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Abstract
Consistency and qualitative robustness, two of the main forms of stability usually required when

dealing with risk estimators, are presented in an overall perspective by considering different notions of
probabilistic symmetries at the level of the stochastic drivers. For such a purpose, a general topological
framework is properly introduced by extending the common notion of the weak topology of measures.
In particular, the main objective of the work is to state all the results in terms of exchangeability,
the celebrated notion of distributional invariance arising when dealing with arbitrary permutations
of finite order. In this respect, a new concept of qualitative robustness is defined in terms of the
perturbations that affect the system when data are slightly perturbed, and a refined version of the
celebrated Hampel’s theorem is provided. Such an overture turns out to be strongly appealing from
the conceptual point of view, since data are the main drivers of the empirical analysis.

1. INTRODUCTION

According to the standard practice, the assessment of the risk associated to some market exposure is gener-
ally fulfilled throughout two different steps. Firstly, a predictive law describing the expected behaviour of
the exposure into the future is inferred by calibrating an a priori defined statistical model, on the basis of
the available historical information. Thereafter, such a law is used in order to compute the downside risk,
by performing a suitable risk functional. As a result, the estimation obtained in such a way turns out to
be strongly sensitive to the amount of data processed at the stage of the statistical inference, i.e. different
amount of data typically generate different estimates. That is the reason why we cannot shy away from the
question regarding the behaviour displayed by the estimates when enlarging the informative dataset, by
asking if some form of asymptotic stability may be expected when imposing certain regularity conditions
on the stochastic drivers. Convergence results of this type have been classically worked out under the
notion of consistency. On the other hand, Cont et. al [5] pointed out that risk can be properly assessed
only when dealing with robust estimators, taking into account the classical notion of qualitative robustness
introduced by Hampel [20]. More precisely, robustness might be understood as a form of stability displayed
by the estimators when the predictive distribution is forced to be slightly perturbed. On the mathematical
level, qualitative robustness can be properly formalized as the equicontinuity of the family of laws induced
by the risk estimators, which are to be understood as functions of the predicting distribution, when the
amount of the processed data is larger than a fixed threshold depending on the impact of the perturbation
itself.
Although the estimation process previously described is generally granted to be effective, it ostensibly
makes sense only when dealing with law-invariant risk measures, saying informally that the information
encoded by the stochastic factors may be modelled just by considering the related distributions. In this
respect, the natural workspace is provided by a suitable family of probability measures defined on the space
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of the empirical outcomes. It is thus nothing short of clear that the topological structure of such a domain
plays a crucial role when investigating the forms of stability previously discussed. Notwithstanding the
notion of qualitative robustness is classically investigated in terms of the topology of the weak convergence
of measures, cf. [5, 7, 19, 20, 22, 36], it has been recently pointed out how such a formulation might
generate a number of debated complications, cf. [30, 31]. First of all, since the weak topology looks at
the body of the distributions, two laws could be rather close and, on the contrary, still display completely
different behaviours on tails. Worse still, all the risk estimators that are, by their nature, insensitive to
the catastrophic events unavoidably appear robust according to this setup.
In this respect, we prefer to initially maintain the formulation as general as possible, since the problems
previously discussed can be easily overcome by introducing some topological refinement, which is able to
capture the deviation of distributions on their tails, cf. [30, 31].

One of our intents is to investigate the performance of the risk estimates when the available dataset is
enlarged, by analysing under which stochastic hypotheses they display the asymptotic forms of stability
previously discussed. Indeed, while consistency is generally assessed according to classical ergodic argu-
ments [31], the more restrictive i.i.d. setting is usually recovered in order to investigate the notion of
qualitative robustness, cf. [19, 20, 30, 31]. In particular Krätschmer et. al [30, 31] restate the celebrated
Hampel’s theorem in a more general framework, while Zähle [47, 46] achieved a similar result by allowing
the stochastic process modelling the empirical outcomes to display an internal dependence structure.
In the present work, our goal is to provide a common framework in order to properly get an overall per-
spective and thus develop the theory concerning the consistency of the risk estimators together with the
qualitative robustness in an elegant and self-consistent setup. For these purposes, we start by analysing the
notion of consistency by taking into account different forms of distributional dependence. Indeed, although
the stationary structure provides the main pillar of the ergodic analysis, there are plenty of different prob-
abilistic symmetries that may be properly exploited for such a purpose. The symmetry structures which
act in the drama of probability are generally introduced in terms of families of random elements, whose
joint distribution does not change when considering specific classes of transformations. In this respect,
stationarity is defined as the form of distributional invariance arising when dealing with shift operators.
Our objective is to develop the main results in terms of exchangeability, the celebrated notion of proba-
bilistic symmetry corresponding to the distributional invariance exhibited under finite permutations, and
that can be properly defined in terms of optional shifts. In most of the cases, exchangeability ostensibly
provides a more convenient assumption due to many aspects, first and foremost the possibility to exploit
the notion of conditional independence, as classically assessed by de Finetti’s theorem (cf. [25], Theorem
9.16). Moreover, it ostensibly appears a suitable assumption also in view of many applications, by en-
coding the feeling that the empirical analysis is not sensitive to the order by which data are processed.
Furthermore, our refined overture allows to assess the analysis in terms of random probability measures.
This alternative turns out to be strongly appealing from the conceptual point of view, as the law of the
generic random variable modelling the empirical observations may be properly described as a function
depending on numerable sequences of outcomes. Stated differently, any infinitely large dataset determines
the law that may be understood as the best available statistical description of the data. Nevertheless, the
main strength of the our formulation lies in the possibility to restate the notion of qualitative robustness in
terms of the perturbations that affect the system when data are slightly stressed. Assessing this notion of
stability in terms of corrupted dataset outwardly provides a better interpretation also at the practical level,
since according to the standard practice, by their nature data are the main drivers of the empirical analysis.

Our article is organized as follows. In Section 2 we define the setup according to which we develop
our approach. Section 3 is entirely dedicated to the study of consistent risk estimates, by exploiting the
notions of probabilistic symmetries of major concern, and thus assessing the main results in terms of
random probability measures. In Section 4 we introduce our refined notion of qualitative robustness in



2 BASIC NOTIONS AND SETUP 3

terms of measurable action of group, providing an alternative version of the celebrated Hampel’s theorem.
In Section 5 we discuss how our results easily reduce when dealing the same topological setting considered
by Krätschmer et. al [30, 31].

