A > 0, which is indeed a necessary condition to
have a physically relevant solution, the matrix H has two real eigenvalues
λ1,2 = u± c and the corresponding left eigenmatrix L is

L =

[
lT1
lT2

]
=

[
c
A 1

− c
A 1

]
. (1.32)

For the typical values of velocity, vessel area and elastic parameter β encoun-
tered in arteries under physiological conditions, we have that λ1 > 0 and
λ2 < 0. Therefore our system is strictly hyperbolic and subcritical (see [42] for
these definitions).

The characteristic variables can be determined by integrating the differen-
tial system ∂UW = L. It may be shown that this is possible for our problem
and that the two characteristic variables are

W1 = u+ 4c = u+ 4A1/4

√
β

2ρ
(1.33)

W2 = u− 4c = u− 4A1/4

√
β

2ρ
. (1.34)

Since β > 0, we may write, as previously reported in [22], the variables (A, u)
in terms of (W1,W2) as

A =

[
(W1 −W2)

4

]4 (
ρ

2β

)2

u =
(W1 +W2)

2
. (1.35)

In the case where f = 0 equations (1.31) can be transformed in a decoupled
system of equations for the characteristic variables, which component-wise
reads 




∂W1

∂t
+ λ1

∂W1

∂x
= 0

∂W2

∂t
+ λ2

∂W2

∂x
= 0.

(1.36)
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Remark 1.1.2 Smoothness of the solution. We recall some of the main re-
sults regarding the hyperbolic system at hand. It has been shown in [7] that,
using a pressure-area relationship of the form

p− Pext = G0

[(
A

A0

) δ
2

− 1

]
,

where δ > 1 and G0 is a constant elasticity parameter, and under some reason-
able conditions on the smoothness of boundary and initial data, the solution of
system (1.24) remains smooth. Two critical assumptions to reach this conclu-
sion are the pulsatility of the inflow data and a bound on the length of the tube;
both are verified for physiological flow in the human arterial tree. In the same
work it is shown that, if the solution is smooth and the initial and boundary
data are such that A > 0, A remains strictly positive for all times. In [17]
an energy inequality was derived which bounds a measure of the energy of the
hyperbolic system in terms of the initial and boundary data. Furthermore, in
the same work it has been found that the quantity

s =
1

2
ρAu2 +

∫ A

A0

(p− Pext)dA

is an entropy function for the system with associated flux equal to F s = Q pt.

1.1.4 Boundary conditions

The characteristic analysis and the fact that for physiological conditions the
flow is subcritical (i.e. λ1 > 0 and λ2 < 0) leads us to the conclusion that only
one boundary condition has to be imposed at each end of the tube. Different
type of boundary conditions may be envisaged.

Non-reflecting boundary conditions

Non-reflecting boundary conditions are those that allow the simple wave as-
sociated with the characteristics exiting the domain to leave without spurious
reflections. Typically those conditions are expressed in terms of the charac-
teristic variables. In [72] and [33] non-reflecting boundary conditions for an
isolated vascular segment corresponding to an hyperbolic system like (1.26)
are provided as

l1

[
∂Q

∂t
−B(Q)

]

x=x1

= 0, l2

[
∂Q

∂t
−B(Q)

]

x=x2

= 0.

where l1 and l2 are given by equation (1.32).
For B(Q) = 0 they are equivalent to imposing a constant value for the en-

tering characteristics, otherwise these relations account for the ‘natural decay’
due to the presence of the source term. With those conditions the amplitude of
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the incoming waves may vary only because of the source term (in particular it
is constant when the source term is zero). In our case a condition of this type
may be convenient at the outlet section (i.e. x = x2) when one can neglect
possible contributions of waves coming from the distal circulation, while at the
inlet (x = x1) we would like to prescribe some given values of pressure or flux
data coming either from measurement or other models. When the peripheral
circulation is introduced, we need specific models for the terminal vessels that
will be discussed later.

Inlet conditions

The hyperbolic system at hand allows us to impose either a flux Q (or velocity
u) or area A at x = x1. For instance we may impose

A(x1, t) = g(t), t > 0

where g(t) is a known function obtained, for instance, from the knowledge
of the pressure time variation at x = x1. This type of condition is clearly of
reflective type and the simple wave associated to the outgoing characteristic
(W2 in this case) may be partly reflected back into the computational domain.
Yet, this reflection is a physical one.

It is also possible to have available values of both pressure (and thus area)
and flux variations at the inlet. For instance, measurements of pressure pulse
together with flux data could be obtained from Doppler ultrasound. Clearly
the hyperbolic system does not allow to impose both conditions at the same
time. However, one may construct a set of allowable boundary conditions
through the exact or approximate solution of a Riemann problem [28] at the
boundary using the computed values and the known values at the inlet.

Terminal vessels

The human arterial system is a network of large arteries branching out into
many smaller arteries, arterioles and capillaries. We are usually interested in
the results in the larger arteries in the network. Blood vessels further down
the arterial tree are very small and numerous. They have, all together, an
important role in determining the haemodynamics in the large arteries since
they offer flow resistance and pressure wave is partially reflected at each bi-
furcation. An accurate description of all these vessels and districts although
virtually possible is unfeasible for the huge amount of data required not to
mention the computational costs. For these reasons, the downstream circula-
tion is usually described in terms of lumped parameter models. In Sect. 1.2 we
will introduce extensively these kind of models and their derivation. So, in gen-
eral terms, an appropriate way for accounting outflow conditions is to resort
to multiscale models, namely coupling 1D and lumped parameter models (see
the next chapter). Here we limit ourselves to some considerations when the
role of the lumped parameter models is only to provide a boundary condition
for the 1D model, without further details on the peripheral circulation.
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Denoting by πT (ω) and χT (ω) the Fourier transform of pT (t) = p(xout, t)
and QT (t) = Q(xout, t) respectively at the end of the 1D network, the behavior
of the downstream network can be represented by the terminal impedance (see
Fig. 1.13, left) as

ζT (ω) =
π(ω)

χ(ω)
. (1.37)

An extensive discussion about the role of the impedance function in describing
the vascular tree haemodynamics can be found in Chap. 13 of [45]. Here
the impedance is the transfer function describing in a simplified way the
downstream blood dynamics that actually influences the hemodynamics in
the proximal district represented by our 1D model. The counterpart of (1.37)
in the time domain is obtained by computing the inverse Fourier transform
of the terminal impedance, ZT = F−1(ζT ) and by applying the convolution
theorem

pT (t) =

∫ t

t−H

ZT (t− τ)QT (τ)dτ, (1.38)

where H denotes the heart beat duration. Relation (1.38), possibly approxi-
mated with suitable numerical quadratures, provides the boundary condition
to be used for the 1D network model in correspondence of terminal vessels.

Since possible examples of impedance functions used in the literature stem
from the representation of the terminal districts by lumped parameter models,
often represented in terms of electrical circuits, we postpone their description
to the next section (see Sect. 1.2.4).

1.1.5 Extensions of the basic model

In the previous sections we have introduced some assumptions on the geometry
of the vessel and on the smoothness of the coefficients characterizing the wall
dynamics. These hypotheses are acceptable for small segments of the vascular
tree, however more general models should be introduced to deal with segments
with discontinuous properties, bifurcations and curved vessels. These will be
discussed in the following sections.

Discontinuous material properties

In some cases, material properties of the wall are not smooth. In particular, co-
efficient β introduced in (1.21) features discontinuities for instance in stented
arteries (Fig. 1.2) or in by-pass grafts. The Young’s modulus E can exhibit
jumps due to the differences between the vascular tissue and the prosthesis
(see e.g. [41]). It is also possible for the area of the vessel to change abruptly
due to certain pathologies, e.g. an aneurysm.

Since the derivative of the elastic coefficient β appears in the balance
of momentum equation, the presence of discontinuities in β require careful
treatment in our models. There are basically two approaches for handling
material discontinuities.
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Ω1 Ω3

Ω2
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Fig. 1.2. Discontinuity of Young’s modulus in the case of a stented artery. Bottom
left: regularization approach; bottom right: domain splitting

1. Data regularization: the discontinuous data are suitably replaced by
smooth functions that can be differentiated and the models presented
above can be used straightforwardly.

2. Domain splitting: the vessel with discontinuous properties is split into a
set of smooth segments and the coupling between each pair of segments is
accomplished through suitable matching or interface conditions. A reason-
able choice is to assume continuity of fluxes and thus impose the continuity
of mass flux and total pressure across the interface, i.e.

Q = ulAl = urAr (1.39)

Pr = ρ
u2
l

2
+ βl(

√
Al −

√
Al0) = ρ

u2
r

2
+ βr(

√
Ar −

√
Ar0) (1.40)

This interface conditions will preserve the conservation properties of the
(A, u) system.
In practice, the problem can be solved iteratively, by solving the sequence
of problems on each segment. In this case, the interface conditions (pos-
sibly reformulated in terms of characteristic variables) become boundary
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conditions on each segment, following a classical domain decomposition
approach (see e.g. [64]).

Treatment of bifurcations

The 1D model of the compliant tube can be extended to handle the arterial
tree by adopting a domain splitting technique similar to the one used for
the discontinuous case. Again we require suitable interface conditions at the
bifurcations or branching points of the tree (see Fig. 1.3).

x

Ωp

Ωb1

Ωb2

Interface conditions

x

Ωp

Ωb1

x⋆ = xp
r = xb1

l = xb2
l

Ωb2

x

Fig. 1.3. Arterial tree bifurcation: Notation

In the bifurcations the problem is only locally one-dimensional, in the sense
that each branch is associated with its own axis (denoted by x, x and x in
Fig. 1.3). The use of domain splitting techniques allows us to cast the global
problem into a set of 1D problems (1.24) or (1.25). If we denote by x⋆ the
branching point such that it is the right-end point xpr of the parent vessel Ωp,
and the left-end point xb1l and xb2l of the branches Ωb1 and Ωb2, for a given
function f defined over each segment we denote

fl = f
∣∣
Ωp

(xpr), fb1 = f
∣∣
Ωb1

(xb1l ), fb2 = f
∣∣
Ωb2

(xb2l ).

At the bifurcation we have six unknowns: (Al, ul) in the parent vessel,
(Ab1, ub1) and (Ab2, ub2) in the branches Ωb1 and Ωb2 respectively.
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The first three equations required to solve the problem are obtained by
imposing that the characteristic variables at point x in each vessel should
remain constant. Their values are

W1 = ul + 4A
1/4
l

√
βl
2ρ

(1.41)

W21 = ub1 − 4A
1/4
b1

√
βb1
2ρ

(1.42)

W22 = ub2 − 4A
1/4
b2

√
βb2
2ρ

(1.43)

The other three equations required to close the problem are obtained from the
continuity of mass flux and total pressure across the boundary of the elements
at the bifurcation, i.e.

Q = upAp = ub1Ab1 + ub2Ab2 (1.44)

Pr = ρ
u2
p

2
+ βp(

√
Ap −

√
Ap0) = ρ

u2
b1

2
+ βb1(

√
Ab1 −

√
Ab10

) (1.45)

Pr = ρ
u2
p

2
+ βp(

√
Ap −

√
Ap0) = ρ

u2
b2

2
+ βb2(

√
Ab2 −

√
Ab20

) (1.46)

The six equations given by (1.41-1.46) define a non-linear system of algebraic
equations which determine the values of (Al, ul), (Ar1, ur1) and (Ar2, ur2)
at the bifurcation. These values are then used to evaluate the flux at the
elemental interfaces in the numerical discretization.

We have assumed that the coefficient β could be different in the three
vessels, as it is to be expected from the different values of their respective
areas at rest A0.

Remark 1.1.3 Continuity of the total pressure in (1.45,1.46) can be modified
for including pressure losses due to the bifurcation. These typically depend on
the bifurcation angle. For more details see [19,69].

Accounting for curvature in 1D models (Directors’ theory)

One of the most relevant assumptions in devising the basic 1D model is that
the axis of the vessel is rectilinear. Actually, if we remove this hypothesis, it is
still possible to define a main flow direction in the domain, namely the curvi-
linear abscissa along the axis, and however the effect of the blood dynamics
in the other directions on the main one is no longer negligible (see [58]). Nev-
ertheless, there are some vessels which are significantly curved (aorta, femoral
arteries, etc.). For these vessels, the basic 1D model (1.25) or (1.24) can be
considered only as a rough description. A possible model relies on introducing
a subdivision into subsegments sufficiently short to be considered straight and
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connected one to the other with a suitable angle θ 6= 0 (see Fig. 1.4). This
means that a suitable pressure loss as a function of the angle needs to be in-
troduced in the interface conditions between one segment and the other. The
other interface conditions will be given by the flow conservation (see (1.39)
and Remark 1.1.3).

s

ŷ

ẑ

Interface
Conditions

θ

Fig. 1.4. Splitting of a curved domain into a sequence of rectilinear segments

Alternatively, here we would like to briefly address the definition of 1D
models which are able to account for the effects of the transversal dynamics
on the axial one, having the computational cost of the simplified models. The
task is not easy, since we want to devise a sort of 1D models for the cheap
description of a genuinely 3D dynamics.

Simplified models for curved pipes can be obtained for small curvatures
of the vessels with a perturbation analysis of the rectilinear model (see [12]).
Let us consider the non-dimensional parameter

D = 2
√

2

√
rw
rc

Re (1.47)

where rw is the vessel radius, rc is the curvature radius of the vessel axis
(rc →∞ in the straight case) and Re is the Reynolds number of the rectilinear
case. D is called Dean number. Simplified models can be obtained for small
values of the Dean number, which are for instance able to correctly compute
the stagnation points of the secondary motion zones. For large values of D
these models need to be suitably corrected, and the analysis becomes by far
more difficult: a complete description of this approach can be found in [58],
Chap. 4.

A different approach relies on the theory of Cosserat curves considered by
Green and Naghdi in [29,30] (see also [41]). If we consider the reference frame
(s, ŷ, ẑ) of Fig. 1.4 right, the basic idea of the Green and Naghdi approach is
to represent the velocity field u(s, ŷ, ẑ, t) with respect a set of shape functions
that depend only on the coordinates in the normal section ŷ, ẑ and are given
by
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u(s, ŷ, ẑ, t) =

N∑

n=0

ωn(s, t)ϕ(ŷ, ẑ), (1.48)

where ωn are the coefficients of the velocity profile. This can be considered as
a generalization of the straight vessel case, where we set for the axial velocity,
uz(x, y, z, t) = ϕ(y, z)u(x, t) being u(x, t) the average velocity and ϕ(ŷ, ẑ) a
given velocity profile. Once a basis functions set is selected the unknowns are
the coefficients ωn, that can be computed by solving a suitable set of equations
derived by mass and momentum conservation principles.

In principle, the accuracy of these models can be tuned by choosing a
suitably large N , i.e. having a rich enough basis functions set. However, even
for small values of N , mathematical difficulties of the obtained model imply
high numerical costs. For more details, see [41].

1.1.6 The numerical solution of the 1D models

The wave propagation speeds in the large arteries are typically an order of
magnitude higher than the average flow speeds. As mentioned previously, the
characteristic system is inherently subcritical and does not produce shock un-
der physiological conditions. Therefore the numerical challenge is to propagate
waves for many periods without suffering from excessive errors in amplitude
(dissipation) and in phase (dispersion) (see e.g. [42]). If the solution remains
smooth then high-order methods are particularly attractive due to the fast
convergence of the dispersion and dissipation errors with the order of the
scheme [68].

Here, we limit ourselves to present a possible discretization of the problems,
based on a Taylor-Galerkin approach, which is essentially a generalization of
the classical Lax-Wendroff scheme for systems of conservation laws (see [42]).

Another more recent approach, based on the discontinuous Galerkin ap-
proach is addressed in [60], Chapter 10.

Taylor-Galerkin method

In this section we describe the numerical discretisation of the (Q,A) system
described by equation (1.24) recast in the conservation form (1.28) given by

∂Q

∂t
+
∂G

∂x
(Q) = B(Q)

The expressions for Q, G and B are given in (1.27).
We proceed to discretise equation (1.28) by adopting a second-order

Taylor-Galerkin scheme. To this aim, we write the Taylor expansion trun-
cated up to the second order terms at time tn such that ∆t = tn+1 − tn,
yielding

Un+1 = Un +∆t
∂U

∂t

∣∣∣∣
n

+
∆t2

2

∂2U

∂t2

∣∣∣∣
n

. (1.49)
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The time derivatives will be replaced by space derivatives, by exploiting the
equations (1.28). In particular, we will use the abridged notation

GU =
∂G

∂U
, BU =

∂B

∂U
,

and we obtain
∂Q

∂t
= B − ∂G

∂x
(1.50)

∂2Q

∂t2
= BU

∂U

∂t
− ∂2G

∂t∂x
= BU

∂U

∂t
− ∂

∂x

(
GU

∂U

∂t

)
=

BU

(
B − ∂G

∂x

)
− ∂ (GUB)

∂x
+

∂

∂x

(
GU

∂G

∂x

)
(1.51)

Remark 1.1.4 The presence of a non-constant source term and the explicit
dependence of the momentum flux G on the variable x through β(x) makes
the derivation of the scheme slightly more complex than the standard Lax-
Wendroff formulation. In particular we stress that, in contrast to the normal
derivation, we have not further developed the x derivative of the fluxes, since
for our problem

∂G

∂x
6= GU

∂U

∂x
,

because of the dependence of G on x through β.