2. BASIC NOTIONS AND SETUP

Let (E,E) be a Polish space endowed with the Borel σ-algebra E generated by the topology E as usual,
and denote by M1(E) the entire family of laws defined on (E,E ). Through the paper we largely focus on
the analytical properties of the generic functional defined on M1(E). For this purpose, characterizing the
topological structure of such a space turns out to be crucial in order to properly get an overall perspective.
It’s worth noting that there exist plenty of topologies that can be classically defined on the spaceM1(E). In
order to maintain the setup as general as possible, let F(E) be a family of measurable functions on (E,E ).
We shall implicitly assume that every function of this type takes real values, and thus the measurablility is
to be understood in terms of the common Borel structure on the real line. Moreover, we denote by MF

1 (E)
the family of measures µ ∈M1(E) such that

∫
E
|f |dµ < +∞, for any f ∈ F(E).

The main idea is to properly define a topological structure on MF
1 (E), by associating it with the family

F(E) via the canonical bilinear form

(µ, f) 7→ µf ,
∫
E

fdµ, for any µ ∈MF
1 (E) and any f ∈ F(E). (1)

At this aim, assume that F(E) separates the points of MF
1 (E), i.e. given any couple µ, ν ∈ MF

1 (E) one
has µ = ν if and only if µf = νf for any f ∈ F(E). Such an assumption is not too restrictive, since the
following result generally holds true.

Lemma 1. Let A(E) denote the family of all bounded and uniformly continuous real functions on E, then
F(E) separates the points of MF

1 (E) whenever F(E) ⊇ D(E) for some uniformly dense subset D(E) of
A(E).

Proof. Given µ, ν ∈ MF
1 (E) such that µ = ν, one trivially obtains that µf = νf , for any f ∈ F(E).

Conversely, assume that µf = νf , for any f ∈ F(E), and thus for any f ∈ D(E). Since D(E) is uniformly
dense in A(E), the equality µ = ν easily follows from Theorem 15.1 in [2].

In this respect, the space MF
1 (E) may be considered as a subspace of the product space RF(E), since

according to the previous assumption we can associate any µ ∈MF
1 (E) to the linear map f 7→ µf , varying

f ∈ F(E). As a result, the space RF(E) induces a topological structure on MF
1 (E) in a natural way.

Definition 1 (F(E)-weak topology). We call F(E)-weak topology the topology on MF
1 (E) inherited from

the product topology defined on RF(E), and generally denoted by σ
(
MF

1 (E),F(E)
)
.

According to Definition 1, the F(E)-weak topology is thus the projective topology on MF
1 (E) defined

by the linear forms on MF
1 (E) belonging to F(E), i.e. the coarsest topology on MF

1 (E) that renders
continuous the maps µ 7→ µf , varying f ∈ F(E). It is worth noting that, if 〈ca(E),F(E)〉 provides a dual
pair in the duality (1), where ca(E) denotes the family of all signed measures of bounded variation on
(E,E ), and MF

1 (E) is a σ
(
ca(E),F(E)

)
-closed and convex subspace of ca(E), the F(E)-weak topology on

MF
1 (E) is nothing but the relativization of σ

(
ca(E),F(E)

)
to MF

1 (E). Hence, according to the previous
arguments, we also say that σ

(
MF

1 (E),F(E)
)
is weakly generated by F(E), or generated by the duality with

F(E). Moreover, a sequence in MF
1 (E) is F(E)-weak convergent, if (and only if) it converges with respect

to the F(E)-weak topology on MF
1 (E).

It’s nothing short of clear that the regularitity properties displayed by the elements of F(E) strongly
impact on the nature of the resulting topology on MF

1 (E). Besides, not every choice for the family F(E)
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is suitable in our context. Indeed, we would like to obtain a topological space that may be metrized by
some complete and separable distance, and such a result is not guaranteed in general.
Definition 2 (Dual Normal Consistence). We shall say that the family F(E) is dual normal consistent
if (and only if) the space MF

1 (E) jointly with the F(E)-weak topology turns out to be metrized by some
complete and separable distance dF(E) on it.

By means of Definition 2, note that when letting F(E) be the family Cb(E) of continuous and bounded
functions on (E,E ), we easily obtain that MF

1 (E) equals the entire space M1(E). In particular, the
topology on it generated by the duality with Cb(E) is nothing but the standard weak topology of measures.
Thus, the family Cb(E) clearly turns out to be dual normal consistent. Indeed, since (E,E) is assumed
to be Polish, M1(E) endowed with weak topology of measures is classically metrized as a complete and
separable metric space, by considering for instance the Prohorov distance

π(µ, ν) , inf{ε > 0 : µ(B) ≤ ν(Bε) + ε, for any B ∈ E }, for any µ, ν ∈M1(E). (2)

where Bε , {x ∈ E : infy∈B dE(y, x) < ε} denotes the ε-hull of B ∈ E . Moreover, the same topological
structure may be equally achieved when enforcing the analytical regularity of the functions in Cb(E),
by considering the family BL(E) of bounded and Lipschitz continuous functions on (E,E ), (cf. [12],
Theorem 11.3.3). More generally, letting A(E) denote the family of all bounded and uniformly continuous
real function on E, the standard weak topology of measures on M1(E) is generated by the duality with any
uniformly dense subset of A(E), (cf. [2], Theorem 15.2). Nevertheless, continuity can not be ostensibly
omitted, since the topology generated on M1(E) by the duality with the entire family of measurable
and bounded functions on (E,E ) equals the topology associated to the setwise convergence, that is not
metrizable, (cf. [18], Proposition 2.2.1). Thus, the natural question is whether the boundedness of the
functions in F(E) is necessary in order to get a dual normal consistent family. As illustrated below, the
answer is no.
Definition 3 (ψ-weak topology). Let ψ be a real valued and non negative E -measurable function on E,
satisfying ψ ≥ 1 outside some compact set. We call ψ-weak topology the topology on Mψ

1 (E) , {µ ∈
M1(E) : µψ <∞} generated by the duality with Cψ(E) , {f ∈ C(E) : ‖f/(1 + ψ)‖∞ <∞}.

Note that the map Ψ : M1(E)→Mψ
1 (E) defined by means of the equality dΨ(µ) = (1+ψ)−1dµ defines

an homeomorphism between the two spaces. Thus, due to Theorem 6.2 in [37] combined with Corollary
11.5.5. in [12], since (E,E ) is assumed to be Polish, the space Mψ

1 (E) jointly with the ψ-weak topology
can be metrized as a separable and complete space. Furthermore, the previous arguments can be naturally
generalized in the following lemma.

Lemma 2. Endowed with the ψ-weak topology, the space Mψ
1 (E) is metrized as a complete and separable

space, when considering the metric dψ(µ, ν) , π(µ, ν)+|(µ−ν)ψ|, for any µ, ν ∈Mψ
1 (E), where (µ−ν)ψ ,

µψ − νψ.

It’s worth noting that the Prohorov measure π in the statement of Lemma 2 can be properly replaced by
any other distance metrizing the weak topology of measures, like for instance the Fortet-Mourier distance
induced by ‖µ‖?BL , sup{|µf | : ‖f‖BL ≤ 1}, for µ ∈ Mψ

1 (E), the norm classically associated to the
topological dual of the space BL(E).

Proof of Lemma 2. The proof trivially follows from Definition 3, noting that a sequence (µn)n in Mψ
1 (E)

converges to some law µ ∈ Mψ
1 (E) in the ψ-weak topology if and only if it weakly converges to µ and

µnψ → µψ, as n → +∞. In other worlds, the ψ-weak topology on Mψ
1 (E) is generated by the duality

with Cb(E), or equally with BL(E), jointly with the function ψ.

Given some dual normal consistent family of functions F(E), the space MF
1 (E) endowed with the

F(E)-weak topology provides the natural domain according to which we state all the results, since in the
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law invariance framework the downside risk may be properly assessed by considering a suitable functional
defined on it. More precisely, any application of this type naturally defines a sequence of risk estimators,
by considering a certain family of random measures on (E,E ), i.e. a family of probability kernels from the
basic underlying probability space (Ω,F ,P) to (E,E ). In this respect, it is worth noting that any random
probability measure on (E,E ) can be also properly described as a random element of the space M1(E),
endowed with the σ-algebra generated as usual by the projection maps πB : µ 7→ πB(µ) , µ(B), letting B
vary in E . As a result, since any sequence of risk estimators turns out to be a family of random variables
taking values in a suitable space, any form of regularity is to be assessed in probabilistic terms.

3. STRONG CONSISTENCY OF RISK ESTIMATORS

It is a well-known fact that the downside risk of an exposure is assessed on the basis of the available in-
formative set of historical values. Thus, we implicitly assume that the collected observations are encoded
by the elements of the Borel space (E,E ). Therefore, given some underlying non atomic probability space
(Ω,F ,P), any empirical outcome may be modeled by considering some random variable defined on it and
taking values in (E,E ). For sake of simplicity, we sometimes refer to any variable of this type as a random
element in (E,E ). As usual, we shall denote by L (ξ) the law induced by the generic random element ξ in
(E,E ).
Without loss of generality, we’re allowed to set Ω , EN, the family of numerable sequences in E, and
thus to let F , E N be the product σ-algebra on it, classically generated by the canonical projections
ξn : ω 7→ ξn(ω) , ωn, for any ω ∈ Ω, varying n ≥ 1. Since both at a conceptual and technical level,
the standard procedure is to look at data as the realizations of the random sequence ξ , (ξn)n, we shall
refer to ξ as the process governing the data or, more simply, the data process. Besides, such a sequence
naturally induces the family of random measures (mn)n on (E,E ) defined by setting

mn(ω,B) , 1
n

n∑
i=1

δξi(ω)(B), for any ω ∈ Ω and B ∈ E , (3)

varying n ≥ 1. In particular, let M1,emp(E) ⊂M1(E) be the space of the empirical measures on (E,E ) of
the form n−1∑

i≤n δxi for any (x1, ..., xn) ∈ En, varying n ≥ 1. Since for any n ≥ 1 the random measure
mn is nothing but a random element in the space M1,emp(E), endowed with the σ-algebra generated by
the canonical projections πB : µ 7→ µ(B), for µ ∈M1,emp(E), varying B ∈ E , we shall refer to (3) as the
family of empirical kernels directed by ξ.
Let M be some subspace of M1(E) such that M1,emp(E) ⊂ M . Given an a priori defined Borel space
(T,T ), the risk associated to an exposure is usually assessed by performing a certain measurable functional
τ : M → T , usually called statistic. In particular, we shall suppose that T is endowed with some metric
dT consistent with its topological structure, i.e. the topology T on T generating the Borel σ-algebra T is
metrized by dT . We also assume that the pair (T,T) provides a Polish space and we refer to such a space
as the action domain of the statistic τ . In general, letting (Fn)n be the filtration in F generated by the
data process ξ, any sequence (µn)n of random measures on (E,E ) adapted to (Fn)n, i.e. such that µn
is Fn-measurable for any n ≥ 1, induces the family of estimators (τ(µn))n. As we mainly focus on the
family of empirical kernels (3) in order to perform the statistic τ , the latter arguments easily lead to the
following definition.
Definition 4 (Risk Estimators). Given the family (mn)n of empirical kernels (3) and a statistic τ : M →
T , we shall refer to the random sequence (τn)n in (T,T ) obtained by setting τn , τ(mn), for any n ≥ 1,
as the family of historical risk estimators, or simply the estimators, induced by τ .

The obvious problem that arises at this step is to characterize the asymptotic behavior of the family
of estimators (τn)n when n is large. In particular, it appears crucial to understand under which stochastic
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assumptions the sequence (τn)n admits a consistent limit with respect to a certain notion of convergence.
For this purpose, the main idea is to deal with a data process ξ whose internal structure display a certain
probabilistic symmetry, saying that the random elements ξ1, ξ2, ... turn out to be jointly distributionally
invariant under the action of some measurable endomorphism on (EN ,E N).
In particular, we mainly focus on stationarity and exchangeablility, two of the stochastic symmetries of
major concern, that respectively arise when dealing with operations of shift and arbitrary permutations of
finite order. More precisely, we recall that a random sequence ξ , (ξ1, ξ2, ...) in (E,E ) is said stationary if
(and only if) L (ξ) = L (Σ(ξ)), where Σ(ω1, ω2, ...) , (ω2, ω3, ...) denotes the shift operator on EN, while
it’s called exchangeable if (and only if) L (ξn : n ∈ I) = L (ξπI(n) : n ∈ I) for any finite family of indices
I and any permutation πI on it. In this respect, we also denote by E N

inv(Σ) the shift invariant σ-algebra
in (EN,E N), i.e. the collection of all the Borel sets I ∈ E N such that Σ−1(I) = I. It’s nothing short
of clear that the notion of exchanegability provides a stronger form of dependence than stationarity. On
the other hand, as stated by Proposition 9.18 in [25], it can be properly described as a form of stronger
stationarity involving optional shift. Nevertheless, the two forms of probabilistic symmetry can be both
suitably exploited in order to investigate the asymptotic nature of the estimators (τn)n. Besides, the
analytical properties of the statistic τ : M → T also play a crucial role, in this setting. In particular,
letting F(E) be some a priori defined dual normal consistent family on measurable functions on (E,E ),
we shall consider the related space MF