From (1.49), (1.50) and (1.51) we obtain the following time-marching
scheme

Un+1 = Un −∆t ∂
∂x

[
Gn +

∆t

2
Gn

UB
n

]
− ∆t2

2

[
Bn

U

∂Gn

∂x

− ∂

∂x

(
Gn

U

∂Gn

∂x

)]
+∆t

(
Bn +

∆t

2
Bn

U
Bn

)
. (1.52)

Space discretisation is carried out by using linear finite elements. To that
purpose, let us subdivide the domain Ω into Nel finite elements Ωe, of size
he. We indicate by Vh the space of continuous vector functions defined on Ω,
linear on each element, and with V0

h the set formed by functions of Vh which
are zero at x = x1 and x = x2. Furthermore, we omit the subscript Ω in the
L2(Ω) vector product.

Using the notation

GLW = G+ (∆t/2)GUB

BLW = B + (∆t/2)BUB

and

(u,v)Ω =

∫

Ω

u v dx
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as the standard L2(Ω) inner product, the finite element solution of (1.52)
requires, for n ≥ 0, to find Un+1

h in Vh which satisfies for all ψh in V0
h that

(Un+1
h ,ψh) = (Un

h,ψh) +∆t(Gn
LW ,

∂ψh
∂x

)− ∆t2

2
(Bn

U

∂Gn

∂x
,ψh)−

∆t2

2
(Gn

U

∂Gn

∂x
,
∂ψh
∂x

) +∆t(Bn
LW ,ψh). (1.53)

The numerical initial condition U0
h will be taken as the finite element inter-

polant of the given initial data U0. A possible technique for computing the
boundary values Un+1

h is described later on.
In (1.53) we need to numerically integrate the terms containing the fluxes

and sources. For the terms involving Gn and Gn
U

we have projected each
component on the finite element function space Vh via interpolation. The
same applies for the other vector products which involve only Gn and Gn

U
.

The term d β/dx in Bn and Bn
U must be approximated in a piecewise

constant manner to ensure that our numerical scheme represents constant so-
lutions of the differential problem exactly. Therefore, on each element (xle, x

u
e )

we have approximated d β/dx by [β(xui )−β(xli)]/he. For the remaining terms
we have applied the same technique adopted for the fluxes. This gives rise to
a piecewise linear discontinuous representation for the source terms.

Numerical boundary conditions

The numerical scheme (1.53) need to be complemented with boundary data
Q or U at the boundaries of the domain Ω. We note that knowledge of W1

and W2 given in (1.33, 1.34) at the boundaries would in principle enable us
to compute the corresponding values of Q or U , thanks to relation (1.35).
However, given that the propagation speed is subcritical, only one condition
has to be assigned at each end for the well-posedness of the differential prob-
lem. More precisely, we require information about the conservative variables
at the ends of the domain, i.e. Q(x1, t) and Q(x2, t). To extract this from the
characteristic information W1(x1, t) and W2(x2, t) we require an additional
expression for the other characteristic variables W2(x1, t) and W1(x2, t) to re-
coverQ using equation (1.35) which must also be compatible with the original
differential problem. In the current approach, we have adopted a technique
based on the extrapolation of the outgoing characteristics. We make the initial
assumption that, at the boundary points x = x1 and x = x2,

dβ
dx = 0 and that

KR is negligible. We then assume that in the vicinity of the boundary the
flow is essentially governed by the characteristic system (1.36). An equivalent
derivation for the (A,Q) system can be found in [22]. Let us consider the
proximal boundary x = x1 over a generic timestep (the distal boundary is
treated in a similar fashion). We assume that Un is known and we linearise
λ2 in the second equation in (1.36) by taking its value at time tn and at x = a.
Recalling that λ2 < 0, the solution corresponding to this linearised problem
at the time level tn+1 gives
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Wn+1
2 (x1) = Wn

2 (x1 − λn2 (x1)∆t),

which is, in fact, a first-order extrapolation of the outgoing characteristic
variable W2 from the previous time level (see Fig. 1.5). In the general case,
when the source term is not negligible, equation for W2 reads

∂W2

∂t
+ λ2

∂W2

∂x
= f2(W1,W2)

that can be still used for extrapolation in the form

Wn+1
2 (x1) = Wn

2 (x1 − λn2 (x1)∆t) + f2(W
n
1 (x1),W

n
2 (x1))∆t,

which corresponds to a first-order approximation in time. Higher order ex-
trapolations in time can also be applied as well.

W2

x

x
x1

x1

x1 − λ2∆t

tn+1

tn

Fig. 1.5. Extrapolation of the characteristic W2 in x1

Using the extrapolated value of Wn+1
2 (x1) and the value of Wn+1

1 (x1, t)
provided by the boundary condition, we are able to compute the required
boundary data Un+1(x1) using (1.35).

Similar considerations can be applied to the right boundary x2. This tech-
nique may also be easily adapted to incorporate boundary conditions that are
not given in terms of the characteristic variables, for instance, if a given law
for the pressure p(x1, t) = ψ(t) is imposed at the proximal boundary.

1.2 Zero-dimensional (0D) or lumped models

1.2.1 Derivation of the governing equations

As for the 1D models, lumped parameters models can be derived by general
conservation principles or directly by averaging 3D and 1D models. In the
former case, the key concept is the compartment, that is a part of the system
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at hand that it is worth to be considered as a homogeneous unit. Following
this approach, a continuous space dependence is lost, and the emphasis is on
the behavior of the unit with respect to the rest of the system (input/output
relations). Actually, transfer functions can be formulated either on physical or
empirical relations. We will see an example of compartmental model in Sect.
1.2.5.

Here, we follow the latter approach, since we have already derived one-
dimensional models to be averaged. This approach is closer to the physics of
the problem, which is useful in understanding the role of the parameters of
the model and in their quantification. We will start from lumped parameter
models of a simple vascular districts and then, by application of conservation
principles providing matching conditions among the districts, we will build
more general models.

Let us consider again the simple artery Ω, illustrated in Fig. 1.1, of length
l = |x2−x1|. We define the (volumetric) mean flow rate over the whole district
as the quantity

Q̂ =
ρ

l

∫

Ω

u1dυ =
ρ

l

∫ x2

x1




∫

S(x)

uxdσ


 dx =

ρ

l

∫ x2

x1

Q(x)dx. (1.54)

Similarly, we define the mean pressure and area over the length of the com-
partment as

p̂ =
1

l

x2∫

x1

Pdx, Â =
1

l

x2∫

x1

Adx. (1.55)

Starting from equations (1.24) for this domain, we integrate the continuity
equation along the axial direction (x1 ≤ x ≤ x2) to obtain

l
dÂ

dt
+Q2 −Q1 = 0 (1.56)

where we have set

Q1(t) = Q(t, x1), Q2(t) = Q(t, x2). (1.57)

Observe that now Â depends only on time, so we have an ordinary time
derivative.

In considering the momentum equation, we add the following simplifying
assumptions:

1. the contribution of the convective term ∂x(αQ
2/A) may be neglected ; and

2. the variation of A (and β) with respect to x is small compared to that of
P and Q.

The first assumption is particularly suited to represent the peripheral circu-
lation, where blood flow is in general quite slow. The second assumption is
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reasonable when the axial average is carried out over short segments. It basi-
cally amounts to replace A in the momentum equation with a constant value
for the area that in general is assumed to be the area at rest A0. With these
assumptions, averaging over x of (1.24)2 yields

ρl

A0

dQ̂

dt
+
ρKRl

A2
0

Q̂+ P2 − P1 = 0. (1.58)

where
P1(t) = P (t, x1), P2(t) = P (t, x2). (1.59)

As for 1D models we have now the problem of closing system (1.56, 1.58),
by adding a wall mechanics law. In particular, if we assume the simple law
(1.21) to hold, we have

x2∫

x1

∂p

∂t
dx =

x2∫

x1

β

2
√
A

∂A

∂t
dx.

Now, if we exploit the second assumption above, we obtain

l
dp̂

dt
=

lβ

2
√
A0

dÂ

dt

which we write, for convenience, as

dÂ

dt
= k1

dp̂

dt
(1.60)

where k1 =

√
A0

β
. Substituting (1.60) into (1.56) we obtain

k1l
dp̂

dt
+Q2 −Q1 = 0 (1.61)

that together with (1.58) represents the lumped parameter models for the
vessel at hand.

These equations are also found in the analysis of electrical circuits. Be-
fore the related equations could be (rapidly) solved using digital computers,
early simulations of flow in the vascular system were based on analog circuits
mimicking its structure, see for instance [79]. In the electric network analogy,
the blood flow rate is assimilated to the current, while the blood pressure
corresponds to the voltage as we have summarized in Tab. 1.1.

In order to exploit this electrical analogy, we recast the system (1.58,1.61)
as
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Table 1.1. Correspondence table of the analogy between electric and hydraulic
networks.

Hydraulic Electric

Pressure Voltage

Flow rate Current

Blood viscosity Resistance R
Blood inertia Inductance L

Wall compliance Capacitance C

Q

P

Q

=Reference Pressure Value

L CR

C
dP

dt
= QP = RQ L

dQ

dt
= P

P

Q

P

Fig. 1.6. Notation used in the electrical analogy of the circulatory system





C
dp̂

dt
+Q2 −Q1 = 0

L
dQ̂

dt
+RQ̂+ P2 − P1 = 0.

(1.62)

The coefficients R, L and C are associated to elements of a circuit as depicted
in Fig. 1.6, where the corresponding equation is recalled at the bottom. We
recall hereafter their physical significance.

Resistance The coefficient R =
ρKRl

A2
0

in equation (1.62) represents the re-

sistance induced to the flow by the blood viscosity. Different expressions
for R can be obviously obtained for different velocity profiles or if a non-
Newtonian rheology is introduced into the model (see e.g. [66], [79], [23]).

Inertia The coefficient L =
ρl

A0
in equation (1.58) represents the inertial

term in the momentum equation and it will be called the inductance of
the flow.

Compliance It is characterized by the coefficient C = k1l that represents the
mass storage term in the mass conservation law, due to the compliance of
the vessel.

For instance, if we assume Poisseuille flow (i.e. fully developed flow with
a constant pressure gradient) and that the vessel is a cylinder of constant
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circular section we have

R =
8πρνl

π2r40
=

8µl

πr40
; L =

ρl

πr20
; C =

3πR3
0l

2Eh0

The system of equations (1.62) involve the mean flow rate and pressure over
the vascular segment at hand and the boundary values of pressure and flow rate
Qi, Pi, with i = 1, 2. Strictly speaking, the term boundary is inappropriate,
since the continuous space dependence has been lost in the axial average,
and they simply represent input/output quantities exchanged by the vessel
with the rest of the systems. However, we will retain the term, since it is
related to the physical derivation of the equations. In particular, in order to
close problem (1.62), we need to introduce some boundary conditions. This
means that we identify the input data of the district at hand. For instance,
suppose that Q1 and P2 are given. Then, (1.62) represents a system of two
equations for four unknowns, Q̂, p̂, P1 and Q2. The dynamic of the system is
represented by p̂ and Q̂, i.e. by the unknowns that are under time derivative
(the state variables). We approximate now the unknowns on the upstream
and downstream sections with the state variables,

p̂ ≈ P1, Q̂ ≈ Q2,

that corresponds to assume that the output of the district is given by the state
variables. With these additional assumptions, which are reasonable for a short
pipe, the lumped parameter model becomes:






C
dP1

dt
+Q2 = Q1

L
dQ2

dt
+RQ2 − P1 = P2.

(1.63)

where the input data have been put on the right hand side. This system can
be illustrated by the electric L-network shown in Figure 1.7 (left).

R L

C

Q1 Q2

P1 P2 P1

Q1

P2

Q2

C

RL

Fig. 1.7. Lumped L-network (top) and L-inverted network (bottom) equivalent to
a short pipe

In a similar way, if the pressure P1 and the flow rate Q2 are prescribed, we
still approximate the quantities at the upstream and downstream sections by
the state variables, i.e. p̂ ≈ P2, Q̂ ≈ Q1, yielding the system represented by
an electric analog, called an L-inverted network, depicted in Figure 1.7(right).
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If the mean pressures P1 and P2 are prescribed, the system can be mod-
elled by a cascade connection of L and L-inverted lumped representations,
yielding a T -network (Figure 1.8). Similarly, if both flow rates Q1 and Q2 are
prescribed, the vessel Ω is described by an electric π-network, obtained as a
cascade connection of a L-network and a L-inverted network (Figure 1.9).

R/2 L/2

R/2 L/2

C P2

Q2

P1

Q1

C/2

R/2L/2

C/2

Q2

P2

Q

P1

Q1
R/2L/2

Fig. 1.8. Cascade connection of a L-inverted and a L-network (top), lumped T -
network (bottom)

R/2 L/2Q1

P1

Q

C/2

Q1

P1
C/2 P2

Q2

C/2

RL

P2

Q2

C/2

R/2L/2

Fig. 1.9. Cascade connection of a L-network and a L-inverted one (top), lumped
π-network (bottom)

The four different representations arise from four different possible assump-
tions about the data prescribed at the upstream and downstream sections. In
other words, the four different lumped models can be considered as the lumped
parameter simplifications of four different “boundary” values problems.
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Remark 1.2.1 An extensive analysis of the relation between 1D and 0D mod-
els of a cylindrical vessel can be found in [47]. We point out however that dif-
ferent ways can be pursued for devising lumped parameter models. Among the
most recent, we mention the one proposed in [54] which is based on suitable
approximations of the inverse Laplace transform of the axisymmetric Stokes
equations in rigid vessels.

1.2.2 Lumped parameters models for the heart

The heart is subdivided into the right and the left parts, separated by the
septum. The right heart supplies the pulmonary circulation, while the left
pumps the blood into the systemic tree. Each side consists of two chambers,
the atrium and the ventricle, separated by the atrioventricular valves (the
tricuspid valve in the right side, the mitral valve in the left one). Their role
is to receive fluid at low pressure and transfer it to a higher pressure region,
acting as a pump. A possible representation of heart working is given by left
ventricle pressure-volume diagrams (see [35]).

Each ventricle can be described therefore as a vessel where the most
significant feature is the compliance and the compliance changes with time
(see [5, 35, 38, 67]).

The starting point for a candidate mathematical model is the relation that
links internal pressure with the radius of an elastic spherical ball filled with
fluid. Here and in the following we take Pext = 0. We have

πR2P = 2πEh0R
R−R0

R0
,

where R0 is the reference sphere radius (corresponding to P = 0), h0 is a
reference thickness of the ball surface andE denotes the Young’s modulus. The
contraction of the cardiac muscle may be taken into account by an increase of
E (stiffening) and by a shortening of the muscle length (i.e. a reduction of R0).
It is more convenient to express this relation as a function of the volume V ,

instead of the radius. By recalling that V =
4

3
πR3, a linearisation procedure

leads to

P =
E(t)h0

2πR3
0(t)

(V − V0(t)) ,

where we have indicated the coefficients that change in time because of the
action of the muscle. This simplified model does indeed describe the major

characteristic of the ventricle. If we indicate C(t) =
2πR3

0(t)

E(t)h0
we may re-write

the relation in the mode compact form

V (t) = C(t)P (t) + V0(t).

By differentiating with respect to time we obtain
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dV

dt
= Q =

dC

dt
P + C

dP

dt
+MQ(t) (1.64)

where Q represents the (incoming) flow rate and MQ = dV0

dt is the action
exerted by the contraction of the cardiac muscle.

A lumped representation (electric analog) of each ventricle4 is given in
Fig. 1.10, where R accounts for an additional viscous resistance inside the
ventricle. Here, MQ is represented by a current generator.

Valve 1 Valve 2

C(t)

Q

dC

dt
MQ(t)

R

Fig. 1.10. Electric analog of the lumped parameter model of a ventricle

Real

Ideal
P

Q

P

Q

Fig. 1.11. P −Q curve in a diode, representing the electric analog of a heart valve.

The electrical analog of the presence of heart valves has been represented
in Fig. 1.10 by diodes. Ideally, the behaviour of a diode is described by the
curve depicted in Fig. 1.11 and given by

{
P = 0 if Q > 0
Q = 0 if P < 0.

This means that the diode representation does not allow flow through the
valve if the pressure is higher downstream than upstream. If the upstream
pressure is higher, the diode allows the flow without any pressure loss. This
is an “ideal” behaviour. Real valves have a different behaviour that can be
represented by the curve

4 A mechanical representation of the heart working based on the classical Hill’s
model for the muscle can be found in [39] and [82].
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Q = QS

(
eαP − 1

)
(1.65)

called Shockley equation. In some cases, this equation has been approximated
by a piecewise polynomial curve (see e.g. [46]).

The presence of diodes introduces a nonlinear term in the system. However,
if we resort to the Shockley model, the nonlinear terms are smooth in terms
of mathematical regularity.