1 (E) as the domain of the statistic τ . Thus, we shall say that the
statistic τ is (dF(E), dT )-continuous if it is continuous with respect to the topology generated on MF

1 (E) by
the duality with F(E) and the topology T on T generating the Borel σ-algebra T respectively. Moreover,
we denote by ξ−1E N

inv(Σ) the family of sets ξ−1(B) ∈ F obtained by varying B ∈ E N
inv(Σ), which trivially

admits the structure of σ-algebra since ξ−1 preserves all the set operations. The following result explains
how the asymptotic behaviour of the estimators (τn)n can be assessed in terms of stationarity.

Theorem 1 (Consistency under Stationarity). Suppose that the statistic τ is (dF(E), dT )-continuous and
that the sequence ξ is stationary and such that L (ξ1) ∈MF

1 (E). Then, considering the random probability
measure υ , P[ξ1 ∈ · |ξ−1E N

inv(Σ)], we get that τn → τ(υ) almost certainty with respect to P, as n→ +∞.

Proof. First of all, note that the stationary structure of the random sequence ξ implies that µ , L (ξ1) =
L (ξn) for any n ≥ 1. Next, let us fix f ∈ F(E). Since µ ∈MF

1 (E), the von Neumann’s version of Birkhoff’s
theorem (cf. [25], Theorem 9.6) combined with the celebrated disintegration theorem (cf. [25], Theorem
5.4), assures that the asymptotic behavior mn(ω, · )f → υ(ω, · )f holds true for P-almost any ω ∈ Ω and
in L1 norm as n → +∞, where we set υ , P[ξ1 ∈ · |ξ−1E N

inv(Σ)]. We also highlight that the conditional
distribution υ always exists, since E is Polish and endowed with the Borel σ-algebra E . Given a dual
normal consistent family F(E) of measurable functions on (E,E ), letting f vary in F(E), the previous
arguments assure that mn(ω, · )→ υ(ω, · ) in the F(E)-weak topology on MF

1 (E), for P-almost any ω ∈ Ω,
as n→ +∞. Letting now dF(E) be some metric consistent with the topology weakly generated on MF

1 (E)
by the duality with F(E), since τ is assumed to be (dF(E), dT )-continuous on MF

1 (E), we easily conclude
the proof.

It is worth noting that a regular version of υ always exists since E is Polish and endowed with the Borel
σ-algebra E . Moreover, since the stationary structure of the sequence ξ implies that L (ξn) = L (ξ1) for
any n ≥ 2, if in addition ξ is ergodic, i.e. its distribution on (EN,E N) is ergodic with respect to the shift
operator Σ on EN, the asymptotic result stated by Theorem 1 boils down to τn → τ(µ), P-almost surely
as n→ +∞, where we set µ , L (ξ1). Indeed the probability measure P turns out to be trivial on E N

inv(Σ)
in such a case.
Theorem 1 still remains valid when enforcing the stochastic structure of the data process, by considering a
stronger form of internal dependence. Indeed, it can be naturally reformulated in terms of exchangeability,
as stated below.
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Theorem 2 (Consistency under Exchangeability). Suppose that τ is (dF(E), dT )-continuous and that the
sequence ξ is exchangeable and such that L (ξ1) ∈ MF

1 (E). Then, letting υ be a regular version of the
random measure P[ξ1 ∈ · |ξ−1E N

inv(Σ)], we get that τn → τ(υ) almost certainty with respect to P, as
n→ +∞.

The following proof is based on the circle of ideas lying behind de Finetti’s theorem (cf. [25], Theorem
9.16). Such a result may be formulated in terms of the ergodic theory, and thus exploiting the discussion
present in the proof of Theorem 1, cf. [24, 26]. Nevertheless, we prefer to provide an alternative proof based
on simple martingale arguments, by generalizing the discussion in [27], since we found it more illuminating
from the probabilistic point of view.

Proof of Theorem 2. First of all, note that the internal exchangeable structure of the sequence ξ implies
that µ , L (ξ1) = L (ξn) for any n ≥ 2. Thus, set f ∈ L1(E,E , µ) and for any n ≥ 1 let Sn be the
σ-algebra generated by the random elements ξi when i ≥ n + 1 together with the variables of the form
φ(ξ1, ..., ξn), for some symmetric Borel function φ : En → E. Whenever we consider a Sn-measurable
random element η in (E,E ), we easily get that E[f(ξi)η] = E[f(ξ1)η] for 1 ≤ i ≤ n, and in particular by
linearity we have

E
[

1
n

n∑
i=1

f(ξi)η
]

= E[f(ξ1)η].

As a result, since n−1∑n
i=1 f(ξi) is clearly Sn-measurable, it turns out to be a version of E[f(ξ1)|Sn].

Noting that Sn ⊇ Sn+1, the celebrated Lévy’s downward theorem (cf. [44], Theorem 14.4) combined with
the disintegration theorem (cf. [25], Theorem 5.4) implies that mn(ω, · )f → υ1(ω, · )f , as n→ +∞, where
we denoted by υ1 the conditional distribution P[ξ1 ∈ · |S∞] obtained by setting S∞ ,

⋂
n Sn as usual.

Note also that the conditional distribution υ1 always exists, as E is Polish and endowed with the Borel
σ-algebra E . In particular, since the numerable sequence ξ admits an exchangeable structure, Corollary
1.6 in [26] assures that S∞ = ξ−1E N

inv(Σ) = σ(υ), and thus υ = υ1, almost surely with respect to P, where
we denoted by υ the random measure obtained in the proof of Theorem 1. Given now a dual normal
consistent family F(E) of measurable functions on (E,E ), since µ ∈ MF

1 (E), letting f vary in F(E), the
previous arguments imply that mn(ω, · ) → υ(ω, · ) F(E)-weakly, for P-almost any ω ∈ Ω, as n → +∞.
The proof is concluded by considering the same arguments as in the proof of Theorem 1.

It is nothing short of clear from the proof of Theorem 2, that when looking at the random measure υ,
the representation υ = P[ξ ∈ · |υ] holds true, by means of the equality υ = P[ξ ∈ · |σ(υ)], where σ(υ) ⊂ F
denotes the σ-algebra generated by the random measure υ. Moreover, due to Proposition 1.4 in [26], it can
be P-almost everywhere uniquely described in terms of the limits of the empirical kernels (3), by means of
the P-almost sure setwise convergence mn( · , B)→ υ( · , B), for any B ∈ E , as n→ +∞. In this respect,
we shall refer to υ as the random measure directing the sequence ξ.
It is worth recalling that the concept of exchangeability turns out to be very close to the notion of
spreadablility, the distributional form of invariance that arises when looking at any sub-sequence of ξ.
More precisely, the random sequence ξ is said spreadable (or contractable) if (and only if) L (ξ1, ξ2, ...) =
L (ξk1 , ξk2 , ...), for any strictly increasing sequence (kn)n of positive integers. Hence, since due to Theorem
1.1 in [26] the notion of exchangeability classically equals the notion of spreadability, when dealing with
numerable random sequences, Theorem 2 may be naturally restated as follows.

Corollary 1 (Consistency under Spreadability). Suppose that τ is (dF(E), dT )-continuous and that the
sequence ξ directed by the random measure υ is spreadable and such that L (ξ1) ∈MF

1 (E). Then, τn → τ(υ)
almost certainty with respect to P, as n→ +∞.

The latter results outwardly provide a characterization of the random sequence of estimators (τn)n,
assessing its asymptotic behaviour in terms of ones of the most celebrated notions of probabilistic sym-
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metries. In particular, we shall refer to Theorem 1, 2 and thus to Corollary 1, by means of the following
classical terminology.
Definition 5 (Strong Consistency). If τn → τ(υ) almost surely with respect to P as n → +∞, we shall
say that the random sequence (τn)n provides a family of strongly consistent estimators for τ(υ), or simply
that the statistic τ is strongly consistent with respect to the data process ξ or equivalently to the directing
random measure υ.

Note that in our setup, whenever we fix an element ω in Ω, we obtain a law υ(ω, · ) on the space of the
data (E,E ). Recalling that the space Ω has been defined as the family of numerable sequences in E, we
get that any (infinite) dataset determines a probability measure on the Borel space (E,E ) that may be
understood as the best probabilistic description of the data. In other words, when enlarging the dataset,
the model implicitly elects the limit distribution on the basis of the experience.

4. QUALITATIVE ROBUSTNESS UNDER GROUP ACTION

Roughly speaking, the celebrated Hampel’s notion of robustness refers to the property of a family of
estimators to be stable with respect to little changes affecting the predicting distribution, cf. [19, 20].
More precisely, some authors refer to such a form of stability saying that the laws induced by the family
of the risk estimators do not notably change when the distribution from which data are independently
sampled is forced to be slightly modified, [30, 31]. Zähle provides a refined version of qualitative robustness,
by allowing the data process to admit an internal dependence structure, [47, 45, 46]. Main objective of
the current section is to discuss a refined notion of qualitative robustness which naturally arises when
dealing with the setup previously discussed. Indeed, we witnessed how exchangeability provide a suitable
form of probabilistic structure when investigating the strong consistency of the generic family of risk
estimators. On the other hand, we also highlighted that such an approach turns out to be strongly
appealing also due to the possibility to assess the analysis in terms of random probability measures. In
this respect, the predicting distribution can be seen as a function of the available dataset. In particular,
any numerable sequence of outcomes determines a probability measure on the Borel space (E,E ). In a
setting where empirical observations are the real drivers of the study, it appears natural to assess the
notion of robustness as a form of stability that risk estimators display when data are corrupted. In this
respect, we shall provide a revised notion of qualitative robustness by exploiting the celebrated de Finetti’s
theorem, which classically assess the notion of exchangeability in terms of conditional independence.
Let us maintain the same notation from the previous section. In particular, the underlying triple (Ω,F ,P)
shall be defined by setting Ω , EN, jointly with the product σ-algebra F , E N defined in the common
way. Moreover, given some measurable group (G,G ), suppose that the probability measure P is invariant
under its measurable action ϕ : (g, ω) 7→ ϕ(g, ω) on (Ω,F ), i.e. P ◦ ϕ(g−1, · ) = P, for any g ∈ G. In
this respect, we get that the action ϕ does not corrupt the probabilistic structure of the space (Ω,F ,P),
saying that if an event in F occurs almost surely under P, then it maintains the same occurrence also with
respect to all the measures P ◦ ϕ(g−1, ·), varying g ∈ G. According to the natural interpretation, since Ω
is the family of numerable sequence in E, we shall refer to G as the perturbation group and thus we shall
call ϕ the measure preserving perturbation action of G on the space (Ω,F ,P). In addition, for notation
simplicity we shall sometimes write gω instead of ϕ(g, ω), for any g ∈ G and ω ∈ Ω, as usual.
Recall that the equality P[ξ ∈ · |υ](ω) = υN(ω, · ), that is guaranteed by de Finetti’s theorem when dealing
with numerable exchangeable random sequences ξ in (E,E ), holds true for P-almost any ω ∈ Ω. As a
result, the zero probability set of ω ∈ Ω such that the equality υNg (ω, · ) = P[ξ ∈ · |υ](gω) fails may depend
on the single g ∈ G, and thus, when varying g ∈ G, the union of such sets might cover the entire sample
space Ω. In order to overcome such a problem, we assume the existence of some subspace ΩG ⊂ Ω with
P(ΩG) = 1, that turns out to be invariant under the action of G, i.e. ϕ(g,ΩG) = ΩG, for any g ∈ G.
Given the random measures υ and υN on (E,E ) and (Ω,F ) respectively, we set υg(ω, · ) , υ(gω, · ) and
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υNg (ω, · ) , υN(gω, · ), for any ω ∈ Ω and g ∈ G. In particular, since ϕ(e, · ) is the identity operator on Ω,
where e denotes the unitary element of G, we enforce the notation by writing υe and υNe instead of υ and
υN respectively.
Let M be some subset of the space M1(E) such that M1,emp(E) ⊂M and that for any g ∈ G the random
measure υg takes values in it, i.e. υg(ω, · ) ∈ M for any ω ∈ Ω. Let also suppose that M and M1(T ) are
endowed with two respective metrics denoted by dE,1 and dT,1, consistent with their topological structures.