1.2.3 Lumped parameters models for the circulatory system

In the previous sections we have introduced lumped parameter description of
two basic compartments, a segment of vessel and the heart. A possible model
for the vascular network can be derived by “connecting” these compartments
by means of appropriate matching conditions, in a way similar to the one
pursued for the 1D model of bifurcations in Sect. 1.1.5. Matching conditions
will be actually driven by continuity of flux and balance of momentum at the
interfaces. More precisely, since our lumped parameter models deal with the
flow rate Q and the pressure P , matching conditions will essentially state the
continuity of these variables at the interfaces. In the electric analog, these
relations correspond to the application of the classical Kirchhoff laws for the
nodes (conservation of current/flow rate) and the nets (conservation of the
voltage/pressure). For these reasons, lumped parameter models will also be
referred to as Kirchhoff (K) models.

A sketch of possible connections of different compartments is given in Fig.
1.12.

More detailed models for the circulation are proposed in [52, 80], where
hundreds of elementary compartments are considered.

Mathematical and numerical analysis of lumped parameters models

From the mathematical viewpoint, a general representation of lumped pa-
rameters models is a system of differential-algebraic equations (DAE) of the
form 





dy

dt
= b(y, z, t) t ∈ (0, T ]

G(y, z) = 0

(1.66)

together with the initial condition vector y|t=t0 = y0. Here, y is the vector
of state variables, the vector z contains the other variables of the network
and G represents the algebraic equations derived from the Kirchhoff laws.
Differentiating the algebraic equations with respect to time we get

dG(y, z)

dt
= Jy

dy

dt
+ Jz

dz

dt
= 0

where Jy =
∂G

∂y
and Jz =

∂G

∂z
are the Jacobian matrices with respect to y

and z. Assuming that Jz is non singular, the DAE system is said to be of
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Fig. 1.12. Lumped parameters model for a branched vessel as a cascade of T and
π networks

index 1 (see e.g. [26]). This is the most frequent case in problems concerning
lumped parameters models of the vascular system. We can then write

dz

dt
= −J−1

z Jy
dy

dt
= −J−1

z Jyb(y, z, t). (1.67)

Assuming that an initial vector z0 is available, the first equation of (1.66) and
(1.67) can be rewritten as the classical Cauchy problem





dw

dt
= a(w, t) t ∈ (0, T ]

w(t0) = w0,

(1.68)

where w = [y,u]T and a = [b,−J−1
z Jyb]T . For the analysis of this problem

we can refer to classical mathematical results, e.g. [32]. We will recall the
following results:

1. if a(w, t) is continuously differentiable there exists a time interval [0, T ∗]
in which the solution of the problem exists and is unique;

2. if, moreover, the derivatives ∂ai/∂wj are bound in the time interval [0, T ],
then the solution of the Cauchy problem exists and is unique in [0, T ].

Numerical solution of Cauchy problems like (1.68) is an important branch
of scientific computing. A general introduction can be found in [40].
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When the DAE problem (1.66) is of index higher than one, which is not the
usual situation in this kind of problems, both the mathematical and numerical
analyses become more involved. We refer the interested readers to [3, 26].
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Fig. 1.13. Left: Terminal impedance for the peripheral circulation. Right: Lumped
parameters representation (electrical networks) of possible impedances: (a) pure
resistive load; (b) original windkessel model; (c) three elements windkessel; (d) four
elements windkessel
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Fig. 1.14. Modulus (left) and angle (right) for the transfer function of the four
networks in Fig. 1.13(right)

1.2.4 Lumped parameter models for terminal vessels

By using the electrical analogy presented above, we now consider briefly some
possible model for the terminal vessels to be used as stand-alone models or
for computing boundary conditions to 1D networks (Sect. 1.1.4).
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Pure resistive load: In some cases, the dynamics of blood in peripheral vessels
is adequately represented by a simple algebraic law, see Fig. 1.13(right), given
by

pT (t) = RQT (t), (1.69)

corresponding to the impedance ZT (t − τ) = Rδ(τ − t), where δ denotes the
Dirac delta. This is particularly true for small vessels where the heart pulsatil-
ity has been almost completely attenuated by the larger vessel compliance and
the motion is almost steady. An effective way of including this condition into
the 1D model is based on the introduction of a reflection coefficient. The
reflection coefficient, Rt, is defined in [43] as the ratio of the magnitude of
change of pressure across the reflected wave, dP , to the magnitude of change
of pressure in the incident wave,∆P . It is a function of the terminal resistance
at the vessel outflow and is given by

Rt =
dP

∆P
=
AR− ρc
AR+ ρc

=
R − ρc/A
R + ρc/A

Here, the venous pressure is assumed to be zero.
The value of Rt permits the outflow at the boundary to vary between a free

outflow when Rt = 0 and a blockage when Rt = 1. Using this relationship and
equation (1.35) which relates the velocity u and the characteristic variables,
W1 and W2, the velocity, u⋆, at the boundary can be specified to be

u⋆ =

[
(u0 + ul)

2
+ 2(cl − c0)

]
(1−Rt) (1.70)

where u0 and c0 are the undisturbed states on the right-hand side at t = 0.
The characteristic variable W1 remains unaltered at the outflow boundary
and is given as

W1 = ul + 4cl = u⋆ + 4c⋆

and therefore c⋆ at the boundary must be

c⋆ =

[
ul − u⋆

4

]
+ cl. (1.71)

We define the incoming wave, W2, as

W2 = ur − 4cr = u⋆ − 4c⋆. (1.72)

Substituting equations (1.70) and (1.71) into equation (1.72) and choosing
cl = cr at the boundary, leads us to the values of ur and Ar to be prescribed
at the boundary, these are

ur = (1−Rt)[(u0 + ul) + 4(cl − c0)]− ul
Ar = Al.

The characteristic variable, W2, at the outflow can now be calculated using
equation (1.34).
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Remark 1.2.2 There is another possible definition for the reflection coeffi-
cient which is more suitable for prescribing boundary conditions based on the
Riemann variables. At the terminal boundaries (subscript T ), using equations
(1.35) and (1.69) we have





W1 =
pT

AT (pT )RT
+ 4A1/4(pT )

√
βT
2ρ

W2 =
pT

AT (pT )RT
− 4A1/4(pT )

√
βT
2ρ

.

We define the characteristic reflection coefficient as

Rc = −W2

W1

that identifies the fraction of incident Riemann variable W1 actually trans-
formed into the backward propagating5 Riemann variable W2 by the resistive
load. By a simple linearization (see [20]) we can compute

Rc =
R −Ra
R +Ra

with Ra = 0.25
√

2ρ/β3
T

√
A0. We still have that for RT → ∞, Rc → 1 that

implies that W2 = −W1 and thus u = 0 from their definition (1.33-1.34). Since
W1 can be easily computed by extrapolation along the characteristic curves, the
condition

W2 = −RcW1 (1.73)

readily yields a boundary value for W2.

Windkessel models: A more accurate representation of the terminal load is
provided by the models including some possible dynamics related to vessel
compliance and blood inertia. The first model was introduced by Otto Frank
in 1899 [25]. It included a peripheral resistance and a compliance (see Fig.
1.13(b)) which yields a value of the impedance

ζT (ω) =
R

1 +
√
−1ωRC

.

This model has been called Windkessel in analogy with the device (made
of a reservoir and an air chamber) converting the alternate (periodic) water
pumping of firemen into a steady flow. In order to better fit the experimental
results (see [50, 80]), this basic model has been successively refined by West-
erhof and his co-workers with the introduction of a second resistance (see

5 The negative sign indicates the change in propagation direction.
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Fig. 1.13(c)). The model has been called a three-element Windkessel or also
familiarly Westkessel, and corresponds to an impedance value of

ζT (ω) =
R1 +R2 +

√
−1ωR1R2C

1 +
√
−1ωR2C

.

More recently (see [6, 71]), it has been pointed out that the fitting of exper-
imental data with the three elements Windkessel model requires values that
are not clearly related to the physical properties of the arteries. A new im-
provement of the model has been therefore proposed, leading to a four-element
network (Fig. 1.13 right, (d)) that includes an inductor for inertial effects. The
impedance of the model is

ζT (ω) =
R1R2 − CR1R2Lω

2 +
√
ω(R1 +R2)

R1 − CR2Lω2 +
√
ω(L+ CR1R2)

.

The determination of an appropriate estimate of the parameters of these mod-
els is a difficult problem. The interested reader is referred to [6,50,71]. An in-
tuitive and systematic approach to estimate the parameters of a three-element
model is presented in [2].

The moduli of impedances and angles of the four networks considered in
Fig. 1.13 are drawn in Fig. 1.14.

Remark 1.2.3 For including this kind of conditions in the 1D model, an
alternative to equation (1.38) consists in formulating a condition in the time-
domain for the Riemann variables (see the previous remark). For instance, by
setting R = R1 + R2, the three-element Windkessel model corresponds to the
boundary condition

R2C
Ra +R1

Ra +R

dW2

dt
+W2 = R2C

Ra −R1

Ra +R

dW1

dt
−RcW1

that generalizes (1.73) (see [20]).

Structured tree model: The dynamics spanned by family of Windkessel models
is quite crude and in particular the wave propagation in the peripheral circu-
lation is not well represented. A possible way for accounting these effects is the
introduction of lumped parameters models with many elements, following the
geometrical multiscale approach discussed in Chapter 2. A different approach,
still resorting to the definition of an appropriate impedance function has been
introduced in [53] and it is based on the representation of the terminal vessels
as a structured tree (see Fig. 1.15).

By classical arguments in the wave theory (see e.g. [58]), the impedance
at the beginning of a vessel with length l can be written as a function of the
impedance at the end:

ζbeg(ω) =
g−1

√
−1 sin(ωl/c) + ζend(ω) cos(ωl/c)

cos(ωl/c) + g
√
−1ζend(ω) sin(ωl/c)

, (1.74)
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Fig. 1.15. Structured asymmetric tree representation of peripheral circulation

where

g = A0

√
3
√
A0K

2Eπhρ
, c =

√
2EπhK

3
√
A0ρ

and K is an appropriate function of the Womersley number. The basic idea
of this peripheral model is therefore to apply this formula for the terminal
impedance ζT that is expressed in this way as a function of the impedance at
the end of the first peripheral vessel. The latter will be computed recursively
by:

1. giving a model for the bifurcations in terms of impedance of parent and
daughters vessels;

2. applying (1.74) for each branch of the vascular tree.

Continuity of pressure and flow rate at the bifurcation yields the condition
linking the impedance of the parent vessel to the impedances of the daughter
vessels (we assume branching with only two daughters)

ζparent =

(
1

ζd1
+

1

ζd1

)−1

.

Each branch of the tree is then scaled on the basis of the following as-
sumptions:

1. at each bifurcation, the daughters branches scale asymmetrically with
respect to the parent one with radius factors α, β that can be determined
on the based of optimal branching considerations (see [53]);
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2. under a certain threshold on the radius it is possible to assume that the
impedance is purely a resistive load, known by experimental data.

Observe that the threshold is applied to the vessel radii and not to the number
of branchings, so the number of branches is in general a function of the position
of the interface with the 1D model and will be not assumed to be known a
priori.

A more detailed code for this impedance modeling can be found in [57]. Re-
sults presented in [55] show that this approach for terminal outflow boundary
conditions provide reliable results. In particular, it provides a closer physiolog-
ical behavior than the Windkessel models, with a correct phase-lag between
flow and pressure.

See also [70] for an advanced application of this approach.

1.2.5 Modeling the interaction between cardiovascular system and
chemical species

In the previous sections we have assumed that the parameters of the models
depend on the morphological features and are constant in time (see equa-
tion (1.58)). This is a strong simplification since daily experience indicates
that these parameters change in different physiological situations. Heavy ex-
ercise requires a body’s response that involves biochemical reactions, chemi-
cals transport (oxygen in particular) and definitely adjustments in blood flow.
The cardiovascular system has feedback mechanisms that regulate its work-
ing activity and are essential for life (see e.g. [35]). The dynamics underlying
these phenomena is extremely heterogeneous and complex, involving different
chemical species, the cardiovascular and the nervous systems from peripheral
to central districts (see [57], Chap. 7). There are long-term mechanisms that
are essentially driven by the renal activity. Presence of water and salt or hor-
mones can be adjusted by the kidneys for controlling arterial pressure. Other
mechanisms belong to the short term regulation effects. In the latter case, the
central nervous system (CNS) is the main mediator, involving baroreceptors,
mechanoreceptors and chemoreceptors. The latter are sensitive to chemicals
in blood (see [60]). When the oxygen concentration drops, chemoreceptors in-
creases cardiac strength and vasoconstriction. Baroreceptors are sensitive to
the pressure alterations. They are located in the carotid sinus and the aortic
arch. The role of the baroreflex effect is to keep the pressure within a physio-
logical range. Mechanoreceptors are located in the atria and in the pulmonary
veins and control arterial pressure by acting on the venous volume.

Other tuning dynamics are specifically present in the cardiovascular sys-
tem. In particular, the autoregulation is a mechanism for maintaining an al-
most constant oxygen supply (in particular in the brain), driven by the smooth
muscles in the vascular walls (see [1, 35]).

Lumped parameter models are an affordable mathematical and numerical
tool for modeling these complex phenomena. Here we address some basic
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Fig. 1.16. Simplifed compartment model of the circulation.

ideas for including feedback mechanisms in the models introduced so far. We
essentially need

1. lumped parameter models for chemical species, and
2. constitutive equations establishing the dependence of the parameters of

the cardiovascular model on the concentration of chemicals.

We present these topics by means of an example based on Chap. 1 of
reference [10].

Cardiovascular model

We assume the the cardiovascular system is represented by means of a set of
four compartments (see Fig. 1.16):

Right heart/lungs/left heart acting as a forcing term for the whole system.
Large arteries represented by a resistance Ra and a compliance Ca.
Systemic arteries that are represented by the compliance Cs and three sub-

districts
1. skeletal muscle represented by the resistance Rsm and with flow rate
Qsm;

2. splanchnic compartment with resistance Rsp and flow rate Qsp;
3. other organs with resistance Ro and flow rate Qo.

The total systemic resistance will be given by

Rs =
(
R−1
sm +R−1

sp +R−1
o

)−1
.

Venous system that is represented by the compliance Cv as their deformabil-
ity is the more relevant feature of the veins.

The cardiovascular system will be therefore modelled by a lumped parameter
model of the form
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Ca
dPa
dt

= Qa −
Pa − Ps
Ra

Cs
dPs
dt

=
Pa − Ps
Ra

− Ps − Pv
Rs

Cv
dPv
dt

= Qa − Ca
dPa
dt

− Cs
dPs
dt

Qsm =
Ps − Pv
Rsm

, Qsp =
Ps − Pv
Rsp

, Qo =
Ps − Pv
Ro

.

(1.75)

Here Qa is driven by the heart activity that can be simply given by





Qa =
Vstr
T

Vstr = Ved(Pv)− Vu,vent −
Pa
E
.

(1.76)

Here, T is the heart period, Vstr is the stroke volume of the heart. The latter
is assumed to be a function of the end-of-diastole volume Ved, which is in turn
a function of the venous pressure Pv, of the (constant) unstressed ventricular
volume Vu,vent and of the arterial pressure Pa by means of the heart elastance
E.

Chemical model

Let us start considering only the dynamics of oxygen. We denote by [O2]i the
oxygen concentration in compartment i (i ∈ (a, v, sm, sp, o)) and by Vi is the
volume of the i compartment. A possible law for the dynamics of oxygen in
the systemic compartments (i = sm, sp, o) is

Vi
d[O2]i
dt

= −ri([O2]i, t) +Qi(t) ([O2]a − σi[O2]i) , (1.77)

where ri is the oxygen consumption rate and σi is a partition (constant) co-
efficient, function of the oxygen concentration in the different compartments
at rest. The first term on the right-hand side is driven by the chemical reac-
tions, while the second one is related to the transport associated to the blood
flow. In the arterial compartment it is reasonable to assume that the oxygen
consumption is negligible, so that [O2]a is constant. In the venous compart-
ment, by mass conservation, we collect the residual oxygen coming from the
systemic compartments and it concentration is thus given by

[O2]v =
∑

i=sm,sp,o

Qi

Qa
σi[O2]i.

A possible generalization of this equation to the multi-chemical case is the
following. We introduce a vector of chemical concentration ci so that cki is
the concentration of the kth species in compartment i. This model is given by
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Vi
dci
dt

= Aψi(ci, t) + bi(ca, ci, Qi, t); i = sm, sp, o

cv =
∑

i=sm,sp,o

Qi

Qa
Sici

ca = ca(c
0
a, cv)

(1.78)

where Si is a diagonal matrix with entries given by the partition coefficients
σki and c0

a is the arterial vector concentration at rest. Moreover, ψi is the
vector of consumption rates associated to chemical reactions and Ai is the
so-called stoichiometric matrix representing the weighed connection of the
species involved in the chemical reactions. Term bi represents the convection
contribution to the chemical dynamics, driven by the blood flow. It is worth
pointing out that since chemical reactions can have different time scales as-
sociated with each reaction, differential systems like (1.78) can in practice be
stiff.
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Fig. 1.17. Three compartments representation of the feedback cardiovascular model

Feedback model

The dependence of chemical dynamics on fluid dynamics is clearly defined in
the transport term bi of equation (1.78). Let us consider now how the chemical
dynamics can affect the blood flow (see Fig. 1.17). To this aim, following [75],
we introduce some new unknowns:

fes represents the efferent sympathetic activity;
fev is the efferent vagal activity;
fcs is the carotid sinus firing rate, that is the action generated by pressure
alterations at the level of the carotid sinus;
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fcm is the chemoreflex activity;
R̃i with i = sm, sp, o the state variables determining the systemic resis-
tances and influenced by the vagal activity;
xi with i = sm, sp, o the state variables determining the systemic resis-
tances and influenced by the chemoreflex activity;
Pn a reference pressure value.

We assume that the heart period T and the elastance E are influenced by
the efferent vagal and sympathetic activities. In particular, we assume that






dT

dt
=

1

τT
(T0 − T − σT,s(fes)− σT,v(fev))

dE

dt
=

1

τE
(E0 − E − σT,s(fes))

fes = fes,∞ + (fes,0 − fes,∞) exp(−kesfcs)

fev =
fev,0 + fev,∞ exp((fcs − fcs,0)/kev)

1 + exp((fcs − fcs,0)/kev))

fcs =
fmin + fmax exp((Pa − Pn)/ka)

1 + exp((Pa − Pn)/ka

(1.79)

where σ, E0, T0, f,∞, f,0, fmin, fmax and k (with their respective indices)
represent appropriate functions and constants. The reference pressure Pn is
driven by the chemoreflex activity and its temporal variation is given by

dPn
dt

=
1

τPn
(Pn,0 − Pn − σPn,cm(fcm)) (1.80)

The systemic resistances are influenced both by the baroreflex and chemoreflex
activities. More precisely, for i = sm, sp, o we have






dR̃i
dt

=
1

τ eRi

(
R̃i,0 − R̃i − σ eRi,s(fes)

)

dxi
dt

=
1

τxi
(xi,0 − xi − σxi,cm(fcm))

(1.81)

where finally we “assemble” the resistances

Rsm =
R̃sm

1 + xsm

Rsp = R̃sp(1 + xsp)

Ro =
R̃o

1 + xo
.

(1.82)
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Finally, the chemoreflex control is driven by the oxygen concentration:

fcm =






0 if [O2]sm > [O2]
0
sm

kcm
(
[O2]sm − [O2]

0
sm

)2
otherwise.

(1.83)

Equations (1.75), . . . (1.83) represent a possible simplified model of feedback
mechanisms in the cardiovascular system More details can be found in [10,56,
74, 75].

A major concern in the devise of this kind of models is the parameter
identification based on experimental data. There are different approaches for
pursuing this aim. Basically, the problem is recast into the form of the mini-
mization of the distance between an experimental data set and the correspond-
ing results predicted by the theory, by acting on the values of the parameters
to be estimated. The “optimal values” can be found by means of:

line search algorithms (see e.g. [62]), that are quite cheap and however can
found local (i.e. non global) optimal values;

genetic algorithms, that compute the global optimal solution, even if with a
larger computational cost. See [11] for more details.
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There are essentially three classes of models for the vascular system: fully
three dimensonal models, based on the Navier-Stokes (NS) equations, one
dimensional models, including the space dependence on the vessel axial co-
ordinate, based on the Euler (E) equations, and the lumped parameter or
zero-dimensional models, based on the Kirchhoff laws (K) for hydraulic net-
works. Navier-Stokes based models can account for many different features of
blood flow problems, such as the blood rheology, the vascular wall dynam-
ics, the interaction between blood flow and wall deformation. These models
are perfectly adequate for investigating qualitatively and quantitatively the
effects of the geometry on the blood flow and the possible relations between
local haemodynamics and pathologies onrise. On the other hand, the high
computational costs restrict their use to cover few contiguous vascular dis-
tricts only.

Euler-based models provide an optimal tool for the analysis of wave prop-
agation phenomena in the vascular tree. In particular, they are convenient
when the local flow details are less relevant than the accounting for propaga-
tive phenomena on large parts of the vascular tree and the numerical results
are needed in a relatively short time. These models outline the role of the
vascular system as a sort of telegraph line with the task of transmitting nu-
trients as well as biological signals along the body. On the other hand, the
space dependence still retained in these models inhibits their use in the whole
vascular system. In fact, it would be impossible to follow the geometrical and
rheological details of the capillary network.

On the contrary, Kirchhoff-based models can provide a representation of
a large part or even the whole circulatory system, since they get rid of the
explicit space depedence (see Sect. [57]). In a simple and however still quan-
titative way, these models can include the presence of the heart, the venous
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system, but also account for self-regulating and metabolic dynamics (see Sect.
1.2.5 and [60]).

If NS, E and K models provide such a different tools, reliable numerical
methods for real life applications need to overcome the drawbacks and weak-
ness of each individual class of models. This can be done by resorting to the
geometrical multiscale representation of the circulatory system.

2.1 What do we mean with geometrical multiscale

models?

Geometrical multiscale4 approach is a strategy for modeling the circula-
tory system, including the reciprocal interactions between local and systemic
haemodynamics by exploiting the complementary features of the different pos-
sible models. Indeed, these features lead in a natural way to couple detailed
local models with coarser models able to describe the dynamics over a large
part or the whole system with acceptable computational costs (see Fig. 2.1).

0D

1D

3D

1D

1D

Fig. 2.1. A schematic representation of a geometrical multiscale model

4 Term “multiscale” is often used with a different meaning in many fields of mathe-
matical and numerical modeling, whenever two or more time and/or spatial scales
are present. Typical examples are the modeling of turbulence or multiresolution
representations. In order to avoid ambiguities, we have added the term geometrical
for identifying the multiscale perspective illustrated in this chapter.
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Multiscale modeling can be regarded as a refinement of models, or a sort of
“models zoom” in a specific region of interest, moving from a rough description
of the whole system (bottom-up approach). From a different point of view, it
can be regarded as a sophisticated and reliable method for computing correct
boundary conditions at the artificial boundaries of a district of interest (top-
down approach), i.e. non-physical boundaries which however are needed to
limit the computational domain. In the latter perspective, it can be considered
also as a specific numerical tool for avoiding spurious effects in domains with
artificial boundaries. Indeed, in a domain interested by wave propagation as a
net of compliant vessels, artificial boundaries can be source of numerical errors
and specific numerical techniques are in order. The geometrical multiscale
approach can be regarded in this case as a new approach for solving this
class of problems, whose generality goes beyond the specific bioengineering
applications addressed in this book.

Despite the simplicity of the basic idea, the coupling of NS, E and K models
lead to nontrivial problems at both the mathematical and the numerical level.
After a quick review of possible multiscale models of the cardiovascular system
and the coupling conditions based on some intuitive formulations, we will
consider in more details the mathematical aspects of this approach, leading
to less immediate and however more accurate solutions.

2.2 How can we get multiscale models?

2.2.1 Coupling of 3D and 1D models

According to the top-down approach introduced above, let us consider the
coupling of 3D and 1D models for haemodynamics (see Fig. 2.2). This is of
interest for instance when an endograft prosthesis or a stent is deployed in a
specific district (abdominal aorta, carotid, etc.) and one is interested to the
alterations induced by this operations on the pressure propagation over the
vascular tree.

As already mentioned, from a purely mathematical point of view this is
also an effective way for implementing physically based absorbing conditions,
in particular for a 3D compliant model. As it has been pointed out in [17], the
solution of the fluid-structure interaction problem in a compliant vessel Ω3D

features a propagative behavior of hyperbolic type, similar to the one of a
compressible flow in a rigid pipe. The density variations in the latter problem
are somehow associated in the former with the volume variations, due to
the vessel compliance. To fix the ideas, let us suppose to split the pressure
wave propagation into an axial forward component (from heart to periphery
in the arteries, form periphery to heart in the veins) and a backward one.
During the heart beat the component outgoing the domain is not in general
independent of the one incoming through the same (artificial) boundaries.
At each bifurcation the forward component is partially reflected, inducing
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1D

1D

1D

3D

Γ1 Γ2

Γ0

Fig. 2.2. A 3D-1D model

a backward wave (as we have seen in the previous chapter). Forward and
backward components are therefore related by the structure of vascular tree.
A correct mathematical model of this relation is crucial to avoid unphysical
reflections in the numerical solution at the inflow/outflow boundaries induced
by a wrong decomposition of incoming and outgoing waves. Coupling of 3D
and 1D models is therefore a possible and reliable approach for this aim, by
introducing a proper 1D representation of the vascular tree around Ω3D.

Appropriate matching conditions drive the data exchange between NS and
E models at the interface Γ (see Fig. 2.3). Different conditions in fact can be
considered. In particular we refer to the following quantities defined on Γ
(see [17])

A = meas(Γ ), Q =

∫

Γ

u · ndγ,

u =
1

A

∫

Γ

u · nd =
Q

A
γ, p =

1

A

∫

Γ

pdγ.

(2.1)

A priori, it is reasonable to prescribe the following continuity conditions at
the interface:

[ A ] area: A3D = A1D;
[ B ] mean pressure: p3D = p1D;
[ C ] flux: Q3D = Q1D;
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Interface Conditions

Ω1D

Ω3D

Γ

Fig. 2.3. 3D-1D model: detail of the coupling at the outflow of Ω3D

[ D ] incoming characteristic: u3D +
8

ρ

(√
p− pext + p∗ −

√
p∗

)
= W1,1D;

[ E ] mean total pressure: p3D +
1

2
u2

3D = p1D

1

2
u2

1D,

where W1,1D is the incoming characteristic variable5 introduced in (1.33),
pext is the pressure external to the vessel and p∗ depends on the physical
features of vascular walls (see [60]). These conditions are not all independent.
For instance, [A],[B] and [D] imply conditions [C]. Similarly, conditions [A],
[C] and [D] imply [B]. Moreover, it is worth observing that, following the
derivation of 1D models carried out in Chap. 1, conditions [B], [D] and [E]
can be replaced by similar conditions where the mean pressure on the 3D side
is substituted by the averaged normal stresses (see [17]), yielding:

[ B1 ] σn3D = p1D;

[ D1 ] u3D +
8

ρ

(√
σn − pext + p∗ −

√
p∗

)
= W1,1D;

[ E1 ] mean total pressure: σn3D +
1

2
u2

3D = p1D

1

2
u2

3D.

5 The incoming characteristic variable is W1 because we are considering an interface
which is an outflow (distal) boundary for the 3D model and correspondingly an
inflow (proximal) boundary for the 1D model. Should we swap the sequence of
1D and 3D models, the incoming characteristic variable would be W2.
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In practice, we can identify different sets of independent interface condi-
tions:

a) [A], [B], [D];
b) [A], [C], [D];
c) [A], [B1], [D1];
d) [A], [C], [D1];
e) [A], [E], [D];
f) [A], [E1], [D].

These have all the effect of forcing the continuity conditions listed above.
However, as usual, different possible choices that are equivalent form the math-
ematical viewpoint can lead to different numerical schemes.

Some numerical issues

In numerical solution of multiscale models presented above it is natural to
split the scheme into the iterative sequence of dimensionally homogeneous
problems, namely 3D and 1D separately. In this way, we can figure out for
instance the following algorithm to be carried out at each time step6. We
focus our attention on interface between the two models. In particular, we
refer to interface conditions (b) of the previous list. The conditions on the
other boundaries are assumed to be standard.

Inizialization. Set k = 0 and select an initial guess for the mean velocity

u
(0)
3D and pressure p(0) at the interface. Typically, this guess is given by

the same quantities at the end of the previous time step.
Loop.

1. Solve the 1D model, using [D] as boundary condition at the interface,

by computing W
(k)
1 as a function of the current guess of the mean

velocity and pressure (or normal stress). The other boundaries of the
1D model will be properly managed (see Sect. 1.1.4). In this step,

A
(k+1)
1D and Q

(k+1)
1D are computed.

2. Solve the 3D fluid-structure interaction model, with [A] as a boundary

condition for the structure and [C] for the fluid by using A
(k+1)
1D and

Q
(k+1)
1D . At the end of this step, compute the new guess W

(k+1)
1 . Set

k = k + 1.

Test. The loop ends when:

|W (k)
1 −W (k−1)

1 | ≤ ε, |A(k) −A(k−1)| ≤ ε, |Q(k) −Q(k−1)| ≤ ε
(2.2)

being ε a given tolerance.

6 We will not put in evidence explicitely the time index for the sake of notation.
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Different algorithms can be devised, for different interface conditions.
Observe that while the boundary conditions in step (1) of the loop lead

to a mathematicaly well posed problem, step (2) in this form does not, since
these averaged data on the boundary are not enough to solve uniquely the
3D problem. A specific treatment of these “defective boundary data” set is
required. To be more concrete, let us consider [A] used as condition for the
structure at step 2. On the 3D compliant model we would need pointwise data
for the wall displacement d. On the other hand, when the area of the interface
A1D is known from the computation of the 1D model, we have the average
condition: ∫

Γ (d(t))

dγ = A1D(t). (2.3)

We need to “spread” the average data to pointwise conditions. To this aim we
can assume a shape for the displacement depending on a single parameter to
be tuned so to force (2.3). For instance, suppose that it is possible to identify
an axis of the 3D compliant vessel and that the shape of Γ is circular with
centre on the axis of coordinates (xc, yc, zc). For the sake of simplicity, let us
assume that Γ belongs to the plane (x, y) identified by the equation z = zc.
In this way the component d3 along z of the position d is constant and we
can set:

d1(x, y, z, t) = xc +R(t) cos
(
tan−1

(y
x

))
= xc +

√
A1D(t)

π
cos

(
tan−1

(y
x

))
,

d2(t) = yc +R(t) sin
(
tan−1

(y
x

))
= yc +

√
A1D(t)

π
sin

(
tan−1

( y
x

))

d3(t) = zc.
(2.4)

With this choice the average condition has been extended to pointwise data,
by assuming a priori a planar circular shape for the interface Γ .

In a similar way we can address condition [C], by assuming, for instance,
a velocity profile depending on a proper parameter. To be more precise, let
us assume again that Γ has a circular shape in the xy−plane. Then, we can
resort to the well known Poiseuille parabolic velocity field

u1 = u2 = 0, u3(x, y, t) =
2Q1D(t)

πρR2

(
1− (x− xc)

2 + (y − yc)
2

R2

)
, (2.5)

where Q1D is the flow rate computed by the 1D model. Again, the arbitrary
selection of a velocity profile converts the average conditions into pointwise
Dirichlet conditions for the fluid problem.

Numerical results (see Fig. 2.4 and 2.5) show that this approach is actually
able to reduce spurious back-reflections at the boundaries, in particular when
the arbitrary assumptions on the displacement shape or the chosen velocity
profile are realistic. However, in general, the arbitrary selection of a shape for
the displacement or the velocity profile strongly affects the numerical solution.
Hence, the reliability of results obtained in this way is sometimes questionable.
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More sophisticated mathematical and numerical techniques that are able to
expand average data to pointwise conditions are required for ensuring better
accuracy. We will address these techniques in Sect. 2.3.

Fig. 2.4. 3D simulation: pressure wave propagation along a compliant vessel. Spu-
rious effects arise at the artificial downstream boundary(courtesy of G. Fourestey)

Another drawback of this multiscale coupling still relies on the limited
capability of E models of covering the capillary network, which on the other
hand is the main source of the back reflections propagating in the arterial
tree and of including the action of the heart. These require more sophisticated
multiscale models.

2.2.2 Coupling of 1D-0D and 3D-1D-0D models

A possible way to account for the presence of the capillary bed in the com-
putation of travelling pressure waves and the action of the heart is to close
the 3D-1D network with K models. This requires in particular the coupling of
1D and lumped parameter models, through interface conditions. A simplified
version of this coupling has been already addressed in Chap. 1. In that case,
lumped parameter models were represented by a simple terminal impedance
for prescribing boundary conditions in the frequency domain at the down-
stream sections of a 1D network. Here, we want to give an insight of models
and numerical issues arising from a precise and accurate inclusion of the dy-
namics in K models. In the multiscale framework they are described in terms
of a system of differential-algebraic equations (see (1.66)) in the time variable.
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Fig. 2.5. Multiscale 3D-1D simulation: pressure wave propagation along the two
submodels. Spurious effects at the artificial boundary are small (courtesy of G.
Fourestey)

For the sake of simplicity, we consider the multiscale model represented
in Fig. 2.6, where the 1D model represents a simple cylindrical domain. More
complex problems, featuring a network of 1D segments or even a coupled
3D-1D model can be considered as well within the same framework.

In the model at hand we have two interfaces, Γ0 and Γ1, where it is rea-
sonable to prescribe the continuity of:

[ A ] area: A1D = A0D;
[ B ] pressure: P1D = P0D;
[ C ] flow rate: Q1D = Q0D.

Moreover, we could force the continuity of the Riemann variables:

[ D ] characteristic variable propagating from the heart to the peripheries:
Q0D

A0D
+

8

ρ

(√
P0D − pext + p∗ −

√
p∗

)
= W1,1D;

[ E ] characteristic variable propagating from the peripheries to the heart:
Q0D

A0D
− 8

ρ

(√
P0D − pext + p∗ −

√
p∗

)
= W2,1D.