Definition 6 (G-Qualitative Robustness). A family of estimators (τn)n defined by some statistic τ : M →
T is said G-marginal robust for υ with respect to (dE,1, dT,1) if (and only if) for any ε > 0 there exists
δ(ε) > 0 and n(ε) ∈ N such that the following statement

if g ∈ G with dE,1
(
υg(ω, · ), υe(ω, · )

)
< δ(ε), then dT,1

(
υNg (ω, · ) ◦ τ−1

n , υNe (ω, · ) ◦ τ−1
n

)
< ε, for any n ≥ n(ε),

holds true for P-almost any ω ∈ Ω. In this respect, we also say that the statistic τ is G-marginal robust
for υ with respect to (dE,1, dT,1).

The celebrated Hampel’s theorem provides sufficient conditions for the qualitative robustness of the
estimators (τn)n in terms of the weak topology of measures, and in particular by letting dE,1 and dT,1
be the Prohorov metric (2). In such a setup, since almost surely pointwise convergence classically implies
convergence in probability, Varadarajan’s theorem (cf. [12], Theorem 11.4.1) guarantees that the following
statement

κµ(mn, µ) , inf
{
ε > 0 : µN{ω ∈ Ω : π

(
mn(ω, · ), µ

)
> ε
}
≤ ε
}
→ 0, as n→ +∞, (4)

holds true for any µ ∈M1(E), where κµ denotes the Ky Fan metric associated to µN and defined on the
random elements in the space M1(E), endowed with the measurable structure generated by the projection
maps πB : µ 7→ µ(B), for µ ∈M1(E), varying B ∈ E .
However, such a result generally fails when replacing the Prohorov metric π with distances on M1(E)
inducing a topological structure that is finer that the weak topology of measures. In this respect, the
previous arguments naturally lead to the following notion.
Definition 7 (UGC Property). We shall say that a measurable group (G,G ) measurably acting on (Ω,F )
admits the UGC property with respect to some distance dE,1 on M jointly with the random measure υ if
(and only if) the following statement

sup
g∈G

inf
{
ε > 0 : υNg

{
ω ∈ Ω : dE,1

(
mn(ω, · ), υg(ω̄, · )

)
> ε
}

(ω̄) ≤ ε
}
→ 0, as n→ +∞ (5)

holds true for P-almost any ω̄ ∈ Ω.
In the latter definition, we maintained the notation classically used in literature, cf. [31, 47, 46], where

the acronym UGC stands for "Uniformly Glivenko Cantelli", even though it’s sufficient to take a quick
look to realize that Glivenko-Cantelli theorem (cf. [12], Theorem 11.4.2.) has almost nothing to share
with property in (5). Indeed, while Glivenko-Cantelli theorem refers to the uniformly convergence of the
cumulative distributions associated to the family of empirical kernels (3) defined on the real line in the
i.i.d. setup, the UGC property in Definition 7 encodes the convergence in measure of such a family, which
is to be understood as a random sequence in the space M1(E), where the stochastic process ξ directing
the empirical kernels (mn)n is allowed to display an internal dependence structure. Since the notation we
used may generate confusing misunderstandings, we found important to highlight this issue.

Theorem 3 (Hampel-type Theorem). Let F(E) be a dual normal consistent family of measurable functions
and denote by dF(E) some metric consistent with the F(E)-weak topology on MF

1 (E). Suppose that the data
process ξ displays an internal exchangeable structure and that L (ξ1) ∈MF

1 (E). Given a measurable group
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(G,G ) satisfying the UGC property (5) with respect to dF(E) jointly with the random measure υ directing
ξ, if the statistic τ : MF

1 (E) → T is (dF(E), dT )-continuous and the F(E)-weak topology is as fine as the
weak topology of measures, then the sequence (τn)n turns out to be G-marginal robust for υ with respect to
(dF(E), π).

We restate the proof of Theorem 2.4 in [47], which is adapted to the discussion of Hampel’s theorem
as stated in [22, 23].

Proof of Theorem 3. Let Ω̄ be a measurable subset of Ω such that P(Ω̄) = 1, fix ω̄ ∈ Ω̄ and ε > 0. We have
to prove that there exists δ(ε) > 0 such that for any fixed g ∈ G for which dF(E)(υe(ω̄, · ), υg(ω̄, · )) ≤ δ(ε),
we get π(υNe (ω̄, · ) ◦ τ−1

n , υNg (ω̄, · ) ◦ τ−1
n ) ≤ ε when n is large enough. The main idea is to exploit the

following inequality,

π
(
υNe (ω̄, · ) ◦ τ−1

n , υNg (ω̄, · ) ◦ τ−1
n

)
≤ π

(
υNe (ω̄, · ) ◦ τ−1

n , δτυ(ω̄)
)

+ π(δτυ(ω̄), υ
N
g (ω̄, · ) ◦ τ−1

n )

where δτυ(ω̄) denotes the Dirac delta distribution on (T,T ) with τυ(ω̄) as the point mass, and where we
set τυ(ω̄) , τ(υe(ω̄, · )), which turns out to be well defined since υ(ω̄, · ) ∈MF

1 (E) due to Theorem 2.
Let Ω1 be a measurable subset of Ω such that P(Ω1) = 1 and fix ω̄1 ∈ Ω1. Note that, for large n we get

1− ε/2 ≤ υNg
{
ω ∈ Ω : dF(E)

(
υg(ω̄1, · ),mn(ω, · )

)
≤ δ
}

(ω̄1)
≤ υNg

{
ω ∈ Ω : dF(E)

(
υe(ω̄1, · ),mn(ω, · )

)
≤ dF(E)

(
υg(ω̄1, · ), υe(ω̄1, · )