Again, these conditions are not all independent. This is the case for in-
stance of [A] and [B], since both the E and K models include a wall law linking
together pressure and area. Should these wall laws be the same, actually con-
tinuity of the area implies continuity of the pressure and vice-versa. More in
general, only one between [A] and [B] can be explicitly prescribed.
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0D model

Q0

π
networkQ1

P1

T
network

Γ0

Γ1

1D model
P0

Fig. 2.6. 1D-0D model: the 1D model is given by a simple compliant straight
cylinder, the 0D model is composed by the network in the cube and two bridging
regions (upstream and downstream). Upstream bridging region is given by a T
network, featuring the flow rate Q0 as state variable. Downstream bridging region
has the pressure P1 as state variable. These interface compartments are compatible
with the splitting scheme described in the text

Similarly, only two conditions among [B], [C], [D] and [E] can be selected,
for instance:

1. conditions [B], [D] at the upstream interface Γ0;
2. conditions [C], [E] at the downstream interface Γ1.

Some numerical issues

A possible approach for solving this multiscale model still resorts to splitting
the computation into the sequence of dimensionally homogeneous problems.
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In the case of Fig. 2.6, this means that we solve separately the DAE sys-
tem corresponding to the lumped parameter model and the Euler hyperbolic
system. Let us consider preliminarily the simple case in which a 1D straight
cylinder is split into a 1D-0D model as illustrated in Fig. 2.7. In particular, let
us consider the multiscale model at the top of Fig. 2.7, where the 0D model is
prepresented by a L inverted network (see Chap. 1). The lumped parameter
model is therefore described by the following equations:

C
dP

dt
= Qup −Q,

L
dQ

dt
+RQ = P − Pdw.

(2.6)

A possible iterative scheme reads as follows. At each time step:

Initialization. Set k = 0 and fix an inital guess for the interface flow rate

Q
(0)
up .

Loop. 1. Solve the 0D model (2.6), by usingQ
(k)
up as forcing term. This yields

the estimates of Q(k) and P (k). On the basis of this computation,

Riemann variable W
(k)
2 at the interface incoming to the 1D model

can be computed.

2. Solve the 1D model by using incoming Riemann variable W
(k)
2 as

boundary condition. At the end of this step, a new guess for Q
(k+1)
up

is available. Set k = k + 1.
Test. The loop ends when the solution fulfills an appropriate test, for in-

stance:
|P (k) − P (k−1)| ≤ ε, |Q(k)

up −Q(k−1)
up | ≤ ε.

Let us consider now multiscale model on the bottom of Fig. 2.7. Here 0D
model is represented by a L network, described by system

L
dQ

dt
+RQ = Pup − P,

C
dP

dt
= Q−Qdw.

(2.7)

We can still use an iterative approach as follows.

Initialization. Set k = 0 and fix an inital guess for interface pressure P
(0)
up .

Loop. 1. Solve the 0D model (2.7), by using P
(k)
up as forcing term. This yields

the estimates of Q(k) and P (k). On the basis of this computation,

Riemann variable W
(k)
2 at the interface incoming to the 1D model

can be computed.

2. Solve 1D model by using incoming Riemann variable W
(k)
2 as bound-

ary condition. At the end of this step, a new guess for P
(k+1)
up is avail-

able. Set k = k + 1.
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Q

C

L
R

Qup

P

Pdw

P

Q

Pup

L

R

Qdw

C

Fig. 2.7. Two simple examples of 1D-0D multiscale models. At the top, the lumped
parameter model is given by a L-inverted network. On the bottom, it is given by
a L network. The two network configurations are appropriate for different iterative
solvers (see text)

Test. The loop ends when the solution fulfills an appropriate test, for in-
stance:

|P (k)
up − P (k−1)

up | ≤ ε, |Q(k) −Q(k−1)| ≤ ε.

Several remarks are in order. First of all the use of characteristic variables
has the advantage of prescribing (at least approximatively) absorbing bound-
ary conditions, well suited for avoiding numerical reflections at the boundary
of the E model (see Chap. 1).

Secondly, interface conditions are by definition localized in a specific po-
sition in space. On the other hand, K models have lost an explicit space
dependence. Therefore, in managing matching conditions with K models:

1. interface conditions yield a forcing term in the 0D model;
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2. different configurations of the 0D models are associated with different
iterative schemes: in the first case the 0D model is forced by the flow rate
Qup and provides the pressure P ; in the latter case, it is forced by the
pressure Pup and provides the flow rate Q.

The latter item deserves some further remarks. In lumped parameter prob-
lems, interfaces between E and K models are represented by the boundary of
the 1D domain and the compartments placed in the neighborhood of the 1D
models7. The structure of the graphs of these compartments implicitly defines
the interface variables that are state variables for the 0D model and the ones
that are forcing terms. In the iterative scheme, the latter are related to the
variables “received” by the 1D problem from the 0D one, the former are re-
lated to variabes “computed” by the K problem and “returned” to the E one
(possibly in the form of the Riemann variables).

The compartments of the 0D model that play the role of the interfaces
with the other models will be called bridging regions. The link between the
graph of the bridging regions and the numerical scheme will be called bridging
region compatibility. More precisely, we say that a numerical scheme is bridging
region compatible if it is consistent with the topology of the bridging region.

For instance, for the multiscale model of Fig. 2.6, where the upstream
bridging region is given by a T network and the downstream one is given by
a π network, a bridging regions compatible scheme reads as follows.

Initialization. Set k = 0 and fix an inital guess for the upstream pressure

P
(0)
0 and the donwstream flow rate Q

(0)
1 .

Loop. 1. Solve the 0D model, by using the available upstream pressure and
the downstream flow rate as forcing terms. Compute in particular the

upstream flow rate Q
(k)
0 and the downstream pressure P

(k)
1 . After this

computation, the incoming Riemann variables, W
(k)
1 upstream and

W
(k)
2 downstream are available.

2. Solve the 1D model by using the incoming Riemann variables as
boundary conditions. At the end of this step, new guesses for the

upstream pressure P
(k+1)
0 and the donwstream flow rate Q

(k+1)
1 are

available.
Test. The loop ends when the solution fulfills an appropriate test, for in-

stance:

|P (k)
i − P (k−1)

i | ≤ ε, |Q(k)
i −Q(k−1)

i | ≤ ε, i = 0, 1.

Remark 2.2.1 Step 1 can be regarded as a stand-alone lumped parameter
model, represented by the circuit of Fig. 2.8, where input variables of the 1D
model are represented by a current and a voltage generator respectively. In
terms of circuit analysis bridging region compatibility in fact implies that no

7 In the two oversimplified examples above they in fact corresponds to the entire
0D models.
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voltage/pressure generator is in parallel with a capacitor and no current/flow
rate generator is in series with an inductance. Under these assumptions it is
possible to prove that the DAE system associated with this stand-alone network
is of index 1 and it can be reduced to a well posed Cauchy problem for a system
of ordinary differential equations (see [13, Chap.12]).

_

+−

Fig. 2.8. Stand alone 0D model corresponding to step 2 of the splitting iterative
algorithm (see text)

Aortic valve function

As we have pointed out, an advantage of K models is their capability of repre-
senting in relatively simple terms complex systems like the heart or the action
of control dynamics. Moving from the observation that “the left ventricle and
arterial circulation represent two mechanical units that are joined together to
form a coupled biological system” [45, Chap.13], it makes sense to consider
a 1D model for the aorta coupled with the lumped parameter model of the
heart presented in Sect. 1.2.2. Since the coupling is mediated by the aortic
valve, we assume that there are two possible working states for the system
Heart-Aorta.

1. closed valve (CV) condition: when the aortic valve is closed, the two sys-
tems are actually decoupled; in particular, for the arterial tree we have at
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Fig. 2.9. Ventricular and arterial pressures during the heart beat. When the aortic
valve is open, the two pressures can be assumed to be the same

the aorta inflow a null flow rate condition, resorting to the conditions on
the Riemann invariants:

W1 = −W2.

2. open valve (OV) condition: the ventricular pressure is related to the 1D
problem by solving equation (1.64) which we recall here for the sake of
clarity:

1

Ev

dPv
dt

+
d

dt

(
1

Ev

)
Pv = −Qv,

During this phase, we assume that ventricular flow rate Qv and pressure
Pv are equal to the arterial ones at the aorta inflow (see Fig. 2.9), corre-
sponding to conditions

Qv = Q1D, Pv = P1D.

Numerical implementation of these conditions by using the incoming char-
acteristic variable in the 1D network is addressed in [20].

Transition between OV and CV conditions cannot be prescribed a priori.
We assume that the valve opens under the action of a differential pressure
and it closes when forced by a flow reversal. This means that in numerical
coupling when the valve is closed, at each time step aortic and ventricular
pressures need to be compared. If Pv − P1D < 0 the valve is kept closed (CV
conditions), otherwise we switch to OV conditions until the next closure. To
determine the instant of valve closure (end of systole) we check the sign of
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the flux at the aortic proximal node. At the first time step when Qv becomes
negative we “close” the valve by adopting again CV boundary condition, up
to the next heart cycle (see Fig.2.10).

Pv − P1D?Closed Valve Open Valve

≥ 0

< 0

< 0

≥ 0

Qv?

Fig. 2.10. Flow chart representation of the aortic valve modeling.

As an application of this model, we mention [20].

2.2.3 Coupling of 3D-0D models

In our top-down approach, we have coupled the three kind of models, moving
from the finest 3D down to the coarsest 0D. In some applications a sort
of shortcut modeling can be pursued, coupling together directly 3D and 0D
models. This is, for instance, the case when the wave propagation phenomena
are not of interest, and a 3D simulation needs boundary conditions that could
account in a precise way the dynamics of the complete vascular tree.

Consider for instance the model obtained by coupling a 3D model of a
region of interest and a lumped parameter model like in Fig. 2.11. Again,
three model ingredients can be identified:

K model, represented by a system of ordinary differential equations in the
form

dy

dt
+Ay = f

NS model, represented by the Navier-Stokes equations with appropriate bound-
ary conditions on the vascular walls Γw;

interface conditions represented by continuity conditions.

At each interface in particular we consider the following conditions.

[ A ] area: A3D,i = meas(Γi) = A0D,i;

[ B ] mean pressure: p3D,i =
1

A3D,i

∫

Γi

pdγ = P0D,i;

[ C ] flow rate: Q3D,i = ρ

∫

Γi

u · nidγ = Q0D,i.

As we have already pointed out for 3D-1D coupling, condition [B] can be
replaced by a condition on the normal component of the stress



2 Multiscale models of the vascular system 57

+

_

 
 
 
 

!
!
!
!

 
 
 
 
 
 

!
!
!
!
!
!

0D model

BR1

BRi

BR0

Z

Γ0

pdγ = P0

Qi = ρ

Z

Γi

u · ndγ

BR0

BR2

i = 1, 2

Γ0

Γ2

Γ1

3D model

Q0 =

Z

Γ0

u · ndγ

Z

Γ1

pdγ = P1

Z

Γ2

pdγ = P2

Fig. 2.11. Representation of a 3D rigid-0D geometrical multiscale model with three
bridging regions (BR0, BR1, BR2). At the inlet of the 3D domain, the bridging region
features the current/flow rate Q0 as state variable. This is therefore computed by
the 0D model. In the other bridging regions, the voltage/pressures pi, i = 1, 2, are
the state variables. The 0D model is forced by the mean pressure at the interface
Γ0 and by the flow rates at Γ1 and Γ2

[ B1 ]
1

A3D,i

∫

Γi

(pni − (∇u +∇uT ) · ni)dγ = P0D,i.

Possible interface conditions are therefore represented by [A], [B] and [C]
or [A], [B1] and [C]. If the 3D model is assumed to be rigid, the three con-
ditions are not independent and in particular [A] and [B] (or [B1]) cannot
be prescribed explicitly together. Actually, in the 3D model interface area is
constant, while in the 0D model a pressure law (see (1.21)) between area and
pressure is postulated. For this reason, typical interface conditions in the 3D
rigid-0D coupling are [B] (or [B1]) and [C].

Some numerical issues

To fix the ideas, we consider the problem represented in Fig. 2.11 where the
3D model is assumed to be rigid and interface condtitions [B1] and [C] are
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prescribed. We consider the following algorithm for the numerical coupling at
each time step.

Initialization. Select an initial guess for the pressure P
(0)
0 = P0 and the

flow rates Q
(0)
1 = Q1 and Q

(0)
2 = Q2 at the interfaces. Typical choice is

to take these quantities at the previous time step. Set the iteration index
k = 0.

Loop. 1. Solve the 0D model by using the forcing terms P
(k)
0 , Q

(k)
1 and Q

(k)
2 .

This step, in particular, computes the state variables of the K model

Q
(k+1)
0 , P

(k+1)
1 and P

(k+1)
2 .

2. Solve the 3D model by using the boundary conditions given by

Q
(k+1)
0 , P

(k+1)
1 and P

(k+1)
2 . Compute the average normal stress on Γ0,

P
(k+1)
0 =

∫
Γ0

(p(k+1)n0 − (∇u(k+1) +∇u(k+1),T ) · n0)dγ and the flow

rates Q
(k+1)
1 = ρ

∫
Γ1

u(k+1) · n1dγ and Q
(k+1)
2 = ρ

∫
Γ2

u(k+1) · n2dγ.
Test. The iteration continue up to the fulfillment of a convergence test, for

instance:

|P (k+1)
i − P

(k)
i | ≤ ε, |Q(k+1)

i −Q
(k)
i | ≤ ε, i = 0, 1, 2.

Similarly to what we have pointed out in the previous sections for the
other multiscale models, several remarks are in order.

1. Bridging regions compatibility. Since the interface in the K model is repre-
sented by a compartment, this bridging region has to be devised appropri-
ately. More precisely, it has to be able to compute the quantities required
by the splitting scheme. To be concrete, in the example of the algorithm
presented above, the flow rate at Γ0 and the pressures P1 and P2 must be
state variables of the lumped parameter models. As we have pointed out,
this ensures well posedness of the problem solved at step 1.

2. 3D defective boundary data problems. The K model (as well as the E
model) computes averaged quantities that do not provide enough bound-
ary data to the 3D model in step (2) of the loop. As for the coupling
between 3D and 1D models, we could postulate a priori a profile for the
velocity or the normal stress and use the average data for the fine tuning
of the boundary conditions. For instance, we could “expand” average data
into pointwise data in the following manner:
Flow rate conditions → Poiseuille parabolic profile→ (Standard) Dirichlet

conditions (see (2.5));
Average pressure conditions → Constant normal stress→ (Standard) Neu-

mann conditions:
pn− ν∇u · n = Pn (2.8)

where P is constant over the interface.
At which extent numerical results are affected by this arbitrary profile
selection is a crucial question for the reliability of multiscale modeling.
We will address this problem in the next sections.
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An example of this model to by-pass simulations is given in [61].

Remark 2.2.2 The same algorithm for the 3D-0D coupling can be extended
to the compliant case. If the 3D compliant model refers to an algebraic model
for the vascular walls, no further interface conditions are needed. In the case
of a differential (in space) structure model, conditions on area should be ex-
plicitely prescribed. In the splitting scheme, they can be used as boundary con-
ditions for the 3D problem, as we have done for the 3D-1D coupling. Again
condition on area is not enough for the structure problem and can be expanded
into a pointwise Dirichlet condition by assuming a priori a shape (f.i. circular)
for the structure at the interface, as we have done in (2.4).

2.2.4 How can we improve multiscale models?

In this section we have proposed different coupled models, with some basic
ideas for their numerical implementation. Mismatch of mathematical features
of submodels to be coupled requires specific strategies for making geometrical
multiscale simulations affordable. In particular, we outline the role of the
characteristic variables as interface conditions in the coupling of E models. In
the formulation of numerical schemes, this can allow to solve E models with
absorbing boundary conditions, which guarantee a correct capturing of wave
propagation dynamics at the interface. Another relevant point is the role of
interface compartments or bridging regions in coupling with K models. The
definition of these regions compatible with the numerical splitting method is
crucial for the overall correctness of the model.

There are two further points that deserve a deeper analysis, for the im-
provements of multiscale modeling.

Average data expansion: when coupling 3D with 1D or 0D models, we need
to convert average data into pointwise boundary conditions. We have
proposed some practical strategies, which however introduce a level of
arbitrariness in the final numerical solution. Indeed, numerical results
in [48, 77] show how the prescription of an arbitrary velocity profile can
sometimes induce incorrect results (and maybe lead a medical researcher
to wrong conclusions). We need therefore to understand if there is an
optimal approach able to reduce the impact on the final solution of the
unavoidable arbitrariness. To be precise, if we select an arbitrary parabolic
profile at the inlet of a cylindrical pipe, as done in (2.5), we could expect
that this choice will not affect the numerical results far away from that
inlet boundary. In steady problems, it is commonly accepted that the ef-
fects of the profile chosen at the inlet are no more significant after an entry
length L ≈ 0.06D where D is the diameter of the pipe (see [81]). However,
for unsteady problems it has been verified in [65] that an entry length of
40D may be not enough to recover the analytical (Womersley) solution
from a prescription of an inlet parabolic profile. Different strategies, able
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to force a given flow rate without the prescription of a velocity profile are
then necessary to improve the reliability of multiscale results.

Efficiency of coupling iterative schemes: we have presented some possible basic
iterative schemes, resorting to the successive solution of standard sub-
problems. The effectiveness of this kind of schemes (in terms of number of
iterations required for the convergence) can be improved for instance by
introducing appropriate relaxation strategies. Convenience of such split-
ting schemes in comparison with non-splitting or monolithic solvers is
another relevant point in devising multiscale models.

We investigate these two items in the next sections. We also discuss math-
ematical well posedness of multiscale models.

2.3 Defective boundary data problems

Let us consider the 3D Navier-Stokes equations

ρ
∂u

∂t
+ ρu · ∇u− µ△u+∇p = f ,

∇ · u = 0,
(2.9)

that we assume to hold in the 3D domain Ω. The boundary ∂Ω still consists
of the vascular wall Γw and the artificial boundaries Γi, with i = 1, 2, . . . ,m.
For the moment, we assume that the vessel is rigid, i.e.

u|Γw = 0, (2.10)

where Γw denotes the part of the boundary corresponding to the vascular
wall. The initial conditions

u(x, 0) = u0(x) (2.11)

are assigned.
We will consider the two kind of averaged data encountered in the previ-

ous section, namely conditions on mean velocity or flow rates and on mean
pressures.

2.3.1 Flow rate problem

Consider problem given by (2.9), (2.10), (2.11), together with boundary con-
ditions:

ρ

∫

Γi

u · ndγ = Qi, i = 0, 1, . . . ,m,

where Qi are given functions of time. In the case of a rigid domain, the in-
compressibility of the fluid implies the following constraint on the data:
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m∑

i=0

Qi = 0.

To avoid dealing with this constraint we will consider a slightly different prob-
lem, namely

pn− ν
∂u

∂n
| = 0, on Γ0, ρ

∫

Γi

u · ndγ = Qi, i = 1, . . . ,m. (2.12)

In the analysis of this problem, we will prove however that there is no loss of
generality with these conditions.

In the sequel, for the sake of simplicity, we set ρ = 1.
We have already pointed out that conditions (2.12) are not enough for

existence of a solution. Three scalar conditions should be required for the well
posedness of the problem, while (2.12) provides only a scalar value for each
Γi, for i = 1, 2, . . .m. The approach advocated in the previous section was
based on a-priori selection of a velocity profile fitting the given flow rate (see
for instance [8, 16]).

This approach is in fact pretty simple, since it actually reduces the de-
fective boundary problem to a classical Dirichlet one. Nevertheless there are
several limitations. Real vascular geometries are typically far from being cylin-
drical circular and rectilinear, that are the assumptions for the Womersley and
Poiseuille solutions. Moreover, a-priori selection of a profile strongly affects the
entire numerical solution.

In general, practical solution currently adopted is to expand the computa-
tional domain, such that the arbitrary velocity profile is prescribed far away
from the zone of interest and the domain extensions have a circular shape at
the artificial boundaries (flow extensions). However, this affects the computa-
tional costs, in particular for unsteady computations and as we have pointed
out the effects of the arbitrary choice are sometimes still present in the region
of interest.

Different approaches that do not require arbitrary prescription of a velocity
profile are therefore very helpful.

A variational approach

A strategy proposed in [34] relies on the selection of an appropriate varia-
tional formulation for the problem at hand including all the available data.
Variational formulation by itself will complete the boundary data set with ho-
mogeneous natural conditions. These conditions have been called sometimes
do nothing conditions, since they are obtained spontaneously as a result of
the chosen variational formulation8. They are indeed less perturbative (or

8 This denomination is effective but also a little bit misleading, since in any case
these conditions “do something”. This is the reason why we do not adopt this
name here.
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“invasive”) with respect to the (unknown) solution, since they are natural
conditions for the chosen variational formulation.

To introduce this approach for the flow rate problem, we need some func-
tional spaces and a specific notation. Set:

V̂f ≡
{

v ∈ V f :

∫

Γj

v · n = 0, ∀j = 1, 2, . . . ,m

}
,

and let us denote by bi, i = 1, . . . ,m the functions of V f such that, for all
j = 1, . . . ,m ∫

Γj

bi · n dγ = δij , ∇ · bi = 0.

These functions are commonly called flux carriers and act as a lifting of the

flow rate data. We set u = û+
m∑
i=1

Qibi. A possible variational formulation of

the flow rate problem is the following: find û ∈ L2(0, T, V̂f)∩L∞(0, T,L2(Ω))

and p ∈ L2(0, T,Qf) such that for all v ∈ V̂f and q ∈ Qf :

(
∂û

∂t
,v

)
+ a(u,v) + c (û, û,v) + c


û,

m∑

j=1

Qjbj ,v


+

c

(
m∑
j=1

Qjbj , û,v

)
+ b(v, p) =

(f ,v)−
m∑

j=1

((
∂Qj

∂t
bj ,v

)
+Qj a(bj ,v)

)
− c




m∑

j=1

Qjbj ,

m∑

j=1

Qjbj ,v



 ,

b(û, q) = 0,
(2.13)

with û(x, 0) = u0 −
m∑
j=1

Qj(0)bj .

This formulation actually forces implicitly some conditions, as it is stated
by the following proposition (for the proof see [34]).

Proposition 2.3.1 The solution of the flow problems (2.13) fulfills the fol-
lowing boundary conditions on Γi, i = 1, . . .m:

(pn− µ∇u · n)Γi (x, t) = Ci(t)n, ∀x ∈ Γi, i = 1, . . . ,m, t > 0,

where Ci = Ci(t) are unknown functions of time.

Remark 2.3.1 In the case of a problem with flow conditions also on Γ0,
with the constraint on the data

∑m
i=0 Qi = 0, the previous proposition still

holds with C0 = C0(t) an arbitrary function of time. The case considered in
(2.12) is therefore a special case where we choose C0 = 0. Problem associated
to conditions (2.12) is of the same type of the one with all flow boundary
conditions, and there is no need of forcing explicitly the data compatibility
constraint on the assigned flow rates.
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Concerning the well posedness, we have the following result, proved in [34].

Proposition 2.3.2 Under suitable assumptions on the smoothness of the do-
main and the initial data, there exists a time interval in which the flow prob-
lem (2.13) is well posed. If ||∇u0|| and |Qi| for all i are sufficiently small the
solution exists for each t > 0.

This approach has a practical drawback. The functional space V̂f is not
standard. In view of the numerical approximation, the construction of finite
dimensional functional subspaces and of the flux carriers functions set is rather
problematic.

Different strategies have been proposed that do not suffer from these lim-
itations even if they present other drawbacks.

Augmented formulation

A second approach, proposed in [18], considers the flux conditions as con-
straints for the solution, to be forced by means of Lagrange multipliers (in
a way similar to the treatment of the incompressibility constraint in the
mixed formulation of the Navier-Stokes). In practice, we introduce a vector
function λ(t) and resort to the following problem: find u ∈ L2(0, T,V f ) ∩
L∞(0, T,L2(Ω)), p ∈ L2(0, T,Qf) and λ ∈ (L2(0, T ))m such that for all
v ∈ V f , q ∈ Qf :

(
∂u

∂t
,v

)
+ a(u,v) + c (u,u,v) + b(v, p) +

m∑

i=1

λi

∫

Γi

v · n dγ = (f ,v),

b(u, q) = 0,

∫

Γi

u · n dγ = Qi i = 1, 2, . . .m,

(2.14)
Well posedness analysis for this augmented formulation can be carried out

by means of classical arguments (see [27]). In particular, moving from the
well posedness result of Prop. 2.3.2, it can be shown that an inf-sup condition
holds for the augmented problem, leading to the following result (see [76]).

Proposition 2.3.3 Under the same assumptions of Prop. 2.3.2, the aug-
mented formulation (2.14) is well posed.

Moreover, the investigation of the boundary conditions forced in the aug-
mented formulation so that the problem has a unique solution highlights the
physical significance of the Lagrange multiplier. We have in fact the following
Proposition (for the proof see [18]).

Proposition 2.3.4 The solution of problem (2.14) fulfills the following con-
ditions on the artificial boundaries Γi, i = 1, 2, . . . ,m:



64 Luca Formaggia, Alfio Quarteroni, and Alessandro Veneziani

(pn− µ∇u · n)Γi (x, t) = λi(t)n, ∀x ∈ Γi, i = 1, . . . ,m, t > 0. (2.15)

In other words, the Lagrange multipliers λi do coincide with the functions Ci
and play the role of normal stresses on the artificial boundaries.

The augmented formulation is based on standard functional spaces, whose
finite dimensional approximations are readily built (and present in most of the
commercial packages). However the indefinite saddle point nature of the asso-
ciated problem needs a specific analysis. Discretization of (2.14) leads indeed
to an algebraic problem that in general is not convenient to solve in a mono-
lithic way, i.e. with the contemporary computation of u, p and λi.Indeed, from
one hand the resulting linear system is in general ill conditioned, moreover
problem (2.14) is not standard, since it simultaneously deals with velocity,
pressure and the Lagrange multipliers. Available software packages are usu-
ally unsuitable for this kind of problems.

These remarks suggest to split apart the fluid dynamics (u, p) from λi
computations. Some numerical methods have been proposed in [18, 76, 78]
to this aim. We limit ourselves to consider algebraic splittings of the matrix
obtained after discretization/linearization of the problem at hand at each time
step. This system reads Ay = c, with

A =




C DT LT

D 0 0
L 0 0


 , c =




b
0
q


 (2.16)

being the discrete counterpart of (2.14). Matrix L corresponds to the dis-
cretization of the boundary integrals on Γi, D is the discretization of the di-
vergence operator and C is the result of the discretization and linearization of

the operator

(
∂u

∂t
,v

)
+a(u,v)+c (u,u,v). Correspondingly, y = [U,P,Λ]

T
,

contains the nodal values of the unknowns of velocity, pressure and Lagrange
multipliers respectively. Moreover b comes from the discretization of source
terms in the momentum equation, and entries of vector q are the prescribed
flow rates Qi. Using the notation

C =

[
C DT

D 0

]
,L = L,

matrix A can be rewritten in the form:

A =

[
C LT
L 0

]
.

Correspondingly, we set x1 = [U, P]T and x2 = Λ. Similarly, we denote
f1 = [b,0]T and f2 = q.

A possible way for splitting velocity/pressure and multipliers computations
is based on the following classical algebraic factorization:
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[
C LT
L 0

]
=

[
C 0
L −LC−1LT

] [
I C−1LT
0 I

]

This yields the following three-steps

1) Cx̂1 = f1,
2) LC−1LTx2 = Lx̂1 − f2,
3) Cx1 = f1 − LTx2.

Observe that

a) steps (1) and (3) consist of solving a system for C, i.e. to solve a standard
Navier-Stokes problem. Any existing CFD incompressible code can be
used to this aim (see [76]);

b) step (2) consists of solving a problem governed by matrix them×mmatrix
LC−1LT , being m the number of artificial sections where the flow rate is
assigned. This is typically a small number in haemodynamics problems
(≤ 5). Therefore, a small number of GMRes iterations is in general enough
for solving this system. However, the explicit computation of this matrix
is not convenient, since the inversion of C in general yields a full (i.e. non
sparse) matrix, requiring a large amount (usually unaffordable) of memory
storage resources. Iterative methods avoid the explicit calculation of the
matrix, since they only need the application of the current matrix to a
vector. This can be done in the following way (v, r, z and w are vectors
of proper dimension)

r = LC−1LTv ⇒






z = LTv,
w = C−1z⇒ Cw = z,
r = Lw.

Second step on the right hand side requires again to solve a standard
Navier-Stokes problem.

c) step (3) can be rewritten in the form:

x1 = C−1f1 − C−1LTx2 = x̂1 − r

where vector r ≡ C−1LTx2 is a by-product of the last iteration of step
(2), so that this step simply requires a vector sum.

This approach can still be computationally expensive, in particular in un-
steady problems, since step (2) requires at each GMRes iteration to solve
a Navier-Stokes problem. For this reason, some specific techniques for com-
puting an approximate solution to Ay = c have been devised. In [77] an
“approximated technique” is proposed, such that the error introduced is con-
fined in a small neighborhood of the sections where flow rate are prescribed.
In Fig. 2.12 we present an example of solution in a realistic geometrical model
of a carotid bifurcation. The heuristic approach based on the prescription of
an inlet velocity parabolic profile and a constant pressure profile at the outlet
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of the internal carotid (on the left) yields a different solution of the velocity
field computed with the Lagrange multiplier approach (centre). Solution ob-
tained with inexact approach [77] (on the right) is very similar to the Lagrange
multiplier one, and it requires about one half of the computational time.

Fig. 2.12. Computations in a 3D carotid bifurcation (the square identifies the cut-
ting plane). Velocity field obtained with the prescription of an inlet parabolic pro-
file (left) the splitting augmented lagrangian scheme (centre), the inexact approach
of [77] (right)

Fig. 2.13. Control approach applied to a flow rate problem in a 3D carotid bifurca-
tion. On the left, the solution obtained by solving the minimization problem. On the
right, plot of the differences with the solution obtained by the Lagrange multiplier
approach. The differences are below the discretization error

Control approach

We finally address a different approach, that is in some sense “dual” to the
Lagrange multiplier strategy. More precisely, in the latter method flow rate
boundary conditions are regarded as a constraint to be forced by means of
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Lagrange multipliers to the Navier-Stokes solution. Navier-Stokes equations
in this context play the role of state equations. A different, more versatile
approach can be devised by swapping the roles. We introduce a functional to
be minimized in order to force the fulfillment of the given defective boundary
conditions, and use Navier-Stokes equations as a constraint for the functional
minimization. Clearly, for this to work we need to make Navier-Stokes problem
function of parameters, called control variables, over which the minimum is
seeked. The defective boundary problem in this way is formulated as a control
problem (see e.g. [31]).

For the sake of simplicity, we introduce this approach for the case of the
steady Stokes problem. The extension to the unsteady Navier-Stokes problem
can be found in [24].

Let us consider the following functional associated with flux conditions
(2.12)

JQ : V f → R
+, JQ(w) =

1

2

m∑

i=1

(∫

Γi

w · ndγ −Qi

)2

. (2.17)

We can formulate the defective boundary problem as follows: minimize func-
tional (2.17) with the constraint

−µ△u+∇p = f , x ∈ Ω
∇ · u = 0, x ∈ Ω
u|Γw = 0,
(−pn+ µ∇u(k) · n)|Γ0

= 0,
(−pn+ µ∇u(k) · n)|Γi = −kin, i = 1, . . . ,m.

(2.18)

Here f ∈ L2(Ω) is given and the control variables are taken to be the constant
normal components ki of stress on the artificial boundaries. That is, we look
for the values of ki such that the solution of (2.18) minimizes JQ. In the sequel
we will denote by k the m-dimensional vector with entries ki. To this aim,
following e.g. [31], we introduce the constrained functional:

L(w, s;λw, λs;η) = JQ(w) + µ(∇w,∇λw)+

b(s,∇ · λw) +

m∑

i=1

∫

Γi

ηiλw · n dγ − (f ,λw)− (λs,∇ ·w).

Here λw and λs are the so-called adjoint variables associated with w and s
respectively. Solution is seeked by looking for stationary points of L. This turns
to be equivalent to solve the following problem9, where for the sake of brevity
we omit to specify that the differentials are computed in [u,p;λu, λp;k], while
we put into evidence the dependence on the control variables.

9 Rigorously speaking, the problem is obtained by forcing the Gateaux differentials
of L evaluated along the direction of any test function to vanish in correspondance
of the solution [u,p;λu, λp;k] (see [31]).
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Given f ∈ L2(Ω) and Q ∈ R
m, find u(k) ∈ V,p(k) ∈ L2(Ω), λu ∈

V, λp ∈ L2(Ω) and k ∈ R
m, such that, for all v ∈ V, q ∈ L2(Ω) and ν ∈ R:

(P )
< dLλw

,v >= µ(∇u,∇v) + b(p,∇ · v)+∑m
i=1

∫
Γi
kiv · n dγ − (f ,v) = 0,





(A)

< dLu,v >= µ(∇v,∇λu) + b(λp,∇ · v)−
m∑

i=1

( ∫

Γi

u · n dγ −Qi

) ∫

Γi

v · n dγ = 0,

< dLs, q >= b(q,∇ · λu) = 0,

(Cj) < dLηj , ν >=

∫

Γj

νλu · n dγ = 0, j = 1, . . . ,m.

This system couples a steady Stokes problem (P), its adjoint (A) and m
scalar equations (optimality conditions, denoted by (Cj)). Observe that the
latter conditions force the adjoint variable λu to have null flux on the artificial
boundaries. Well posedness of this problem is investigated in [24].

Numerical solution of this problem is not trivial. A possible approach is
to resort to the steepest descent method applied to the minimization of the
functional at hand. For more details see [24].

In Fig. 2.13 we report the computation for the same case of Figure 2.12,
solved with the control approach. On the right, the differences with the solu-
tion computed with the Lagrange multiplier approach are below the discretiza-
tion errors. The computational costs of this approach can be made comparable
with the ones of the augmented formulation (solved by the splitting scheme)
thanks to a proper selection of the iterative solver of the sequence of problems
(P ), (A) and (Cj). The control approach is on the other hand more versatile,
as we will see when considering the mean pressure problems.