)
+ δ
}

(ω̄1)
≤ υNg

{
ω ∈ Ω : dF(E)

(
υe(ω̄1, · ),mn(ω, · )

)
≤ 2δ

}
(ω̄1)

≤ υNg
{
ω ∈ Ω : dT

(
τυ(ω̄1), τn(ω)

)
≤ ε/2

}
(ω̄1) (6)

due to the UGC Property (5), since it implies that υNg {ω ∈ Ω : dF(E)(υg(ω̄, · ),mn(ω, · )) ≥ δ}(ω̄)→ 0 for
P-almost any ω̄ ∈ Ω and any δ > 0, as n→ +∞, the implication below

if dF(E)
(
υg(ω̄1, · ),mn(ω, · )

)
≤ δ, then dF(E)

(
υe(ω̄1, · ),mn(ω, · )

)
≤ dF(E)

(
υg(ω̄1, · ), υe(ω̄1, · )

)
+ δ,

and the (dF(E), dT )-continuity of τ at υe(ω̄1, · ). Restating the resulting inequality (6) as follows,

(δτυ(ω̄1) ⊗ υNg (ω̄1, ·) ◦ τ−1
n ){(t1, t2) ∈ T × T : dT (t1, t2) ≤ ε/2} ≥ 1− ε/2,

since the space T is Polish and endowed with the related Borel σ-algebra T by assumption, every law
in M1(T ) is tight due to Ulam’s theorem (cf. [12], Theorem 7.1.4). Hence, it is possible to exploit the
celebrated Strassen’s theorem (cf. [12], Theorem 11.6.2.) in order to get

δτυ(ω̄1)(C) ≤ υNg (ω̄1, ·) ◦ τ−1
n (Cε/2) + ε/2, for any C ∈ T ,

and thus
π
(
δτυ(ω̄1), υ

N
g (ω̄1, · ) ◦ τ−1

n

)
≤ ε/2.

In order to conclude the proof, consider a second measurable subset Ω2 of the sample space such that
P(Ω2) = 1. Now, since the weak convergence of (mn)n to υ(ω̄2, ·) holds true υN(ω̄2, ·)-a.s. for any ω̄2 ∈ Ω2
due to the exchangeability of the sequence ξ jointly with de Finetti’s and Varadarajan’s theorems (cf.
Theorem 9.16. in [25] and Theorem 11.4.1. in [12]), then for any ε > 0 we get π(υN(ω̄2, · )◦ τ−1

n , δτυ(ω̄2)) ≤
ε/2, when n is large. Letting Ω̄ , Ω1 ∩ Ω2 we conclude the proof.

Theorem 3 may be naturally generalized by providing a sort of converse. For this purpose, we shall
say that the sequence of estimators (τn)n is weakly consistent for the random measure υ with respect to
the metric dT if (and only if) it converges to τ(υ(ω̄, · )) in υN(ω̄, · )-probability, i.e. inf{ε > 0 : υN

{
ω ∈ Ω :

dT (τ(υ(ω̄, · )), τn(ω)) > ε}(ω̄) ≤ ε
}
→ 0, as n→ 0, for P-almost any ω̄ ∈ Ω.
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Theorem 4 (Converse of Hampel-type Theorem). Let us maintain the same notation from Theorem 3.
Suppose that (τn)n is G-marginal robust for υ with respect to (dF(E), π) and that (τn)n is weakly consistent
for υ with respect to dT , then τ : MF

1 (E) → T is (dF(E), dT )-continuous at υe(ω, · ) for P-almost any
ω ∈ Ω.

Proof. Let Ω̄ be some subset of Ω such that P(Ω̄) = 1 and fix ω̄ ∈ Ω̄. We have to prove that for
any ε > 0 there exists δ(ε) > 0 such that if dF(E)(υg(ω̄, · ), υe(ω̄, · )) < δ(ε) for some g ∈ G, then
dT (τυg (ω̄), τυe(ω̄)) < ε. For this purpose, the proof of Theorem 2.6 in [30] can be naturally adapted in the
present setup by considering the following triangular inequality

dT (τυg (ω̄), τυe(ω̄)) = π
(
δτυg (ω̄), δτυe (ω̄)

)
≤ π

(
δτυg (ω̄), υ

N
g (ω̄, · ) ◦ τ−1

n

)
+ π

(
υNg (ω̄, · ) ◦ τ−1

n , υNe (ω̄, · ) ◦ τ−1
n

)
+ π

(
υNe (ω̄, · ) ◦ τ−1

n , δτυe (ω̄)
)

The proof concludes by noting that, while the first and the third summand tend to zero as n→ +∞, since
(τn)n is assumed to be weakly consistent for υ with respect to dT , the second summand can be bounded from
above by any ε > 0 for n large enough, whenever we fix δ(ε) > 0 such that dF(E)(υg(ω̄, · ), υe(ω̄, · )) < δ(ε),
due to the G-qualitative robustness of (τn)n for υ with respect to (dF(E), dT ).

Note that, setting F(E) = Cb(E), and thus letting dF(E) be some metric for the weak convergence
of measures, the (dF(E), dT )-continuity of τ turns out to be equivalent to the G-qualitative robustness of
(τn)n for the random measure υ with respect to (dF(E), π), since both the UGC property (5) displayed by
the group G and the weak consistency of the sequence (τn)n are always guaranteed in such a case. The
reason of these additional assumptions lies behind our desire to deal with some topological structure that
turns out to be finer than the topology for the weak convergence.
Moreover, developing the present theory in a overall setup, by considering random measures on (E,E )
instead of the generic couple of law in M1(E), allows us to assess the notion of robustness in terms of
corrupted dataset. Indeed, since every sample ω encodes a certain sequence of observations, assessing the
impact of the perturbation in terms of the distance between the laws υg(ω, · ) and υe(ω, · ), by varying
g ∈ G, allowed us to restate the notion of robustness when altering the historical observations. In this
respect, robustness turns out to be a form of stability that the laws induced on (T,T ) by the family (τn)n
asymptotically display when data are perturbed, and it strongly depends on the continuity of the statistic
τ , due to Theorem 3. On the other hand, continuity represents a suitable form of analytical regularity
also on a practical level. Indeed, since from the regulatory point of view every monetary risk measure can
be seen as the minimal amount of money to put aside in order to hedge the exposure, the continuity of
the predictor statistic implies that little forecasting mistakes can be controlled by injecting just limited
amounts of capital as safety fund. As a result, Theorem 3 claims essentially that the performance of the
risk measure from the regulatory point of view strongly impacts on the stability of the associated family
of estimators in terms of robustness. More than that, when looking at it jointly with Theorem 4, one can
interpret these two forms of regularity as the two side of the same coin.