2.3.2 Mean pressure problem

Let us consider now the following problem: look for (u, p) such that equation
(2.9) is satisfied with conditions (2.10) and (2.11) and

∫

Γi

pdγ = Pi, i = 0, 1, . . . ,m, (2.19)

where Pi are given functions of time. As for flow rate problem, conditions
(2.19) are not enough for having well-posedness and some further data need
to be prescribed. Let us illustrate some approaches that aim at completing
these conditions in a mathematically sound way, that is affecting as little as
possible the corresponding solutions.

Again, we will introduce a variational approach at first, then we will con-
sider a possible Lagrange multiplier formulation. Both approaches are affected
by some important drawbacks that the formulation based on control approach
overcomes.
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A variational approach

In [34] the following variational formulation of the mean pressure problem
is proposed: given Pi(t), i = 1, 2, . . .m, find (u, p) ∈ L2(0, T ;H1(Ω)) ×
L2(0, T ;L2(Ω)) such that for all v ∈ H1(Ω) and q ∈ L2(Ω)

(
∂u

∂t
,v

)
+ a(u,v) + c (u,u,v) + b(v, p) = (f ,v)−

m∑

j=1

Pj

∫

Γj

v · ndγ,

b(u, q) = 0,
(2.20)

with u(x, 0) = u0(x).
Boundary conditions added by this formulation are identified in the fol-

lowing Proposition (see [34]).

Proposition 2.3.5 Any smooth solution of (2.20) fulfills the following bound-
ary conditions on the artificial boundaries Γi, i = 0, 1, 2, . . .m:

(p(x, t)n− ν∇u(x, t) · n)|Γi = Pi(t)n, ∀x ∈ Γi, t > 0.

This Proposition states that variational formulation (2.20) forces the mean
pressure data by imposing a constant normal stress on the artificial bound-
aries. This is indeed the expected solution in special domains, like a cylindrical
rectilinear pipe where Γi is normal to the axis. Here, formulation (2.20) actu-
ally forces the given mean pressure data.

For a generic domain, however, this techniques provides only an approxi-
mate formulation to the pressure drop problem. This is for instance the case
of a rectilinear cylindrical domain with Γi oblique to its axis (see Fig. 2.14).
We can therefore consider different approaches.

Augmented formulation

Augmented formulation for pressure drop problems still stems from regarding
mean pressure data as constraints for the Navier-Stokes solution, leading to
the problem: find u ∈ L2(0, T,V f ) ∩ L∞(0, T,L2(Ω)), p ∈ L2(0, T,Qf) and
λ ∈ (L2(0, T ))m such that for all v ∈ V f , q ∈ Qf :

(
∂u

∂t
,v

)
+ a(u,v) + c (u,u,v) + b(v, p) +

m∑

i=1

1

Γi

∫

Γi

pdγ = (f ,v)

b(u, q) +
m∑

j=0

λj

∫

Γj

qdγ = 0

1

|Γi|

∫

Γi

pdγ = Pi i = 1, 2, . . .m.

(2.21)

This problem unfortunately yields unreliable solutions. As a matter of
fact, it is possible to verify (see [17]) that implicit conditions forced by this
formulation read:
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a

τ 2

n
τ 1

Fig. 2.14. A domain where variational formulation (2.20) for the mean pressure
problem is not exact. τ 1 and τ 2 are the directions orthogonal to the axis a and n

is the unit vector orthogonal to the artificial boundary

u(x, t) · n = λi(t) on Γi.

In general, since λi are non zero constants in space and u = 0 on Γw we have
an incompatibility on Γ i ∩ Γw. For this reason, augmented formulation for
mean pressure drop problems is not furtherly investigated.

Control approach

Approach based on control theory presented for flow rate problems can be
straightforwardly extended to mean pressure problems. With this aim, we
introduce the following functional.

JP (s) =
1

2

( m∑

i=0

1

|Γi|

∫

Γi

s dγ − Pi

)2

(2.22)

and, as for the flow rate conditions, we consider a constrained minimization
problem. Again, we assume that Navier-Stokes equations play the role of con-
straint for the solution minimizing (2.22). As control variables we still assume
the constant normal stresses k = [ki]. It is worth remarking that this is not
the only possible formulation, since other choices for the control variables can
be pursued, such as flow rates (see [24]).

Still referring to steady Stokes equations for the sake of simplicity, we
introduce the following Lagrange functional:

L(w, s;λw, λs;η) = JP (s) + a(w,λw) + d(s,λw)

+

m∑

i=0

∫

Γi

ηiλw · n dγ − (f ,λw) + d(λs,w).
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The stationary point of L fulfills the following problem: given f ∈ L2(Ω) and
Pj ∈ R, j = 0, . . . ,m, find k ∈ R

m, u(k) ∈ Vdiv, p(k) ∈ H1(Ω),λu ∈ Vdiv

and λp ∈ H1(Ω), such that, for all v ∈ Vdiv, q ∈ H1(Ω) and ν ∈ R,

(P )





< dLλu

,v >= a(u,v) + d(p,v) +

m∑

i=0

∫

Γi

kiv · ndγ − (f ,v) = 0,

< dLλp , q >= d(q,u) = 0,

(A)





< dLu,v >= a(v,λu) + d(λp,v) = 0,

< dLp, q >=

m∑

i=0

( 1

|Γi|

∫

Γi

p dγ − Pi

) 1

|Γi|

∫

Γi

q dγ + d(q, λu) = 0,

(Cj) < dLki , ν >=

∫

Γi

νλu · ndγ = 0, i = 0, . . . ,m.

One of the most interesting features of this approach is that functional
to be minimized can be properly adjusted for including a priori informations
on the behavior of the solution on artificial boundaries. For instance, for a
boundary of a pipe non orthogonal to the axis (see Fig. 2.14), when as we have
pointed out variational formulation (2.20) fails, the functional to be minimized
can be adapted in order to include physical evidence of the prevalent axial
direction of the flow. We resort therefore to the functional

L(w, s;λw, λs;η) = JP (s) + a(w,λw) + d(s,λw)

+

m∑

i=0

∫

Γi

ηiλw · n dγ − (f ,λw) + d(λs,w) + S(w, τ 1, . . . , τm)
(2.23)

where in a problem with d space dimensions

S(w, τ 1, . . . , τm) =
1

2

d−1∑

l=1

m∑

i=0

∫

Γi

|w · τ l|2 dγ (2.24)

and τl are the orthogonal directions to the pipe axis a, that in this case do
not coincide with the tangential directions to the boundary Γi. Perturbation S
forces velocity components orthogonal to a to be small. With a proper choice
of control variables, this yields good numerical results. For instance, suppose
to prescribe a mean pressure

∫
Γ pdγ = P = 1 g/(s2 cm) at the outlet Γout

of the domain T (see Figure 2.15 top). Boundary Γout is supposed to be an
artificial boundary in a pipe where a Poiseuille flow holds, so that vertical
velocity is zero.

By minimizing functional (2.22), an undesiderable vertical velocity at the
outlet occurs (Figures 2.15, centre). To avoid these effects, we minimize the
penalized functional (2.23) with (2.24), using the complete stress (normal
and tangential) as control variables. Figures 2.15, bottom, show that these
strategies are able to strongly reduce the wrong tangential velocities.

Remark 2.3.2 Extension of the strategies presented above to the case of
compliant domains is not trivial. Preliminar investigations can be found in
[49,51,60].
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τ
u

a

n

Fig. 2.15. Simulations in a 2D pipe with an oblique boundary: in the centre axial
and normal velocity componets by solving a mean pressure problem with the min-
imization of (2.22). On the bottom the same problem solved by minimizing (2.24):
the velocity component along τ is strongly reduced (maximum value in the last
figure is 10−5)

2.4 Some well posedness results

In this section we gather some theoretical properties of multiscale models.
We illustrate in particular some stability results concerning the coupling of
3D and 1D models. Then we will present a general well posedness analysis of
3D/0D models and its extension to the 1D/0D case.

2.4.1 Coupling of 3D and 1D models

Referring to Fig. 2.16, let us consider the following problem, where 3D and
1D domains have an axis that for the sake of simplicity we assume to be along
z direction. 3D problem for z ∈ [0, a] is represented by the following system
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Γin
Γa

z = 0

z

z = a z = b

Fig. 2.16. Domain for the coupled 3D/1D problem

∂u

∂t
+

(
1

2
∇|u|2 + (∇× u)× u

)
−∇ · (2νD(u)) +∇p = f x ∈ Ωf , t > 0,

∇ · u = 0 x ∈ Ωf , t > 0,

ρw
∂2dr

∂t2
+ σdr = Φr − Φext x ∈ Γw, t > 0,

(2.25)
where ρw is the wall density, dr is the radial displacement, while we assume
that axial and circumferential displacements are null, and Φr − Φext is the
difference of stresses in the radial direction induced by the fluid and the ex-
ternal organs. Observe that the structure is modelled by the independent rings
model, while the convective term of the fluid problem has been rearranged in
order to have natural conditions associated with the total pressure (see [60]).

System is completed by the initial conditions d(x, 0) = d0,
∂d

∂t
(x, 0) = us

for x ∈ Γw and u(x, 0) = u0 for x ∈ Ω. At the inlet Γin of the 3D domain
we can assume both Dirichlet and Neumann conditions for the Navier-Stokes
equations.

For z ∈ (a, b) we assume E model to hold with equations (1.24) that we
report here

∂A

∂t
+
∂Q

∂x
= 0,

∂Q

∂t
+

∂

∂x

(
α
Q2

A

)
+
A

ρ

(
∂p

∂x

)
+KR

Q

A
= 0.

We assume moreover that area and pressure are related by an algebraic law
in the form (see Sect. 1.1.1)

P − Pext = ψ(A,A0, β) = β

√
A−

√
A0

A0
.

On z = b we assume absorbing boundary conditions, stating that the incoming
characteristic variable (W2) vanishes.

We assume in z = a the following matching conditions
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((
p+

1

2
|u|2

)
I− 2νD(u)

)
· n = P1D +

1

2
|u1D|2,

∫
Γf

u · ndγ = Q1D.
(2.26)

With this problem, we associate the following functionals for each t > 0:

3D problem: E3D =
1

2
||u||2L2 +

ρw
2
||∂d
∂t
||

2

L2
0

+
b

2
||d||2L2

0

where L2
0 stands for L2(Γw,0), being Γw,0 a reference configuration for the

structure, mapping into the current one at each time instant;

1D problem: E1D =
1

2

∫ b

a

Q2

A
dz +

∫ b

a

∫ A

A0

ψ(τ, A0, β)dτdz.

The following results have been proved in [49].

Proposition 2.4.1 1. If homogeneous Dirichlet conditions for the velocity
are prescribed on Γin, we have ( energy decay property)

E3D(t) + ν

∫ t

0

||D(u)||2L2dt+ E1D(t)Kr

∫ t

0

∫ b

a

Q2

A2
dzdt ≤ E3D(0)+ E1D(0).

2. If non homogeneous Neumann conditions for the fluid are prescribed on
Γin with data g, we have ( energy estimate)

E3D(t) + ν

∫ t

0

||D(u)||2L2dt+ E1D(t)Kr

∫ t

0

∫ b

a

Q2

A2
dzdt ≤

(
E3D(0) + E1D(0) + C

∫ t
0
||g||2L2(Γin)

)
e2νt.

Remark 2.4.1 Previous results can be extended to more complex domains
with many interfaces between 3D and 1D models. As a matter of fact, these
results can be applied locally at each interface.

2.4.2 Coupling of 3D and 0D models

We consider now the multiscale 3D/0D depicted in Fig. 2.11. In particular we
make the following basic assumptions.

1. NS model is given in terms of classical primitive variable formulation of
Navier-Stokes equations. We assume that initial data and forcing terms
are small enough, for the sake of well-posedness of the problem (see [34]).

2. Nonlinear terms of K model (introduced by the modelling of valves and
of the heart action) are described by smooth functions (see Chap. 1, Fig.
1.11).

This coupled problem can be analyzed by a fixed point strategy represented
in Fig. 2.17. Precisely, we regard the solution as the fixed point of an operator
T given by the sequence of NS and K problems (denoted respectively as PNS
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T

s0D

PKPNS
s3Ds0D

Fig. 2.17. Splitting/fixed point reformulation of multiscale model of Fig. 2.11

and PK). Setting T = PK ·PNS the solution to the coupled multiscale problem
satisfies

s = T s = PK · PNSs.
In this framework, we add two further assumptions.

3. The splitting into subproblems PNS and PK represented in Fig. 2.17
is bridging region compatible. With reference to Fig. 2.11, the role of
interface variables in the splitting is given in Tab. 2.1.

4. Defective boundary problem PNS is formulated in terms of variational
formulations following the variational approach advocated in Sect. 2.3.

Input PNS=Output PK Input PK = Output PNS

Γ0 pressure P0 flow rate Q0

Γ1 flow rate Q1 pressure P1

Γ2 flow rate Q2 pressure P2

Table 2.1. Role of matching data in a bridging region compatible splitting for
multiscale model depicted in Fig. 2.11

By collecting classical results of calculus and results proven in [34], [13],
we have that:

1. NS Problem: If inital and forcing data are small enough, PNS is well
posed.

2. K Problem: DAE system of PK is of index 1 and can be reformulated
as a well posed Cauchy problem.

3. Multiscale: There exists T ⋆ > 0 such that T is compact in (0, T ⋆]. This
means that the application of T to bounded sequences of arguments yields
convergent sequences in appropriate topologies (for a more precise defini-
tion of compactness see f.i. [83]).

The latter step actually proves the existence of a fixed point, thanks to the
classical Schauder’s fixed point theorem.
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2.4.3 Coupling of 1D and 0D models

Following a similar outline as for the 3D-0D coupling, in [15] the coupling
between 1D and 0D models is investigated. It is assumed that the 1D model
is represented in terms of characteristic variables W and that the DAE system
of lumped parameters model is reduced to an ordinary differential system, so
that the coupled model reads

∂W

∂t
+

[
µ(W1,W2) 0

0 λ(W1,W2)

]
∂W

∂x
= 0, in R

+ × [0, T ]

dy

dt
= G(y, t) + f in [0, T ].

(2.27)

System (2.27) is completed by initial conditions w(x, 0) = w0(x), y(x, 0) =
y0(x) and the matching conditions:

W1(a, t) = g(y,W2), f = f(W),

where x = a is the interface between the two submodels, g is a suitable
function relating the Riemann invariant W1 with the entry of the state vector
y associated with the interface condition, for instance the interface pressure,
and correspondingly forcing term f would depend on the interface flow rate
Q = Q(W).

Results obtained for the 3D/0D coupling can be strengthened in the case
of 1D/0D problems. In fact the analysis can be carried out again by refor-
mulating this problem in a fixed point framework. Let PK be the operator
corresponding to solve the lumped parameter model for a given flow rate Q
at the interfaces and PE be the operator corresponding to solve 1D model for
given pressure interfaces and to compute the associated interface flow rates.
Then the problem at hand can be reformulated as the search of the fixed point
for the operator:

T = PE · PK .
Under mild assumptions on the regularity of the initial data and on λ and µ
it is possible to prove that:

1. PK is well posed for 0 < t ≤ T0 with T0 ≤ T ;
2. PE is well posed for 0 < t ≤ T1 with T1 ≤ T ;
3. T is a contraction in 0 < t ≤ T̂ ≤ min(T0, T1), i.e.

||T (Q1)− T (Q2)||C0[0,T̂ ] ≤ K||u1 − u2||C0[0,T̂ ]

with K < 1, being Q1 and Q2 two interfaces flow rates properly selected.

The latter inequality is stronger than the compactness proved for the cor-
responding operator in the 3D/0D. In particular, well known Banach contrac-
tion theorem (see e.g. [83]) proves in this case that the solution to the coupled
problem exists and it is unique.
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Γ2

ζ1(ω)

ζ2(ω)

Γ1

Fig. 2.18. 3D/0D coupling with K models described by impedance functions ζ1
and ζ2 in the frequency domain. Here lumped parameters model have the role of
describing terminal vessels (see Sect. 1.1.4)

2.5 Numerical techniques for the coupling

We here consider possible numerical techniques for the coupled problems. In
particular we will distinguish between monolithic solvers where the coupled
problem is treated as a whole and substructuring-type solvers. In the latter,
the solution is seeked by an iterative procedure where each model is com-
puted in seqeunce. Monolithic solvers avoid the problem of setting up a fast
convergent sequence of iterates. Yet, they may be more difficult to implement
and sometimes give rise to badly conditioned problems. Substructuring proce-
dures, on the other hand, may allow to use existing software already developed
for solving subproblems separately.

2.5.1 Monolithic solvers

A variational formulation

Let us start considering the case of a 3D-0D coupled problem where K models
describe terminal vessels, as we have done in Sect. 1.1.4. More precisely, we
assume that the presence of terminal vessels is described in the frequency do-
main by means of an appropriate impedance function ζi(ω) for i = 1, 2, . . . ,m
(see Chap. 1) to be coupled to the 3D problem at the m distal boundaries of
the latter. On the proximal boundaries of the NS problem we assume for the
sake of simplicity that boundary data (pressure or flow rates) are given, for
instance by measurements (see Fig. 2.18, where m = 2).

If πi(ω) and χi(ω) represent the Fourier transform of the interface pres-
sures Pi(t) and flows Qi(t) respectively, we have in the frequency domain

πi(ω) = ζi(ω)χi(ω).

In the time domain, the latter relation reads

Pi(t) =
1

T

t∫

t−T

Zi(t− τ)Qi(τ)dτ. (2.28)
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Here Zi is the inverse Fourier transform of ζi and T is the heart beat pe-
riod. Conditions (2.28) are not mean pressure boundary conditions, since the
pressure is given as a function of the (unknown) flow rate. However, we can
include (2.28) in the variational formulation of the 3D NS problem in a way
similar to the one pursued for variational formulation of the mean pressure
problem (see (2.20)). We set (for j = 1, . . . ,m)

∫

Γj

(pn− νD(u) · n) · vdγ = Pj

∫

Γj

n · vdγ.

In this way, a variational formulation of the 3D/0D coupled problem reads:
(
∂u

∂t
,v

)
+ a(u,v) + c (u,u,v) + b(v, p)+

m∑
j=1

1

T

t∫

t−T

Zj(t− τ)
∫

Γj

u(τ) · ndτ
∫

Γj

v · ndγ = (f ,v),

b(u, q) = 0,

(2.29)

and we obtain Robin boundary conditions for the Navier-Stokes problem.
For instance, if space discretization is obtained by the finite element meth-

ods and time discretization by means of finite difference schemes, then velocity
field at time tn is represented as

uh(x, t
n) =

∑
Un
i ϕi(x)

being ϕk the basis functions of the finite element space and Un
k the nodal

values vector. The boxed term can be discretized in time by resorting to
classical quadrature formulas. If the quadrature nodes do coincide with time
discretization points, we have simply

1

T

tn+1∫

tn+1−T

Zj(t
n+1 − τ)

∫

Γj

u(τ) · ndτ
∫

Γj

v · ndγ ≈

1

T




k∑

k=k

wkZj(t
n+1 − tk)

∫

Γj

ϕj · n
∑

l

∫

Γj

ϕl · n



Ul
j ,

where wk are the quadrature weights and the quadrature nodes are such that

T − tn+1 ≤ tk ≤ tk+1 ≤ . . . ≤ tk−1 ≤ tk ≤ tn.

Remark 2.5.1 In the oversimplified case of a purely resistive impedance
function Zj(t) = RjTδ(t), being δ the Dirac generalized function, boxed terms
reduce to

Rj

∫

Γj

u(t) · ndγ
∫

Γj

v · ndγ.

This approach has been adopted for instance in [16] where the relevance of
an appropriate impedance function is clearly pointed out by numerical results.
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An algebraic formulation

In the previous section we have given a monolithic formulation of a coupled
3D/0D problem in which however the role of K model was essentially to
provide boundary conditions in a way consistent with the structure of the
vascular tree. Blood dynamics in terminal vessels is computed only as far as
it influences 3D solutions at the interfaces.

Let us consider now a different approach in which one is interested also
to the evolution of the state variables in the lumped parameter model. We
assume therefore to describe 0D problems in the time domain as a system of
ordinary differential equations.

For the sake of concreteness we will refer our general formulation to an
example. We consider the multiscale problem represented in Fig. 2.19, where
the K model is given by a network featuring a capacitance C, three resis-
tances and three inductors. The forcing term in the network is given by a
voltage/pressure generator where Pp(t) is a given function. NS model is given
by Navier-Stokes equations and bridging region compatibility implies that
flow rate is prescribed at the boundaries of 3D domain. A model for the com-
pliance of the wall can be included as well. For the sake of simplicity however
we assume that the pipe is rigid, so that incoming flow rate is equal to the
outgoing one. Equations asociated to K model are

L
dQ

dt
+RQ+ P = Pp − P1 + P2,

C
dP

dt
−Q = 0,

(2.30)

where L = L1 + L2 + L3 and R = R1 + R2 + R3, P is the pressure jump
associated with the capacitance C, P1 and P2 are computed by the 3D model,
and Q is the flow rate in the circuit.

Assume that both 3D and 0D problems have been properly discretized in
space (3D) and time (3D and 0D) and linearised when required. At a pretty
general level, at each time step we have to solve a linear system in the form:

[
Acc Acf
Afc Aff

] [
sn+1
c

sn+1
f

]
=

[
bn+1
c

bn+1
f

]
+

[
gc(s

n
c , s

n−1
c , . . . , sn−pcc )

gf (s
n
f , s

n−1
f , . . . , s

n−pf
f )

]
. (2.31)

Indexes c and f stand for coarse and fine, since they refer to discretization
of K and NS models respectively. We use this notation, since most part of
the following considerations can be applied to different multiscale models (in-
cluding 3D/1D or 1D/0D) as well. Vectors gc and gf account for the terms
due to the time advancing schemes in the two submodels, that depend on
the solution s at the previous time steps (pc + 1 and pf + 1 are the steps of
the time discretization scheme for the two subproblems respectively). Let us
denote by Nu and Np the number of velocity and pressure degrees of freedom
respectively in the NS domain. Suppose moreover to solve the flow boundary
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_
+

C

R1

R3

L1

Q(t)

Pp(t)

P1(t)

P2(t)

P (t)

L3

L2

R2

Fig. 2.19. An example of 3D/0D geometrical multiscale model

problem by means of a Lagrange multiplier approach, so that sf ∈ R
Nu+Np+1

given by sf = [U, P, λ], while the vector of the unknowns of the coarse
model is given by the state variables of the network, namely sc = [Q, P ].
Now suppose to use an implicit Euler time discretization for both the fine and
the coarse models. From (2.30) we have therefore:

Acc =

[ 1

∆t
L+R 1

−1 C

]
,Aff =




1

∆t
M + K DT Λ

D 0 0
ΛT 0 0


 , (2.32)

where M is the mass matrix, K is the discretization of the diffusion-convection
operator of the momentum equation and D is the discretization of the diver-
gence operator in the NS problem, while the discretization of the term related
to the Lagrange multiplier has been denoted here by Λ.

Once pressure in 3D model is computed for a given flow rate, mean pres-
sures P1 and P2 at the interfaces are computed by means of quadrature for-
mulas

Pk =

∫

Γk

pdγ ≈
∑

i

wi,kp(xi, yi, zi) k = 1, 2. (2.33)

It is practically convenient to assume that quadrature nodes xi, yi, zi on Γk
do coincide with nodes of the space discretization of the problem10. Then we
have (see also (2.14)):

10 In general quadrature nodes will not correspond to grid nodes and interpolation
procedures will be necessary.
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Acf =

[
01×Nu acf 0
01×Nu 01×Np 0

]
, afc,i =

{
0 if (xi, yi, zi) /∈ Γ1,2

wi,k if (xi, yi, zi) ∈ Γ1,2
,

Afc =




0Nu×1 0Nu×1

0Np×1 0Np×1

−1 0


 .

Finally:

bn+1
c =

[
PP (tn+1)

0

]
,bn+1

f =




Fn+1

0
0


 ,gc =

[ 1

∆t
LQn

0

]
,gf =




1

∆t
MUn

0
0


 .

(2.34)
A possible solution strategy is to solve the complete system (2.31) as a

whole at each time step. As already pointed out, also for simple cases as for the
example at hand, this approach can have the drawback of a badly conditioned
system. An alternative approach is a Schur complement decomposition of the
problem. By a formal elimination of the coarse solution sn+1

c , we obtain

(
Aff −AfcA−1

cc Acf
)
sn+1
f = bn+1

f + g2(s
n
f )−AfcA−1

cc

(
bn+1
c + gc(s

n
c )

)
.

(2.35)
In general, matrix A−1

cc is not available and appropriate techniques of solution
are required (see the next section). However, in the simplest coarse models
like the one at hand, matrix A−1

cc can be easily computed

A−1
cc =

1

(∆t−1L+R) + 1

[
C −1
1 ∆t−1L+R

]
(2.36)

and problem can be solved by (2.35). In fact, by algebraic manipulation, the
Schur complement is explicitly computed

Aff −AfcA−1
cc Acf =




1

∆t
M +K D r

DT 0 0

rT − ∆tC

L+∆t(R + 1)
acf 0


 . (2.37)

System (2.35) can be therefore solved, yielding the fine solution sn+1
f . Coarse

solution is then recovered by solving

sn+1
c = A−1

cc

(
bn+1
c + gc(s

n
c )−Acfsn+1

f

)
.

2.5.2 Iterative substructuring approaches

The block gaussian elimination proposed in the previous section is seldom
feasible, since matrix A−1

cc is neither easy nor convenient to compute explicitly
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in general. For this reason, here we address some possible solution schemes
resorting to the separate computing of the submodels that do not need the
explicit computation of A−1

cc .
A first, simple method for solving the problem is following iterative scheme.

1. Let sn+1
f,0 be a time extrapolation of sn+1

f based on the previous time
evaluations of sf .

2. For k = 0, 1, 2, . . . solve

{
Accsn+1

c,k+1 = bn+1
c + gc(s

n
c , . . . , s

n−pc
c )−Acfsn+1

f,k

Aff sn+1
f,k+1 = bn+1

f + gf (s
n
f , . . . , s

n−ff
c )−Afcsn+1

c,k+1

(2.38)

up to the fulfillment of an appropriate convergence test.

Observe how this splitting approach is essentially based on the same fixed
point formulation devised for well posedness analysis of multiscale problems.

The first issue is the convergence of the iterations. This problem can be
analyzed by regarding this scheme as a block Gauss-Seidel scheme for solving
system (2.31), or, equivalently, as a Richardson preconditioned scheme (see
e.g. [62]). Upon classical arguments of numerical analysis, the convergence of
the scheme is driven by the maximum ρ among the absolute values of the
eigenvalues of matrix

[
Acc 0
Afc Aff

]−1 [Acc Acf
Afc Aff

]
.

More precisely, if ρ < 1, the scheme converges. In practice, it is quite hard
to compute ρ, so this convergence analysis is seldom able to give quantitative
responses about convergence and it has essentially a theoretical relevance. A
practical approach for driving the iterative scheme to the convergence is to
introduce an arbitrary parameter to be properly tuned. In the present case,
(2.38) can be modified as follows. For the sake of notation we drop time index
n+ 1 from now on.





Accsc,k+1 = bc + gc(s
n
c , . . . , s

n−pc
c )−Acfsn+1

f,∗

Aff sf,k+1 = bf + gf(s
n
f , . . . , s

n−pf
f )−Afcsn+1

c,k

sn+1
f,∗ = θsn+1

f,k+1 + (1 − θ)sn+1
f,k

(2.39)

In the example above, this means that average pressures used as forcing terms
for the coarse problem are modulated by the relaxation parameter θ. An appro-
priate selection of θ can yield or improve convergence of the iterative scheme,
even if a priori it is not easy to identify its optimal value.

This scheme has been used for 3D/1D coupling illstrated in Fig. 2.20.
The 3D model is rigid and mimics a stented segment of a cylindrical artery.
Pressure drop problem is solved for the NS model, being pressure computed
as a function of the area computed by E model. The latter receives data on
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flow rate, that are formulated in terms of the incoming characteristic variables
(W2 at interface Γup and W1 at interface Γdw). Velocity and pressure solutions
in 3D model (bottom, centre) are illustrated together with area in upstream
(bottom, left) and downstream (bottom, right) of Fig. 2.20. Effects of the
stent rigidity on the upstream area can be recognized. Relaxation parameter
θ has been tuned in this case by a trial and error approach.

The main drawback of this approach is related to the computational costs.
Iterations of these coupling algorithm are nested into the time loop, and this
in general implies high computational costs. For this reason, more sophisti-
cated algorithms can be devised to reduce the number of iterations. Possible
approaches resort to a dynamical choice of relaxation parameters, or to more
effective preconditioners of the coupled problem at hand.

Remark 2.5.2 Splitting schemes as (2.38) or (2.39) can be regarded as the
final result of an approximation process starting from a fully accurate model of
blood flow problems. If Ω denotes the cardiovascular system (a) in Fig. 2.21,
we can summarize the steps performed as follows.

1. Domain splitting: Ω is split into Ωf and Ωc subdomains ((b) in Fig. 2.21).
Original problem is formulated as a set of subproblems. This is the first
step of any domain decomposition method (see e.g. [64, 73]). In domain
decomposition theory domain splitting can be performed with or without
overlap among subdomains. Here we assume that subdomains do not over-
lap. Appropriate interface conditions describe the link between two subdo-
main solutions.

2. Model coarsening: Fully model in Ωc is downscaled to a coarse model ((c)
in Fig. 2.21). For lumped parameter models this step requires to keep trace
of interface conditions that need to be incorporated in K problem by means
of a proper selection of bridging regions.

3. Iterative substructuring schemes: Solution of the overall problem is pur-
sued by a sequence of subdomain solutions suitably coupled((d) in Fig.
2.21) . In particular, for coarse K models bridging region compatibility
guarantees that in the downscaled problem interface conditions are cor-
rectly included.

This picture based on domain decomposition theory can be useful for the
set up and analysis of effective ad hoc preconditioners.

Another approach for reducing computational costs is based on the intro-
duction of a completely explicit splitting of subproblems.

2.5.3 Decoupled schemes

A simple way for reducing the computational costs essentially relies on the
time dependent nature of the problems at hand. At each time step tn+1 we
compute an extrapolation s⋆f of sn+1

f as a function of the fine solution at the
previous time steps and we solve
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3D Model

1D Model

1D Model

Γdw

Γup

E
NS

Pressure

problem
drop

tn

tn+2

tn+1 k = k + 1

pn+1
k+1 (An+1

k+1 )

Γup : Wn+1
2,k+1 = W2(Qn+1

k+1 ,W
n+1
1,k+1)

Γdw : Wn+1
1,k+1 = W1(Qn+1

k+1 ,W
n+1
2,k+1)

Qn+1
k+1 = θQ3D,k+1 + (1− θ)Qn+1

k| {z }

Fig. 2.20. 3D/1D multiscale problem: solution based on an iterative splitting solver
with a relaxation parameter θ. Courtesy of T. Passerini
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Ω
Ωf

Ωc

Ωf Ωf

a) b)

c) d)

Fig. 2.21. Geometrical multiscale modelling as a domain decomposition method

{
Accsc = bc + gc(s

n
c , s

n−1
c , . . . , sn−pcc )−Acfs⋆f

Affsn+1
f = bn+1

f + gf (s
n
f , s

n−1
f , . . . , s

n−pf
f )−Afcsn+1

c

(2.40)

In practice, we perform scheme (2.38) for one time solely. A flow-chart repre-
sentation of this scheme is given in Fig. 2.22.

sn
c

Coarse

Coarse Fine

Fine

sn+1
c

tn

tn+1 sn+1
c

sn+1

f

sn
f

Fig. 2.22. Semi-implicit solver for multiscale problems

The computational advantage is clear, since in this way no nested iterations
are required. However, both stability and accuracy issues need to be addressed.

1. Absolute Stability in time of the scheme is affected by the explicit treat-
ment of the fine solution in the first equation. The region of absolute
stability (see [40]) will be reduced even when unconditionally stable time
advancing schemes such as implicit Euler are used for the time discretiza-
tion.
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A precise quantitative computation of these stability restrictions is in
practice neither easy nor convenient. It is however worth pointing out
that in many situations time advancing schemes used for solving single
subproblems are explicit or semi-explicit. This is the case of 3D Navier-
Stokes solver with a semi-explicit treatment of the convective term or of
Lax-Wendroff schemes for 1D Euler equations (see Chap. 1). Numerical
experience suggests that in many situations stability bounds associated
with time advancing schemes are not significantly affected by the splitting
scheme (2.40).
Another example is provided by 3D/1D model presented in [21]. In Fig.
2.23 we report the comparison between the pressure computed by a stand-
alone 3D compliant model and a multiscale model, solved with a scheme
in the form (2.40). Stand-alone model is a 10cm long tube, the multiscale
one is split into two domains (3D and 1D) of 5cm. Matching conditions
force the continuity of the total stresses and fluxes.

Fig. 2.23. Comparison between the pressure values of the stan-alone and the mul-
tiscale solutions at three different times (t=0.005, 0.01 and 0.015), using a 3D linear
elastic model for the structure.Courtesy of Alexandra Moura

Explicit coupling scheme (2.40) has been succesfully used also for the
application of multiscale modeling to paediatric surgery (see [46]).

2. Time Accuracy. Time accuracy associated with scheme (2.40) is not re-
duced respect to the uncoupled scheme (2.38) provided that an appro-
priate extrapolation s⋆f is computed. More precisely, if qc denotes the
accuracy of the time advancing scheme for the coarse problem and qf the
one for the fine problem, an extrapolation of order qc of sf is enough for
maintaining an accuracy of order qc to the solution of the coarse problem.
The accuracy of the fine solution will depend both on qf and qc. More
precisely, on the basis of classical results of numerical analysis (see [40]),
it is possible to prove that accuracy of the fine model is given by:
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q = min(qf , qc + 1). (2.41)

Since it is reasonable that for the fine model one would have a greater
accuracy in time than for the coarse model, the interesting consequence
of (2.41) is that for a desired accuracy q of the fine solution, the coarse
model can be solved with a scheme of order q − 1.
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