5. CONVEX LAW INVARIANT RISK MEASURES

Everyone owns an innate feeling of how the risk associated to some market exposure is to be understood.
Nevertheless, it is not ostensibly possible to properly assess it in quantitative terms, unless a suitable risk
evaluation procedure has been a priori defined. Within the drama of the modern risk management, such
a role is recovered by statistics that are defined by considering certain risk measures. In particular, given
a law invariant monetary risk measure ρ : X → R, where X denotes some family of random elements in
R endowed with the Borel σ-algebra B(R), a possible statistic is obtained by considering the associated



5 CONVEX LAW INVARIANT RISK MEASURES 12

distribution-based risk functional

Rρ : µ 7→ Rρ(µ) , ρ(ξ), for any ξ ∈ X such that L (ξ) = µ, (7)

defined for any µ lying in M(X) , {L (ξ) : ξ ∈ X}. Hence, assuming that M1,emp(R) ⊂ M(X), the
sequence of real valued random variables ρn , Rρ(mn), obtained by varying n ≥ 1, classically defines a
family of estimators for the risk measure ρ, as stated in Definition 4.
Notwithstanding the analytical properties of the functional (7) have been classically assessed in terms of the
standard weak topology of measures, we already claimed that such a formulation may generate a number
of debated complications. First of all, since the tail behaviours of the distributions is completely neglected
in such a setup, it does not appear ostensibly possible to formulate a notion of qualitative robustness in a
meaningful way. Worst still, the distribution-based risk functionals associated to most of the common law
invariant risk measures lack to be continuous when endowing its domain with such a topological structure.
Nevertheless, according to Theorem 1, 2 and 3, the continuity of the functional (7) turns out to be the
main pillar when assessing the asymptotic stability of the risk estimators (ρn)n in terms of consistency
and robustness.
As observed in [30, 31, 47], it is possible to easily overcome such problems by taking into consideration
some suitable refinement of the standard weak topology, which is able to capture the tail behaviour of the
distributions. In this respect, the performing idea is to look at the topology generated by the duality with
some family F(R) including functions that may be unbounded outside a certain compact interval of the
real line.
According to Definition 3, the most appealing setting of this type is probably achieved in [31] by considering
the ψ-weak topology on the spaceMψ

1 (R) obtained by setting ψ , φ(|·|), for some left-continuous increasing
and convex function φ : [0,+∞) → [0,+∞) such that φ(0) = 0 and φ(x) → +∞, as x → +∞. In this
respect, the role of the function ψ is to be understood as a form of penalization of the distributions on their
tails, with the main attempt to recover the information regarding the extreme events that are completely
neglected in the standard setup. Besides, the asymptotic nature of such a function clearly impacts on the
analytical properties displayed by the generic functional defined on the space Mψ

1 (R). Indeed, letting ρ
be some convex and law-invariant risk measure such that the related distribution-based risk functional Rρ

can be properly defined on the space Mψ
1 (R), according to Theorem 2.8 in [31] the continuity of Rρ with

respect to the ψ-weak topology is guaranteed only when the function φ satisfies the so-called ∆2-condition,

there exists a constant C > 0 and x0 ∈ R such that φ(2x) ≤ Cφ(x), for any x ≥ x0. (8)

More precisely, since we implicitly assume to deal with the representation ψ , φ(| · |), with notational
abuse we say that the function ψ satisfies the ∆2-condition when the statement (8) holds true for the
function φ. In the present framework, Theorem 1, 2 and thus Corollary 1, may be properly restated as
follows.

Theorem 5 (Consistency in the ψ-weak topology). Let ρ be a convex law invariant risk measure such that
the related distribution-based functional (7) can be properly defined on the space Mψ

1 (R). Then, in each of
the following cases

i. ξ is a stationary sequence of real valued random variables,
ii. ξ is an exchangeable sequence of real valued random variables,
iii. ξ is a spreadable sequence of real valued random variables,

if L (ξ1) ∈Mψ
1 (R) and ψ satisfies the ∆2-condition (8), we get that the sequence (ρn)n provides a family

of strong consistent estimators for Rρ(υ), where υ is a regular version of the conditional distribution
P[ξ1 ∈ · |ξ−1B(R)Ninv(Σ)].
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Since the continuity of the statistic defining the risk estimators (ρn)n constitutes the main pillar also
when investigating the notion of qualitative robustness, condition (8) can be properly exploited in order to
restate Theorem 3 in the current setup. Besides, since according to the circle of ideas lying behind Lemma
2, the ψ-weak topology on Mψ

1 (R) can be properly defined as the topology generated by the duality with
the family Cb(R)∪{ψ}, the UGC property (5) strongly simplifies in the current setup. Indeed, it is nothing
short of clear that when looking at the metric dψ(µ, ν) , π(µ, ν) + |(µ − ν)ψ|, for µ, ν ∈ Mψ

1 (R), jointly
with the random measure υ, it easily boils down to the following condition,

sup
g∈G

inf
{
ε > 0 : υNg

{
ω ∈ Ω :

∣∣(mn(ω, · )− υg(ω̄, · )
)
ψ
∣∣ > ε

}
(ω̄) ≤ ε

}
→ 0, as n→ +∞, (9)

for P-almost any ω̄ ∈ Ω. Hence, in the present setting, Theorem 3 is restated as follows, by providing the
natural generalization of Theorem 2.15 in [31] when dealing with our refined framework, since the notion
of independence has been assessed in conditional terms.

Theorem 6 (Hampel-type Theorem for the ψ-weak topology). Let ρ be a convex law invariant risk measure
such that the related distribution-based functional (7) can be properly defined on the space Mψ

1 (R). Suppose
that the data process ξ displays an internal exchangeable structure and that L (ξ1) ∈ Mψ

1 (E). Given a
measurable group (G,G ) satisfying the UGC property (9) with respect to dψ jointly with the random measure
υ directing ξ, if ψ satisfies the ∆2-condition (8), then the sequence (ρn)n turns out to be G-marginal robust
for υ with respect to (dψ, π).
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